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�e vibrating system of a class of linkage-slider structure is considered, and its initial-sensitive dynamical behaviors such as safe
jump, locking instability, and chaos are studied. First, static bifurcation of the dynamical system is discussed. �en, via analyzing
the e�ect of the external excitation on the periodic solutions under primary resonance, it is found that the change of the excitation
frequency may lead to bistability and safe jump. Furthermore, it follows from the investigation of the heteroclinic bifurcation that
the increase of the external excitation amplitude may lead to locking instability, chaos, and static locking. �e results have some
potential values in the design of geometrically nonlinear oscillators.

1. Introduction

Dynamics of nonlinear oscillators with quadratic or cubic
terms has been investigated extensively in the literature.
�ere are also some oscillators whose nonlinearities are
irrational terms due to the changes in their geometric
con�guration [1, 2]. Such oscillatory systems have received
increasing attentions for being commonly used in the design
and applications of machinery such as energy harvesters,
turbine structures, and industrial robots [3–5]. In most of
the cases, it is often quite di�cult to get the exact periodic
solutions; thus, the pursuit of approximate periodic solu-
tions to these nonlinear oscillators has generated many
analytical or semi-analytical methods, for instance, har-
monic balance method [6] and parameter-expansion
method [7]. Lai and Xiang [8] presented a generalized
Senator–Bapat perturbation approach to obtain accurate
solutions of an oscillating system with an irrational restoring
force. Yildirim et al. [9] applied the Hamiltonian approach to
get the analytical approximate solution of the nonlinear
oscillators with rational and irrational elastic terms. Li et al.
[10] considered a strongly irrational oscillatory systemwith a
viscous damping as well as an external harmonic excitation
and employed a four-dimensional average method to obtain
the perturbed primary responses. Razzak [11] proposed a

new noble modi�ed method to obtain the approximate
solution of strongly nonlinear oscillator systems with a
rational force and an irrational one. Qin and Shang [12]
applied the average method directly to get the approximate
periodic solutions semi-analytically in the vibrating system
of a linkage slider under an irrational tensile force. Amer
et al. [13] used the Poincare method of small parameter to
achieve the asymptotic solutions of a three-dimensional
system of a gyrostat for the case of irrational frequencies.
Kenmogne et al. [14] considered a discontinuous elastic
coupling electromechanical system with strong irrational
nonlinearity and studied the oscillatory bursting of its
electric circuit and the impulse bursting of its mechanical
structure via numerical approaches.

Apart from the periodic oscillation, complex dynamics
of the systems with geometric nonlinearities such as mul-
tistability [15, 16], period-n motion [17], and chaos [18] also
attracts great attentions during these decades. Among these
complicated behaviors, multistability is characterized by a
high degree of complexity, as only one of coexisting
attractors can guarantee the desired behavior. Cao et al. [19]
investigated the global bifurcations and multiple bucklings
of a nonlinear oscillator with a pair of strong irrational
nonlinear restoring forces theoretically. Santhosh et al. [20]
investigated multistability of a harmonically excited SD
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(smooth and discontinuous) oscillator via numerical inte-
gration methods and found that the fractal domains of at-
traction of the coexisting attractors led to the phenomenon
safe jump. Hao and Cao [21] presented a single-degree-of-
freedom geometrically nonlinear oscillator with stable quasi-
zero stiffness and carried out numerical simulations to detect
chaos and coexisting period-3 attractors. Yue et al. [22]
studied stochastic bifurcations of the SD oscillator with
bounded noises by the generalized cell mapping method and
described the bifurcations as a sudden change in shape and
size of random attractor with the continuous variation of
system parameters. From a global viewpoint, the phenomena
safe jump and chaos both imply working unreliability of
engineering systems, as they are sensitive to the initial state.
An archetypal SD oscillator was proposed in [23] whose
abundant dynamics such as bistability and chaos was
exhibited. On this basis, Yang and Zhou [24] proposed
several feedback-control approaches to control its chaotic
vibrations and numerically evaluated the effect of the
control. Han and his coworkers proposed another nonlinear
oscillator with strong irrational nonlinearities, i.e., the
coupled SD oscillator, employedMelnikov method to obtain
the analytical criteria of chaotic thresholds, and presented
chaos via numerical simulation [25]. Based on SD oscillator,
Yang et al. [26] designed a multidirectional multistable
device (MMD) including displacement sensors, hydraulic
shakers, and oscilloscopes to observe multistability of the
oscillator which may be adopted for energy harvesting from
ultra-low-frequency vibration sources. Zhang et al. [27] also
designed an SD-type isolation system with quasi-zero
stiffness and found that the phenomenon bursting oscilla-
tion of the system can be triggered by the transition of the
stable motion from equilibrium to the limit-cycle oscillation
and a jump of solution branch. However, due to the diffi-
culties in dealing with the geometrically nonlinear terms of
these oscillatory systems, the mechanism of their dynamics
related to initial-state sensitivity is still unclear yet.

In this work, we consider a class of nonlinear oscillator
with irrational terms and study the mechanism of its various
initial-sensitive dynamical behaviors. +e study is organized
as follows. In Section 2, the dynamical model of a typical
linkage-slider structure is briefly introduced, and its static
bifurcation is then discussed. In Section 3, the average
method enabling to describe the primary resonance of the
oscillator is illustrated.+e phenomenon safe jump is shown
via classification of the basins of attraction of multiple pe-
riodic attractors. In Section 4, global bifurcation is analyzed.
Further numerical studies address geometric aspects such as
occurrence of heteroclinic bifurcation and the induced
complex dynamics. Finally, Section 5 contains conclusions.

2. Dynamical Model

We consider a typical linkage-slider structure [12, 15] whose
simplified diagram is shown in Figure 1. +e oscillation of
the slider is governed by the following equation:

m €x + c _x + kx −
Tx

������
L
2

− x
2

􏽰 � F0 cos(Ωt). (1)

in which c represents the damping coefficient, k the coef-
ficient of linear stiffness, T the tensile force loading on the
ball B, L the length of the connecting rod between the slider
A and the ball B, F0 the amplitude of the external excitation
on the slider A, and Ω the frequency of the external exci-
tation.+e displacement of the sliderA should satisfy |x|≤L.
Once the displacement x reaches ±L, the connecting rod will
stay horizontally and then cannot move, meaning an un-
wanted phenomenon of the structure, namely, locking.
System (1) becomes dimensionless by letting u � x/L, ω0

2 �

k/m, ξ � c/2mω0, τ � ω0t, ω � Ω/ω0, α � T/kL, and f0 �

F0/kL, expressed as

€u + 2ξ _u + u −
αu

�����
1 − u

2
􏽰 � f0 cos(ωτ). (2)

Supposing that the tensile force T in Figure 1 is positive,
in the following part, we discuss the case for α> 0.

+e unperturbed system of the dimensionless system
(2) can be expressed as

_u � v,

_v � − u +
αu

�����
1 − u

2
􏽰 .

(3)

Accordingly, the number and stability of equilibria of
system (2) can be changed when α increases. If 0< α< 1,
there will be three equilibria, namely, (0, 0), (

�����
1 − α2

√
, 0),

and (−
�����
1 − α2

√
, 0); the origin (0, 0) is stable, while the other

two equilibria ( ±
�����
1 − α2

√
, 0) are unstable. If α> 1, the only
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Figure 1: Simplified oscillator of a linkage-slider structure.
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Figure 2: Static bifurcation of system (2) with α.
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one equilibrium (0, 0) will be unstable, which shows that
there will be an unbounded escape from the origin; thus, the
structure undergoes locking whatever the initial conditions
are, which is so-called static locking. +e pitchfork bifur-
cation along α is shown in Figure 2. In order to address more
abundant dynamical behaviors of system (2), in what fol-
lows, we suppose 0< α< 1.

3. Multistability and Frequency Jump

Since oscillators are well known to have the complex dy-
namical behavior in the neighborhood of the main reso-
nance, in this section we follow our previous work [12] and
consider that the motion appears to be in the vicinity of the
primary resonance. +e approximate periodic solution is
supposed as u � a cos(ωt − θ). By using the average
method, we obtain the following equations of the amplitude
and phase

_a �
− 1

2πω0
􏽚
2π

0
2ω0ξaω sin ϕ + δω0

2
a cos ϕ􏼐

+
αa cos ϕ

����������

1 − a
2cos2 ϕ

􏽱 + f0 cos(ϕ + θ))) sin ϕ dϕ ,

_θ �
− 1

2πaω0
􏽚
2π

0
2ω0ξaω sin ϕ + δω0

2
a cos ϕ􏼐

+
αa cos ϕ

����������

1 − a
2cos2 ϕ

􏽱 + f0 cos(ϕ + θ)) cos ϕ dϕ .

(4)

Letting the right end of the equation above be zero, we
can solve the frequency ω and amplitude a in the equation
below

2ξωa − f0 sin θ � 0,

π ω2
− 1􏼐 􏼑a

2
+ πf0a cos θ − 4αE a

2
􏼐 􏼑 + 4αK a

2
􏼐 􏼑 � 0.

(5)

where the functions K(a2) and E(a2) are the complete el-
liptic integrals of the first type and the second type, re-
spectively. Conveniently, the numerical results of these two
functions can be directly computed by using the symbolic
software. Eliminating the parameter θ in equation (5), we
have

1
πa

􏼒 􏼓
2
4αE a

2
􏼐 􏼑 − 4αK a

2
􏼐 􏼑 − π ω2

− 1􏼐 􏼑a
2

􏼐 􏼑
2
+4ξ2a2ω2

�f0
2
.

(6)

+e theoretical amplitude a can be obtained by solving
equation (6) semi-numerically. According to the Jacobian
matrix of the linearized equation of the average equation, the
corresponding characteristic equation of the periodic so-
lution is

λ2 +
1
2
α3 − 2ξ􏼒 􏼓λ + η � 0, (7)

where η � − α3ξ + α(K(a2)− E(a2))(4αK(a2) − 4αE(a2) +

πδωa2)/π2ω2α3. Obviously, the stability of the periodic

solutions can be ascertained by the above equation. It follows
that the periodic solution expressed by u � a cos(ωt − θ)

will be asymptotically stable if η> 0.
+e response curve expressed by equation (6) for ξ �

0.001 and α � 0.1 is shown in Figure 3. Under different
values of the excitation amplitude f0, the variation of the
amplitude and stability of periodic solutions with the
excitation frequency ω is presented. When f0 is lower, for
instance, f0 � 0.1 or f0 � 0.3 (see the red or green curve,
respectively), there is only one periodic attractor whose
amplitude changes continuously with the increase of ω.
Comparatively, under a higher f0 like f0 � 0.5, there is a
large range of the excitation frequency that induces
locking (see the cyan dashing line for a � 1 in Figure 3).
Via MATLAB, we apply the 4th Runge–Kutta approach to
simulate the numerical solutions of the system so as to
verify the validity of our theoretical results. Here, we
emphasize that in a certain range of the excitation fre-
quency, different initial conditions of system (2) may lead
to different attractors. For example, under the same values
of system parameters, i.e., ω � 1 and f0 � 0.1, two dif-
ferent initial states (u(0), _u(0)) � (0, 0) and (u(0), _u(0)) �

(− 0.1, 0.9) lead periodic oscillation and locking, respec-
tively, as shown in Figure 4(a). +is type of locking is
termed dynamical locking as the structure does not nec-
essarily undergo locking. In other words, whether locking
will occur depends on the initial conditions. Compara-
tively, when the excitation amplitude is higher, namely,
f0 � 0.5, the structure will undergo static locking
(Figure 4(b)).

As under certain values of system parameters dynamical
locking coexisting with the periodic attractor (Figure 4(a)), it
is essential for us to classify their basins of attraction. As we
know, locking is an unwanted phenomenon for the struc-
ture. Its basin of attraction can be understood as a dangerous
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Figure 3: Variation of the amplitude of periodic solutions with the
frequency of the excitation when α � 0.1.
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basin. In contrast, the other initial conditions will lead to
bounded solutions; thus, their union is defined as safe basin
[28]. Locking instability of the structure can be indicated by
fractal erosion of safe basin of system (2), as a small per-
turbation of initial state for bounded motions may cause
locking. We apply the generalized point mapping method to
system (2). +e domain D � |u(0)|≤ 1, | _u(0)|< 2{ } is par-
titioned into 200 × 400 array points. And the trajectories are
generated to determine the image of safe basin by fourth-
order Runge–Kutta algorithm with one-step mapping length

T � 0.01. We suppose that if a trajectory satisfies |u(T)|< 1
within 106 excited circles, then its initial state will be con-
sidered safe, thus marked in black. +e basin of locking will
be marked by white dots. Under the same values of the
system parameters ξ, ω, and α of Figure 4(a), one can easily
observe the evolution of safe basins with the increase of the
excitation amplitude f0 in Figure 5 where the blue “+”
indicates the origin (0, 0). When f0 increases, the area of
safe basin will become smaller, and the fractal of basin
boundary will be more obvious. Specifically, when f0 � 0.42
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Figure 4: Time histories of system (2) under different values of f0 when α � 0.1 and ω � 1. (a) f0 � 0.1. (b) f0 � 0.5.
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Figure 5: Evolution of safe basins of system (2) with the increase of f0 when ω � 1 and α � 0.1. (a) f0 � 0.1. (b) f0 � 0.3. (c) f0 � 0.35. (d)
f0 � 0.42. (e) f0 � 0.48. (f )f0 � 0.5.
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(Figure 5(d)), the structure may be locked even if the initial
conditions are chosen in the neighborhood of the origin. To
be worse, when f0 � 0.5, static locking will occur, for the
whole initial domain becomes white (Figure 5(f )). It also
agrees with the analytical results in Figure 3. It follows from
Figure 5 that the increase of the excitation amplitude f0 will
lead to locking instability or even static locking.

Given that f0 � 0.1, the response curves of equation (5)
for different values of the parameter α are shown in Figure 6
where the stable and unstable branches are expressed by
solid and dashed curves, respectively. At α � 0.1, as shown in
the red curve of Figure 6, the unique periodic solution keeps
stable, and its amplitude varies continuously with the ex-
citation frequency ω. However, under a higher α, the dy-
namics will be totally different and sensitive to ω. For
instance, when α � 0.3, there are two critical values of ω for
Hopf bifurcation of system (2), i.e., 0.69 and 0.72, implying
that when the excitation frequency ω ranges from 0.69 to
0.72, there will be safe jump between bistable periodic
attractors; if ω is beyond the small interval [0.69, 0.72], there
will be only one periodic solution which keeps stable and
changes continuously with ω, the similar as the case of
α � 0.1. +is evolution of dynamical behaviors with ω can
also be verified by the time history diagrams of Figures 7(a)
and 7(b). In Figure 7(a), the only periodic response coexists
with dynamical locking under the same values of parameters
and different initial conditions. In Figure 7(b), when ω � 0.7,
i.e., within the interval [0.69, 0.72], three different initial
conditions lead to bistable periodic responses and static
locking, respectively. Under a higher value of α, i.e., α � 0.7
(see the purple curves in Figure 6), there are two joints
between the dashing curves and solid ones whereω is 0.3 and
0.35, respectively. When α� 0.7, if ω is within the interval
[0.30,0.35], static locking will occur (see the horizontal
dashing line a � 1 in Figure 6 as well as the time history
diagram in Figure 7(c)), implying that the structure will be
definitely in locking despite of the change of initial condi-
tions; if ω is beyond the interval, dynamical locking and
periodic response coexist (Figure 7(d)).

+e coexistence of periodic attractors and dynamical
locking, as shown in Figures 7(b) and 7(d), may lead to the
loss of global integrity. Hence, we illustrate the evolution of
basins of attraction of system (2) with the excitation am-
plitude f0 in Figure 8 where the black, red, and white regions
represent the basins of attraction of the low-amplitude pe-
riodic attractor, the high-amplitude one, and locking, re-
spectively. In fact, in Figures 8(a), 8(b), and 8(c) where the
two periodic attractors coexist, with the increase of f0, the
red region will expand, while the black region will shrink with
a clear boundary, implying that safe jump may occur when
the initial conditions are chosen near the boundary of basin
of attraction of the low-amplitude periodic attractor. In
Figure 8(c), the low-amplitude attractor has very all basin of
attraction and becomes so-called rare attractor [29]. When
f0 continues to increase, the basin of attraction of the low-
amplitude periodic attractor will disappear, and the basin
boundary of the high-amplitude periodic attractor will be
more fractal (Figures 8(d) and 8(e)), showing locking in-
stability. For example, when f0 � 0.55 (Figure 8(e)), the

structure will undergo locking even if the initial conditions
are chosen in the neighborhood of the origin. Once f0 in-
creases to 0.65 (Figure 8(f)), the whole initial-condition plane
becomes white, which means static locking of the structure.

In this section, it is found that when 0< α< 1, there are
initial-sensitive dynamical behaviors of system (2) such as
safe jump and locking instability. +e former can be at-
tributed to local bifurcation of periodic solutions and the
initial conditions of system (2). We will further discuss the
latter in the next section.

4. Complex Dynamics Induced by
Global Bifurcation

4.1. Heteroclinic Orbits of the Unperturbed System. +e un-
perturbed system is given in equation (3) whose Hamilto-
nian is

H(u, v) �
1
2
v
2

+
1
2
u
2

+
1
2
α2 + α

�����

1 − u
2

􏽱

−
1
2
. (8)

Its corresponding potential energy function is

V(u) �
1
2
u
2

+ α
�����

1 − u
2

􏽱

−
1
2

+
1
2
α2. (9)

According to equations (8) and (9), the existence of
potential wells, the shape, the location of possible potential
wells, and the number of equilibria of the system depend on
the parameter α. If 0< α< 1, there will be three equilibria
among which the origin is a center, and the other two
equilibria P(

�����
1 − α2

√
, 0) and Q(−

�����
1 − α2

√
, 0) are symmet-

rical saddle points on the two heteroclinic orbits containing
a single potential well and satisfying that

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1
ω

ā

1.2 1.4 1.6 1.8
0

Unstable branch

α=0.1
α=0.3

α=0.7

Unstable branch
Numerical results
Locking solution

Figure 6: Amplitude-frequency responses under positive values of
α for f0 � 0.1.
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H(u, v) �
1
2
v
2

+
1
2
u
2

+ α
�����

1 − u
2

􏽱

� α. (10)

Given α � 0.5, the potential energy and unperturbed
orbits are shown in Figures 9(a) and 9(b), respectively.
Obviously, within the region surrounded by the heteroclinic
orbits (see the bold curves in Figure 9(b)), the trajectories
around the origin are closed and elliptic.

To analyze the necessary conditions for global bifurca-
tion of a nonautonomous system, the most common way is
to apply the Melnikov method. However, considering the
irrational nonlinear terms in equation (10), the heteroclinic
orbits of system (7) cannot be expressed by the time τ ex-
plicitly. Hence, the Melnikov method cannot be applied
directly. We have to propose a new variable ϕ to express
these two heteroclinic orbits and time τ explicitly so as to
apply the Melnikov method then [28]. Here, the variable ϕ is
assumed to satisfy that

dϕ
dτ

� Φ(ϕ)Φ(ϕ + 2π) � Φ(ϕ). (11)

Additionally, with the increase of ϕ, the heteroclinic
orbits go from one saddle point to the other and complete a
cycle from 0 to 2π, i.e.,

ϕ(− ∞) � 0,

ϕ(+∞) � π.
(12)

Based on the unperturbed system (3), we can further
construct heteroclinic orbits ±uh(ϕ) as [30]

uh(ϕ) �

�����

1 − α2
􏽱

cos ϕ. (13)

and have

1
2
Φuh
′( 􏼁
2

� − 􏽚
uh(ϕ)

uh(0)
u −

αu
�����
1 − u

2
􏽰􏼠 􏼡du. (14)

Substituting equations (13) into (14), we obtain that

Φ� ±

��������������������������������������������

1+3α2 − cos(2ϕ) +2
�
2

√
α

�����������������������

1+α2 − cos(2ϕ) +α2 cos(2ϕ)

􏽱

1 − α2􏼐 􏼑(1 − cos(2ϕ))

􏽶
􏽴

.

(15)
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According to equations (13) and (15), the two hetero-
clinic orbits can be expressed analytically as

uh(ϕ) �

�����

1 − α2
􏽱

cos ϕ,

vh(ϕ) �∓

����������������������������������������

1+3α2 − cos(2ϕ) +2
�
2

√
α

�������������������

1+α2 − 1 − α2􏼐 􏼑cos(2ϕ)

􏽱

2

􏽶
􏽴

.

(16)
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Figure 9: Diagrams for the unperturbed system (15) when α � 0.5 and ω0 � 1. (a) Potential energy diagram. (b) Phase diagram of the
unperturbed system.
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Substituting equations (15) into (11), we get

τ � ±
(2α − (1 + α)A(ϕ))G1(φ, 4α/(1 + α)A(ϕ)) +(1 + α)A(ϕ)G2(φ, 4α/(1 + α)A(ϕ))

α
�����
1 + α

√ �����
A(ϕ)

􏽰 , (17)

where φ � 1/2arcsin(
�����
1 − α2

√
cos ϕ), A(ϕ) � 2α + (1 − α)

sin2 ϕ, and the functions G1 and G2 are the incomplete
elliptic integrals of the first type and the second type, re-
spectively.+e heteroclinic orbits expressed by equation (10)
and by the explicit equations (16) are in excellent agreement
(see the bold curves and the red “×” in Figure 9(b)), illus-
trating that the new expression of the orbits can be used to
realize the identity transformation.

4.2. Necessary Conditions for Heteroclinic Bifurcation.

Now we can use the Melnikov method to discuss necessary
conditions for heteroclinic bifurcation. Substituting equa-
tions (16) and (17) into the Melnikov function of system (2),
we have

M
± τ0( 􏼁 � −

4
3
ξ 1 − α2􏼐 􏼑I1 + 2f0

�����

1 − α2
􏽱

cos I2 − ωτ0( 􏼁,

(18)

where

I1 � 2 +
(1 − α)

α
G1

π
4

+
arcsin α

2
,

4α
(1 + α)

2􏼠 􏼡 −
1 + α2􏼐 􏼑

α(1 − α)
G2

π
4

+
arcsin α

2
,

4α
(1 + α)

2􏼠 􏼡,

I2 �
ω 1 + 3α2􏼐 􏼑

���
2B

√
α

G1
1
2
arcsin

�����

1 − α2

2

􏽳

,
8α
B

⎛⎜⎝ ⎞⎟⎠ −
ω

��
B

√

�
2

√
α

G2
1
2
arcsin

�����

1 − α2

2

􏽳

,
8α
B

⎛⎜⎝ ⎞⎟⎠,

B � (1 + α)(1 + 3α).

(19)

For the nonautonomous system (2), if there is a τ0
satisfying

M
± τ0( 􏼁 � 0,

_M
± τ0( 􏼁≠ 0.

(20)

then the Melnikov function (18) will have a simple equi-
librium. It is a necessary condition for heteroclinic bifur-
cation of system (2). Obviously, equation (18) may have
simple equilibriums only if

2f0

�����

1 − α2
􏽱

>
4
3
ξ 1 − α2􏼐 􏼑I1, (21)

namely,

f0 >f
cri
0 �

2
3
ξ

�����

1 − α2
􏽱

I1, (22)

where fcri
0 is the threshold for heteroclinic bifurcation of

system (2). +e variation of the threshold fcri
0 with the

parameter α under ω � 1 is shown in Figure 10(a), while the
change of f0

cri with the frequency ω under a fixed value of α
is shown in Figure 10(b). According to Figure 10(a), the
change of f0

cri with α is nonmonotonical. +e threshold
f0

cri decreases with the increase of α when α≤ 0.23, but
increases with α when α> 0.23. To be different, the threshold
f0

cri increases monotonically with the frequency ω
(Figure 10(b)).

4.3. Numerical Examples. Global bifurcation often leads to
the erosion of safe basin [28] and chaos [12, 18]. We wonder
if the heteroclinic bifurcation in system (2) may cause the
two types of initial-sensitive phenomena simultaneously.
+us, in this subsection, we discuss these typical complex
dynamical behaviors numerically. +e numerical ap-
proaches and the setting of the initial conditions are the
same as in Section 3.

First, we obtain numerically minimum values of f0 for
locking instability under different values of the system pa-
rametersω and α (see the red “×” in Figure 10). Asmentioned
in Section 3, locking instability can be depicted by fractal
erosion of safe basin of system (2).

It follows from the comparison of theoretical and nu-
merical results in Figure 10 that the numerical results for
critical values of f0 that induces locking instability totally
agree with the analytical ones, showing that the heteroclinic
bifurcation of system (2) can lead to locking instability. It
also reflects the accuracy of our analysis.

Second, the evolution of safe basin of system (2) with the
variation of the system parameters is shown in Figures 11
and 12 where the blue “+” indicates the position of the
origin. According to the theoretical results and numerical
ones in Figures 3 and 6, it is clear that when ω � 1,
0.1≤ α≤ 0.28, and 0.24≤f0 ≤ 0.5, system (2) will undergo a
unique periodic motion or locking. It means that the safe
basin in Figure 11 is the basin of attraction of the only
periodic attractor of system (2). In Figures 11 and 12, as the

8 Shock and Vibration



-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(a)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(b)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(c)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(d)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(e)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(f )

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(g)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(h)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(i)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(j)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(k)

-1

1

2

-2

0

-1 10-0.5 0.5
u (0)

v (
0)

(l)

Figure 11: Evolution of safe basins of system (2) with the variation of α and f0 when ω � 1. (a) α � 0.1, f0 � 0.24. (b) α � 0.1, f0 � 0.26. (c)
α � 0.1, f0 � 0.4. (d) α � 0.1, f0 � 0.5. (e) α � 0.2, f0 � 0.24. (f ) α � 0.2, f0 � 0.26. (g) α � 0.2, f0 � 0.4. (h) α � 0.2, f0 � 0.5. (i) α � 0.28,
f0 � 0.24. (j) α � 0.28, f0 � 0.26. (k) α � 0.28, f0 � 0.4. (l) α � 0.28, f0 � 0.5.
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parameter f0 increases, the safe basin will become fractal,
and its area will be reduced, implying that locking instability
becomes more and more obvious. For example, in
Figures 11(c) and 11(g), the basin boundary is obviously
fractal. When f0 continues to increase (Figures 11(d), 11(h),
12(d), and 12(h)), the whole initial-condition plane is white,
verifying static locking predicted in Figure 3. According to
Figure 11, the area of safe basin firstly expands and then
reduces with the increase of α, which also agrees with the
analytical trend of f0

cri in Figure 10(a). Besides, as shown in
each column of Figure 12, the increase of ω can reduce the

basin erosion, i.e., locking instability, which also verifies the
predicted trend of f0

cri in Figure 10(b).
Finally, we observe if the chaotic motion will occur in

system (2) when the heteroclinic bifurcation of system (2) is
induced. According to equation (22), we can calculate that
the critical value of f0 for heteroclinic bifurcation is 0.69.
Now fixing the values of the parameters α and ω, i.e., α � 0.1
and ω � 1.2, and varying the values of the parameter f0 from
0 to 1, the bifurcation diagram of system (2) in Poincare map
is shown in Figure 13. When f0 is less than 0.69 (see the left
side of the vertical dashing line in Figure 13), system (2) will
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Figure 12: Evolution of safe basins of system (2) with the variation of ω and f0 when α � 0.1. (a) ω � 0.9, f0 � 0.21. (b) ω � 0.9, f0 � 0.23.
(c) ω � 0.9, f0 � 0.35. (d) ω � 0.9, f0 � 0.75. (e) ω � 1.1, f0 � 0.21. (f ) ω � 1.1, f0 � 0.23. (g) ω � 1.1, f0 � 0.35. (h) ω � 1.1, f0 � 0.75. (i)
ω � 1.2, f0 � 0.21. (j) ω � 1.2, f0 � 0.23. (k) ω � 1.2, f0 � 0.35. (l) ω � 1.2, f0 � 0.75.
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be in periodic motion. In case that f0 exceeds 0.69, one can
easily observe from Figure 13 that system (2) evolves chaotic
motion through the routine of the period-doubling bifur-
cation, illustrating that heteroclinic bifurcation of system (2)
also leads to chaos.

5. Conclusions

In order to investigate the mechanism of initial-sensitive
dynamical behaviors of an oscillatory system with geo-
metrical nonlinearities, we consider a typical linkage-slider
structure as the dynamical model. Its complex dynamics
such as safe jump and locking instability, and chaos is
discussed in detail. +e study shows that the dynamical
system behaves as pitchfork bifurcation, Hopf bifurcation,
and heteroclinic bifurcation as the system parameters such
as tensile force, the excitation amplitude, and the excitation
frequency vary. +e agreement of analytical results and
numerical ones verifies the accuracy of our theoretical
prediction. +e main conclusions are presented as follows.

(1) Static locking of the structure may occur under a
heavy tensile force, which is attributed to pitchfork
bifurcation

(2) When the tensile force and the excitation amplitude
are low, within a certain range of the excitation
frequency, safe jump between bistable periodic
attractors can be induced by Hopf bifurcation and a
slight perturbation of initial conditions

(3) Due to heteroclinic bifurcation of the oscillatory
system, locking instability and chaos of the structure
may occur. +e increase of the excitation amplitude
will induce locking instability, chaos, or even static
locking, while the increase of the excitation fre-
quency can reduce locking instability. +e variation
of the tensile force can lead to locking instability, but
the extent of locking instability does not change
monotonically with it.

+is study provides some references in the design and
applications of mechanical oscillators with the irrational
nonlinearities. Nevertheless, the case for the negative tensile
force has not been discussed yet where different bifurcations
and rich dynamics may be induced. Further, referring to
[26], we may construct experiments to observe the initial-
sensitive phenomena such as safe jump, locking instability,
and chaos, which will be included in our future work.
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