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Based on the fast Fourier wave superposition spectrum method, a new equivalent source method (ESM) with a sparse sampling
technique is proposed. First, the equivalent source intensities are expanded on a rectangular virtual surface using a bidirectional
Fourier series, resulting in a semi-analytic and half-numerical acoustic pressure expression.)e Fourier coefficients result in good
sparsity for continuous acoustic pressures from structural vibration sources, and the proposed sparse sampling method can
further reduce correlation in the measurement matrix. Better results can be obtained by solving the l1 norm optimization problem.
Finally, the method was verified using several examples. )e proposed method offers two main advantages compared with the
traditional compressive equivalent source method: (1) the unknown source intensity vector is expanded into a bidirectional
Fourier series, thereby transforming an unknown source intensity vector into a sparse Fourier coefficient vector, which has better
sparsity; (2) the proposed method constructs a random sampling matrix, which is expanded into a sparse sampling matrix by
random distribution, thereby improving the reconstruction accuracy of planar near-field acoustic field compared with the
traditional random position sampling method reducing correlation in the transfer matrix.

1. Introduction

Near-field acoustic holography (NAH) is a powerful tech-
nique for identifying and localizing acoustic sources and
visualizing acoustic fields [1].With the development of NAH
technology, several new algorithms have been introduced
including the spatial Fourier transform (SFT) [2], boundary
element method (BEM) [3], and equivalent source method
(ESM) [4]. Among them, the ESM has been widely studied
and applied, mainly owing to its simple principle and strong
adaptability [5]. According to the principle of the ESM, the
acoustic field radiated by a vibrating body of arbitrary shape
can be approximated as the superposition of the acoustic
field generated by a series of virtual equivalent sources
distributed inside the structure. )e acoustic field is
reconstructed using the weight coefficients of each equiv-
alent source based on measured acoustic pressure on a
holographic surface [6]. Since noise in measured data cannot

be avoided, the least-squares method based on the l2 norm is
usually used with the traditional ESM to obtain a stable
solution. In practical applications of NAH, due to the
measurement conditions and cost limitations, the acoustic
reconstruction problem usually involves solving a set of
underdetermined equations. )e least-squares method
based on the l2 norm is used to solve the undetermined
system of equations, which makes it difficult to obtain an
ideal reconstruction result.

In recent years, compressed sensing (CS) has been widely
used in signal and image processing [7] and has become a
hot topic of research [8, 9]. )e novel compressive sampling
technique uses the sparsity of the signal to solve the
underdetermined system of equations.)e sparse solution is
easier to obtain because the reconstruction algorithm is
based on the l0 or l1 norm instead of the traditional least-
squares method based on the l2 norm. )us, good recon-
struction accuracy is guaranteed with fewer measurement
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points. In 2012, Chardon et al. [10] introduced CS into NAH
for the first time and experimentally demonstrated higher
accuracy compared with the traditional method when re-
ducing the measurement points. Fernandez and Xenaki [11]
proposed the compressive equivalent source method (C-
ESM) by combining CS with ESM and analyzed the influ-
ence of column correlation in the transfer matrix on the
reconstruction result [12]. On the basis of the C-ESM, Hu
et al. [13] studied the reconstruction of sparse sound field
through the sparse basis obtained by singular value de-
composition of the transfer matrix; a fast sparse acoustic
field reconstruction method was proposed to combine the
Bayesian compressed sensing with the sparse basis function
in the following study [14]. In addition to the C-ESM, there
are many methods combining compressed sensing with
equivalent source method, for example, compressed fused
model equivalent source method (CFMESM) [15], com-
pressed velocity-mode equivalent source method
(CVMESM) [16], and fused total generalized variation
(FTGV) [17]. )e particle velocity maps will have sharp
peaks in CVMESM [15]. )e mode scaling factor was set in
CFMESM, and the need for the parameter is a weakness of
the method [16]. FTGV combines sparsity in the second
derivatives with sparsity in the amplitudes, but FTGV must
be solved using the CVX toolbox [17]. In previous studies,
sampling points (microphones) are often randomly
arranged to satisfy noncorrelation between the observation
matrix and the sparse basis. Random sampling can reduce
correlation in the measurement matrix through random
positioning. Moreover, since previous methods are based on
the assumed sparsity of the equivalent source intensities, it is
difficult to obtain accurate prior information of the acoustic
source when the type of acoustic source is unknown, and the
sparsity requirement is not guaranteed. Using corre-
sponding sparse sampling to the transform matrix, we can
not only randomly select the sampling position to reduce
correlation in the measurement matrix but also use the
random coefficient matrix to further reduce correlation.

In this study, a planar acoustic field reconstruction
method based on the fast wave superposition spectrum and

the sparse sampling matrix is proposed. )e bidirectional
Fourier series expansion of the equivalent source intensity
on a rectangular virtual surface is used to establish a semi-
analytical and semi-numerical Fourier series expansion
form, and the sparsity of the Fourier coefficient vector is
analyzed. To reduce the correlation of the measurement
matrix further, a sampling matrix with random spatial
positioning and random summation coefficients is intro-
duced. Finally, simulations were performed to compare the
proposed method and the traditional C-ESM for planar
acoustic field reconstruction.

2. Planar Acoustic Field Reconstruction
Based on Fast Fourier Wave
Superposition Spectrum

2.1. Fourier Series Expansion of Acoustic Pressure. From the
wave superposition method (WSM) [4], the acoustic pres-
sure at any field point r outside the acoustic source can be
superposed by a series of virtual equivalent sources in the
virtual surface SE inside the acoustic source. )us, the
acoustic pressure can be expressed using the following
integral:

p(r) � 
SE

q rE( G r, rE( dSE, (1)

where rE is the position vector of the equivalent source,
q(rE) is the strength of the equivalent source at r, and
G(r, rE) is Green’s function. As shown in Figure 1, the
position coordinates of field point r and equivalent source
point rE in the rectangular coordinate system are
r � (x, y, z) and rE � (xE, yE, zE), respectively. To recon-
struct the planar acoustic field, the virtual surface SE is
arranged in a rectangular domain of size 2Lx × 2Ly.

Expanding the equivalent source intensity q(rE) in (1)
into a Fourier series along the x-axis and y-axis of the se-
lected virtual surface SE, zE is given, and it becomes the
following:

q rE(  � 
+∞

m�−∞


+∞

n�−∞
Cmn zE( exp −i

mπxE

Lx

 exp −i
nπyE

Ly

 , xE ∈ −Lx, Lx , y ∈ −Ly, Ly , (2)

where the Fourier series coefficient is as follows:
Cmn(zE) � 1/4LxLy J

SE
q(rE)exp(imπxE/Lx)exp(inπyE/

Ly)dxEdyE.

Substituting equation (2) into equation (1), the pressure
field becomes

p(r) � 
+∞

m�−∞


+∞

n�−∞
Cmn zE(  

Ly

−Ly


Lx

−Lx

G r; xE, yE, zE( exp −i
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 dxEdyE. (3)

2 Shock and Vibration



In practical calculations, the summation range of the
series in equation (3) needs to be truncated; that is,

p(r) � 

mf

m�−mf



nf

n�−nf

Cmn zE(  
Ly

−Ly


Lx

−Lx

G r; xE, yE, zE( exp −i
mπxE

Lx

 exp −i
nπyE

Ly

 dxEdyE. (4)

2.2. Fast Fourier Wave Superposition Spectrum Method. For convenience, the integral term in equation (4) can be
expressed as follows:

Gmn r; zE(  � 
Ly

−Ly


Lx

−Lx

G r; xE, yE, zE( exp −i
mπxE

Lx

 exp −i
nπyE

Ly

 dxEdyE. (5)

Dividing the integration range (−Lx ∼ Lx) and
(−Ly ∼ Ly) in equation (5) into equal divisions ofM and N,
respectively, it becomes

ΔxE �
2Lx

M
, xE � k1ΔxE, k1 � 0, 1, 2 . . . M − 1,

ΔyE �
2Ly

N
, yE � k2ΔyE, k2 � 0, 1, 2 . . . N − 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Using the trapezoidal formula to numerically solve
equation (5), it becomes

Gmn r; zE(  �
4LxLy

MN


M−1

k1�0


N−1

k2�0
G r;

2k1Lx

M
,
2k2Ly

N
, zE exp −i

2π
M

 mk1 exp −i
2π
N

 nk2 

m � 0, 1, 2 . . . M − 1; n � 0, 1, 2 . . . N − 1.

(7)

)e two-dimensional discrete Fourier transform (DFT)
and inverse DFT are defined as [18] follows:
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Figure 1: Field point and source point.
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(8)

where the value of M × N samples is as follows:
x(k1, k2)(k1 � 0, 1, . . . , M − 1; k2 � 0, 1, . . . , N − 1).

It can be seen from equation (8) that equation (7) is the
standard two-dimensional DFT. WhenM andN are positive
integer powers of 2, Gmn(r; zE) can be quickly calculated
using the discrete fast Fourier transform.

It is worth mentioning that when the DFT is used to
calculate Gmn(r; zE), the range of m and n is m � (0 ∼ M −

1) and n � (0 ∼ N − 1), respectively. However, the sum-
mation ranges in equation (4) are m � (−mf ∼ + mf) and
n � (−nf ∼ + nf), respectively, and only need to be adjusted
by the periodicity of Gmn(r; zE) with respect to M and N.

)e fast Fourier wave superposition spectrum of acoustic
pressure at any point can be obtained using equations (4)
and (7):

p(r) � 

mf

m�−mf



nf

n�−nf

Cmn zE( Gmn r; zE( . (9)

)e number of summation truncation terms requires
(2mf + 1)≤M and (2nf + 1)≤N.

For acoustic field reconstruction in NAH, measured
holographic acoustic pressure data are substituted into
equation (9) and written in matrix form:

Ph � KC, (10)

where Ph is the column vector of acoustic pressure on the
holographic surface at sampling point Mh and C is the
column vector composed of Mv � (2mf + 1)(2nf + 1) co-
efficients Cmn(zE) of the Fourier series of equivalent source
intensity on the virtual surface SE. K is the transfer matrix of
Mh × Mv between the acoustic pressure on the holographic
sampling surface and the Fourier coefficient of the equiv-
alent source intensity on the virtual surface SE. )en, the
least-squares method based on the l2 norm is used to solve
equation (10):

argmin Ph − KC
����

����2 + λ‖C‖2, (11)

where λ is the regularization parameter and ‖ · ‖2 is the l2
norm.

After solving the Fourier coefficient column vector C of
equation (10), the acoustic pressure of any reconstructed
surface in the acoustic field can be obtained as follows:

Pr � DC, (12)

whereD is the transfer matrix between the acoustic pressure
on any reconstructed surface and the Fourier coefficient
Cmn(zE) of the equivalent source strength on the virtual
surface SE.

From the above derivation, the equivalent source in-
tensity q(rE) on the virtual surface SE can be expanded into a
Fourier series and the acoustic pressure expression can be
obtained using the fast Fourier wave superposition spec-
trum. Since this formula is semi-analytical and semi-nu-
merical, the solution accuracy will be higher than that of the
traditional ESM [19]. To improve the calculation results, the
traditional least-squares method based on the l2 norm must
satisfy Mh ≥Mv and equation (10) must be a set of over-
determined equations.

In practical applications of NAH, the number of holo-
graphic measuring points is often insufficient to meet the
above requirements due to measurement conditions and
cost constraints. )erefore, equation (10) is generally a set of
underdetermined equations, making it difficult to obtain
satisfactory results using the least-squares method based on
the l2 norm. However, if the sparsity of the Fourier coeffi-
cient vectorC of equivalent source intensity is known, sparse
sampling can be carried out on the holographic surface and
the underdetermined equations can be solved using the l0 or
l1 norm methods of CS, which can obtain a better solution
result.

According to the theory of structural dynamics, the
dynamic response (vibration velocity) of a structure under
an accidental load excitation is mainly composed of a su-
perposition of low-order modes. )en, the Rayleigh integral
shows that the radiated acoustic field is also mainly con-
centrated in the low-order modes. In other words, the
contribution of structural vibration to the acoustic field is
mainly concentrated in the low-order modes, whereas the
high-order modes are similar to the evanescent modes in the
SFT. )e higher the order, the faster the attenuation; that is,
the higher-order Cmn becomes smaller and smaller.
)erefore, provided that the number of summation trun-
cation terms mf and nf of equation (9) is large enough, the
acoustic field represented by this formula will contain both
low-order modes with strong radiation ability and evanes-
cent modes.)us, the Fourier coefficient vector Cmn must be
a sparse vector with certain sparsity. As the number of
summation truncation terms mf and nf increases, the
sparsity is strengthened.)erefore, the proposed fast Fourier
wave superposition spectrum method can directly solve the
acoustic field reconstruction using sparse sampling com-
bined with the l0 or l1 norm of CS.

To intuitively explain the sparsity of the Fourier coef-
ficient vector Cmn, a simple analysis of the sparsity of the
Fourier coefficient vector Cmn of this kind of continuous
vibration acoustic source is presented. )e simulation cal-
culations were performed with the vibration of a simply
supported plate as the acoustic source and compared with
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the results of the C-ESM [12]. )e dimensions of the simply
supported plate were 0.5m× 0.5m× 0.03m
(length×width× height). A harmonic excitation force of 1N
was applied at the center of the plate, and the excitation
point was located at the center of the simply supported plate.
)e sampled acoustic pressure on the holographic surface
was calculated by the Rayleigh integral method to obtain the
theoretical acoustic pressure at the measuring point [20].
)e Gaussian white noise with a signal-to-noise ratio (SNR)
of 20 dB was added to simulate the actual acoustic pressure.
)e holographic surface was 0.1m above the simply sup-
ported plate, the reconstruction surface was 0.05m above the
simply supported plate, and the virtual equivalent source
surface was arranged on the simply supported plate. Sizes of
the holographic surface, reconstruction surface, and virtual
equivalent source surface are consistent with those of the
simply supported plate. In the C-ESM, 81 measuring points
(a 9× 9 uniform array) were set on the holographic surface
and the number of equivalent sources was 441. According to
the relationship between the number of summation trun-
cation terms and the sound wavelength, the number of
summation and truncation terms in the x and y directions
was nf � 5 andmf � 20, respectively. According to equation
(9), the number of integral segments in the x and y directions
of the virtual surface was set as N � M � 29. )e equation
was solved by basis pursuit de-noising (BPDN) based on the
l1 norm in the SPGL1 toolbox in MATLAB [21].

)e amplitudes obtained using the C-ESM and the
method in this study with a sampling rate of 1000Hz are
presented in Figure 2. )e virtual source intensity Q ob-
tained by the C-ESM has large amplitudes at most of the
source intensity sequence points and the sparsity is poor, as
shown in Figure 2(a). )e Fourier coefficient vector Cmn of
this study has only a small number of large amplitudes and
the rest are close to zero, as shown in Figure 2(b), which
indicates that the Fourier coefficient vector Cmn has stronger
sparsity for continuous structural vibration sources such as
the simply supported plate. )e larger the number of
truncated terms mf and nf, the stronger the sparsity.
)erefore, compared with the C-ESM, the vector has better
sparsity and can be better solved using the l1 norm.

3. Principle of Compressed Sensing and Sparse
Sampling Matrix

3.1. Principle of Compressed Sensing. Assuming an N-di-
mensional signal x ∈ RN×1 can be linearly represented by a
set of basis vectors ψi and defining a matrix composed of
basis vectors as ψ � [ψ1,ψ1,ψ3 . . . ,ψN], then the signal x
can be expressed as follows:

x � 

N

i�1
ψiαi � ψα, (13)

where α is the decomposition coefficient. If there are only K
nonzero values in the decomposition coefficient vector α and
K≪N, the sparsity of the coefficient vector α is K and ψ is
the sparse basis matrix of signal x. )e signal x is sampledM
times based on CS through the measurement matrix G,

which is not related to the sparse basis matrix, to obtain the
measurement value:

y � Gψα

� ACSα,
(14)

where ACS is a matrix of M × N. Since the decomposition
coefficient vector α has some sparsity, it can be optimally
solved using the l0 norm of CS:

argmin y − ACSα
����

����2 + λ‖α‖0. (15)

However, the solution of equation (15) belongs to the
NP-hard problem, which means that the nondeterministic
polynomial (NP) cannot be solved by an exact algorithm,
and an effective approximation algorithm for such problems
must be sought. To obtain the correct solution, it is necessary
to exhaustively enumerate CK

N combinations, which will
consume a lot of calculation time. Usually, the l1 norm is
used instead of the l0 norm to obtain

argmin y − ACSα
����

����2 + λ‖α‖1. (16)

3.2. Construction of Sparse Sampling Matrix. In a previous
study, the C-ESM reduced correlation in the measurement
matrix (transfer matrix) by randomly arranging the sensor
positions [12]. In this study, a random sampling matrix is
constructed to reduce the correlation. )ere is a random
matrix of Mh′ × Mh: Φ � [φ1 . . .φj . . .φMh

], where Mh is
the number of actual sampling points (microphones).
Extending this random matrix to a sampling matrix S of
Mh′ × Mv and randomly distributing Mh column vectors in
Φ to S satisfies Mh≪Mv, that is
S � [0 · · · 0 · · ·φ1 · · · 0 · · ·φ2 · · · 0 · · · 0 · · ·φj · · · 0 · · ·φMh

].
Zero column vectors of matrix S are the positions of no
sampling points. Multiplying both sides of the sampling
matrix in equation (10), it becomes

SPh � SKC. (17)

Let Ph � SPh and H � SK;

Ph � ΗC, (18)

where Ph is the column vector of Mh × 1 andΗ is the matrix
of Mh × Mv. Equation (18) is a set of underdetermined
equations that can be solved using the l1 norm minimization
method, that is,

argmin Ph −ΗC
����

����2 + λ‖C‖1. (19)

In contrast to the random arrangement of sampling
points used in the traditional methods [12], this study
proposes a new sparse samplingmethod. A randommatrix is
constructed and expanded into the sampling matrix.
However, the method of selecting the random sampling
matrix is important. Commonly used random sampling
matrices are as follows:

(1) Random matrix: construct a random matrix of
Mh′ × Mh, with values of the array elements evenly
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distributed between 0 and 1. Measurement matrix P
can be obtained by normalizing the column vector.

(2) Gaussian matrix [22]: construct a matrix Φ of
Mh′ × Mh such that each element of the matrix
independently satisfies a Gaussian distribution
with mean 0 and variance 1/Mh′ (strongly random,
not related to most orthogonal bases).

(3) Bernoulli matrix [23]: construct a matrix Φ of
Mh′ × Mh such that every element in the matrix
obeys a Bernoulli distribution, independently.
Compared with the Gaussian matrix, the elements
of the Bernoulli matrix are ±1, which are easier to
implement and store in practical applications.

(4) Circulant matrix [24]: first generate an Mh dimen-
sional random vector, circulate it Mh(Mh′ ≤Mh)

times to construct the remaining Mh′ − 1 row vector,
and finally normalize the column vector to obtain the
measurement matrix Φ.

(5) Part Fourier matrix [25]: first generate an orthogonal
matrix of Mh × Mh, then randomly select Mh′ row
vectors of the orthogonal matrix, and finally nor-
malize the column vectors of Mh′ × Mh to obtain the
measurement matrix Φ.

In this study, the above five random sampling matrices
are used, and sparse sampling matrices with random dis-
tributions are constructed. Compared with the traditional
randomly selected sampling positions for reducing corre-
lation in the measurement matrix, the randomly distributed
coefficient matrix ensures that the sparse sampling matrix
also has the randomness of the summation coefficients of the
acoustic pressure at the measurement points. )erefore, the
sparse sampling matrix contains not only the randomness of
the position but also the randomness of the summation
coefficients of the acoustic pressure at measurement points,
which further reduces correlation in the sparse sampling
matrix.

4. Simulation Analysis

4.1. Simply Supported Plate Acoustic Source under Central
Excitation. Since the C-ESM has been compared with
FTGV, CVMESM, and CFMESM in reference [26], o reduce
the amount of computation, the proposed method was only
compared with the C-ESMmethod. To verify the correctness
of the proposed method and the accuracy of the acoustic
field reconstruction, a simply supported plate was used as a
vibration source for simulation calculations. )e size of the
simply supported steel plate was 0.5m× 0.5m, and the
thickness was 0.003m. )e plate was driven by a harmonic
excitation force of 1N, and the excitation point was located
at the center of the plate. A theoretical radiation acoustic
field was calculated using the Rayleigh first integral [20]. )e
holographic surface was located 0.05m above the plate, and
its dimensions were consistent with the acoustic source
surface. )e reconstruction surface was located 0.05m from
the holographic surface, and the equivalent source surface
was arranged on the acoustic source surface.

Dimensions of the reconstruction surface and equivalent
source surface were consistent with the holographic surface,
and the center of all three surfaces was on the z-axis with the
center of the plate. In simulations, the actual measured
acoustic pressure on the holographic surface was obtained
by adding 30 dB of the Gaussian white noise to the theo-
retically calculated acoustic pressure. For the C-ESM, the
number of virtual equivalent source points was 625 and the
number of holographic measurement points was 81. )e
sampling points were randomly selected from 625 mea-
surement points on the 25× 25 holographic grid. )e dis-
tribution of sampling point locations is shown in Figure 3.
When the calculations were performed using the method of
this study, the microphone array on the measurement
surface was consistent with [12]. According to the rela-
tionship between the number of summation truncation
terms and the sound wavelength, the number along the x and
y directions of summation truncation terms was nf � 30 and
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(a) Compressive equivalent source method. (b) Method of this study.
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mf � 40, respectively. According to equation (9), the
sampling number along the x and y directions of the virtual
surface was Nf � Mf � 29.

)e reconstruction error is defined as follows:

ξ �
‖P − P‖2

‖P‖2
× 100%, (20)

where P is the reconstructed acoustic pressure and P is the
analytic expression of acoustic pressure.

Figure 4 shows the reconstructed acoustic pressure and
theoretical acoustic pressure obtained using the C-ESM or
proposed method with five different sparse sampling ma-
trices at frequencies of 500Hz, 1500Hz, and 2500Hz. When
the frequency is 500Hz, all reconstructed pressures match
the analytical acoustic pressure, except for the proposed
method, which combines part of the Fourier matrix. As the
frequency increases, the C-ESM can no longer match the
analytical acoustic pressure well, whereas the five different
sparse sampling matrices are sufficient for obtaining better
results with the proposed method. It can also be seen that the
proposed method results better reconstruction effects when
the Gaussian matrix, Bernoulli matrix, and circular mea-
surement matrix were used as the random sampling mea-
surement matrix and was in better agreement with the
analytic expression of acoustic pressure.

Figure 4 is only the reconstruction results at three
specific frequencies: f� 500Hz, 1500Hz, and 2500Hz. To
analyze the reconstruction results at f� 100∼3000Hz, Fig-
ure 5 shows the reconstruction error curves of the C-ESM
and the proposed method with five different random
sampling measurement matrices in the frequency band from
100 to 3000Hz. )e reconstruction error of the proposed
method is lower than that of the C-ESM. Meanwhile, it is
difficult to ensure stable reconstruction results in the
computational frequency band using either the partial
Fourier coefficient matrix or random matrix as the random
sampling measurement matrix. )e proposed method ob-
tains good results with the Gaussian matrix, Bernoulli
matrix, and circular measurement matrix, and the error
curves were almost coincident.

4.2. Simple Supported Plate Acoustic Source under Eccentric
Excitation. To compare the acoustic field reconstruction of
the proposed method and the C-ESM for a simply supported
plate acoustic source under eccentric excitation, the pa-
rameters of the simply supported plate in Section 3.1 were
used. )e excitation point was located on the top right of the
plate (0.375, 0.375), as shown in Figure 6. )e holographic
surface was set at 0.06m above the plate, and its size was
consistent with the acoustic source surface. )e recon-
struction surface was 0.04m above the plate, and the
equivalent source surface was 0.01m above the acoustic
source surface. )e sizes of the reconstruction surface and
the equivalent source surface were consistent with those of
the holographic surface.

In simulations, the same measured acoustic pressure on
the holographic surface was used as in the previous example
of Section 3.1, which was obtained by adding 30 dB of the
Gaussian white noise to the theoretically calculated acoustic
pressure. When the C-ESM is used for calculation, the
number of virtual equivalent source points was 484 and the
number of holographic measuring points was 64. )e
number of sampling points was randomly selected from the
484 measuring points on the 22× 22 holographic grid (in-
tervals of 0.024m). )e method used for selecting the
random sampling matrix in this study was the same as that
used in the C-ESM.

Because of the particularity of central excitation, it is
more universal to choose eccentric excitation as random
excitation. Figure 7 shows the theoretical acoustic pressures
of the reconstructed surface at frequencies of 500Hz,
1500Hz, and 2000Hz and acoustic pressure contours
reconstructed using 64 sampling points using either the
C-ESM or the proposed method with five different sparse
sampling matrices. When f� 500Hz, the reconstructed
acoustic pressures of all methods are in good agreement with
the analytical acoustic pressure and the error is less than
10%. As the frequency increases, the C-ESM no longer
matches the analytical acoustic pressure well, but the pro-
posed method has high accuracy with five different sparse
sampling matrices. Using the Gaussian matrix, Bernoulli
matrix, and circular measurement matrix as the random
sampling measurement matrix, the proposed method can
identify richer details of the acoustic field information.

Figure 8 shows the reconstruction error curves of the
C-ESM and the proposed method with five different sparse
sampling measurement matrices in the frequency band of
100∼2000Hz. )e reconstruction error of the proposed
method is lower than that of the C-ESM. Meanwhile, the
reconstruction errors using the partial Fourier coefficient
matrix or random matrix are higher than the other three
methods; the proposed method obtains good results with the
Gaussian matrix, Bernoulli matrix, and circular measure-
ment matrix.

According to Figures 5 and 8, the errors of the C-ESM
and the proposed method with five different sparse sampling
measurement matrices are less than 20% in the 100∼1400Hz
frequency range, and they are all acceptable error per-
centages. Due to different excitations, the calculation ac-
curacy of five different sparse sampling measurement
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Figure 3: Distribution of holographic measurement points for
compressive equivalent source method and proposed method.
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Figure 4: Reconstructed and theoretical acoustic pressure nephogram of six methods.
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matrices is also different, the reconstruction results of the
Gaussian matrix, Bernoulli matrix, and circular measure-
ment matrix are better than that of the C-ESM, and the
reconstruction results of the partial Fourier coefficient
matrix or random matrix are similar to that of the C-ESM.
However, the error of the C-ESM under central excitation
exceeds 20%, the errors of the Gaussian matrix and circular
measurement matrix are about 10∼16% in the 1400∼3000Hz
frequency range, and the errors of the Gaussian matrix and

circular measurement matrix are acceptable error percent-
ages. Because of the construction characteristic of the
Gaussian matrix and circular measurement matrix, satis-
factory results could be obtained even in high frequencies.
)e proposed method with the Gaussian matrix and circular
measurement matrix can apply in further studies. In con-
clusion, the reconstruction results of the Gaussian matrix
and circular measurement matrix are the best in five dif-
ferent sparse sampling measurement matrices, and it is
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Figure 7: Reconstructed and theoretical acoustic pressure nephogram of six methods with 64 sampling points.
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further studied in other applications of near-field acoustic
holography.

5. Conclusions

(1) Based on the ESM, the source intensity can be ex-
panded into a bidirectional Fourier series on the
rectangular virtual surface, and a semi-analytical and
semi-numerical expression of acoustic pressure can
be obtained. )e proposed method has higher ac-
curacy compared with the traditional numerical
discrete source methods. Furthermore, since this
method converts the source intensity vector into the
sparse Fourier coefficient vector, the vector to be
solved also has stronger sparsity and can be more
effectively solved using the l1 norm.

(2) Correlation in the measurement matrix is reduced by
constructing a random sampling matrix, and the
sparse sampling matrix is introduced by expanding it
into the sampling matrix. )e sparse sampling
matrix not only includes the randomness of the
sampling position, but also includes the randomness
of the sum coefficient of the acoustic pressure at the
measuring point, which further reduces correlation
in the coefficient matrix.

(3) )e acoustic field reconstruction results of the tra-
ditional C-ESM and the proposed method for a
simply supported plate source were compared. )e
simulation results show that the reconstruction error
of the proposed method is lower than that of the
C-ESM, and this method has higher accuracy with
the Gaussian matrix, Bernoulli matrix, and circular
measurement matrix. In particular, the errors of the
Gaussian matrix and circular measurement matrix
under central excitation are about less than 16% in
the 1400∼3000Hz frequency range, which are at least
4% lower than the C-ESM.

(4) In this study, center excitation and arbitrary ec-
centric excitation are used for the excitation of a
simply supported plate. )e sound field recon-
struction of a simply supported plate under other
arbitrary excitations can be regarded as the super-
position of the excitations in this study. )erefore,
this method is of great significance for planar sound
sources, but for the sound field reconstruction of
nonplanar sound sources, especially the sound field
reconstruction of rotating structures, this method
can be further studied (Table 1).
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