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As an entropy representing the complexity of sequence, slope entropy (SloE) is applied to feature extraction of bearing signal for
the �rst time. With the advantage of slope entropy in feature extraction, the e�ectiveness of bearing fault signal diagnosis can be
veri�ed. Five di�erent kinds of entropy are selected to be comparative methods for experiments, and they are permutation entropy
(PE), dispersion entropy (DE), a version of entropy adapted by PE, which is weighted permutation entropy (WPE), and two
versions of entropy adapted by DE, which are �uctuating dispersion entropy (FDE) and reverse dispersion entropy (RDE). A
method of extracting a single feature of bearing fault signals based on SloE is carried out. Firstly, the features of the bearing signals
are extracted by the six kinds of entropy. en, some relevant data are computed, and the identi�cation ratios are calculated by the
K-nearest neighbor (KNN) algorithm.  e experimental result indicated that the identi�cation ratio of SloE is the highest at
97.71% by comparing with the identi�cation ratios of the other �ve kinds of entropy, which is higher by at least 13.54% than the
others and 27.5% higher than the lowest one.

1. Introduction

Bearing is an indispensable part of modern mechanical
equipment, and its roles in modern mechanical equipment
are the support of the mechanical rotating body, the sliding
part in motion, and the guarantor of rotation accuracy [1–3].
Self-aligning ball bearing is the research object of this paper,
which is a kind of rolling bearing equipped with spherical
balls installed between the inner race with two raceways and
the outer race with a spherical raceway. Its curvature center
of the outer race is consistent with the bearing center, so it
has the same centering function as the automatic centering
ball bearing. It can be adjusted automatically when the shaft
and housing de�ect, and this process will not increase the
bearing burden. Self-aligning ball bearing ball bearings can
bear the loads in two directions, which are radial and axial.
Compared with the axial bearing capacity, the self-aligning
ball bearing has a greater radial bearing capacity, so it can
well deal with heavy load and impact load.  e self-aligning
ball bearing belongs to the bearing that has tapered holes in
the inner diameter of the inner race. It can be installed

directly or installed on the cylindrical shaft with a remove
pipe or fastening sleeve.  e cage is stamped with a steel
plate and formed with polyamide. Due to its strong ability to
bear heavy load and impact load, self-aligning ball bearings
are used in sugar pressing, papermaking, precision instru-
ment, petroleum, cement, metallurgy, mines, low noise
motor, motorcycle, rolling mill, automobile, and such in-
dustries.  erefore, as such a widely used, �ne, and im-
portant component, bearing fault diagnosis is a subject that
needs to be studied carefully [4–6].

Due to the nonlinear sti�ness and bearing clearance of
rolling bearing [7, 8], the vibration signal generated by its
operation often shows nonstationary and nonlinear.
 erefore, extracting useful fault feature information from
nonstationary and nonlinear signals is the focus and di¢-
culty of rolling bearing fault diagnosis. Aiming at the
problem of bearing fault, many scholars have done lots of
research on the early diagnosis of bearing fault [9, 10].

Many scholars apply the methods commonly used in
signal processing to bearing fault diagnosis. Many methods
of nonlinear dynamic are proposed [11], such as fuzzy
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entropy (FE) [12], permutation entropy (PE) [13], Rényi
entropy (RE) [14], dispersion entropy (DE) [15], sample
entropy (SE) [16], Wiener entropy (WE) [17], and instanta-
neous spectral entropy (ISE) [18], which can extract the
nonlinear feature of the signals and characterize the health state
of the equipment. For SE, its calculation time is long, real-time
performance is poor, and similarity measurement is prone to
mutation [19]. PE has the advantage of simple calculation, but it
ignores the amplitude information of dynamic number se-
quences [20–25]. Although FE is obtained by improving SE, it
still has the disadvantages of slow calculation speed and so on
[26–28]. DE has the advantages of small in�uence by burst
signals and better stability, which make up for the problem of
PE [29–32]. WE is very sensitive to small alterations. ISE has
the relatively low computational burden and fast execution
time. Reverse dispersion entropy (RDE) [33] as an improved
version of DE has the advantages of both PE and DE and has
stronger stability and noise robustness [34, 35]. Similarly, FDE
[36] is also an improved version of DE [37], andWPE [38] is an
improved version of PE [39, 40].  ere are also many other
kinds of entropy that are not listed here [41–44].

Slope entropy (SloE) [45] is a new entropy estimator
proposed in recent years, which is based on only the vi-
bration amplitude of dynamic number sequences and �ve

symbol patterns. In the three years since it came out, it has
been used in many �elds, such as medicine and underwater
acoustic signal, and achieved excellent results. SloE is applied
to the �eld of medicine by David Cuesta-Frau in 2020
[46, 47], and it is applied to the underwater acoustic signal
processing �eld by Li et al. in 2021 [48]. SloE has a good
feature extraction e�ect in various �elds, so it is introduced
into the �eld of fault diagnosis for the �rst time in this paper.

SloE is applied to the �eld of bearing fault diagnosis for
the �rst time in this paper.  e remaining of the paper is
structured as follows: the speci�c calculation steps of SloE
are introduced, and an example of the algorithm is given in
Section 2. Section 3 introduces the detailed steps of the
experiment and gives a �ow chart of the steps. In Section 4,
the graphs of the six types of signals are given, the single
feature extraction experiment is carried out, and KNN is
used for classi�cation. Section 5 is the summary, where the
main innovations and conclusions of this paper are given.

2. Slope Entropy

2.1. Basic Principle. SloE is a new algorithm put forward in
2019, which can indicate dynamic number sequence com-
plexity. It is founded on both the vibration amplitude of the
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Figure 1: Symbol allotment of SloE.
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Figure 2:  e �ow chart of the single feature extraction method.
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Figure 3:  e normalized six types of bearing signals. (a) 100, (b) 108, (c) 121, (d) 133, (e) 147, (f ) 160.

Table 1: Types and codes of the signals.

Type Normal Inner race Ball
Outer race

Centered Orthogonal Opposite
Code 100 108 121 133 147 160
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Figure 4: Feature distribution of six types of bearing signals. (a) PE, (b) WPE, (c) DE, (d) FDE, (e) RDE, (f ) SlOE.
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dynamic number sequence and the five symbol patterns that
have been set. Each symbol pattern is allocated according to
the difference between the vibration amplitude of the input
dynamic number sequences. *e calculation process of the
SloE algorithm is simple and easy to understand, whose main
operation has only addition and subtraction calculations. SloE
is calculated as follows.

(1) For given dynamic number sequences D � di,􏼈

i � 1, 2, . . . , N}, the number of subsequences of D is
extracted in the light of the embedding dimensionm,
D1 � d1, d2, . . . , dn􏼈 􏼉, D2 � d2, d3, . . . , dn+1􏼈 􏼉, . . .,
Dk � dk, dk+1, . . . , dN􏼈 􏼉, where k � N − n + 1.

(2) Diverse symbol modes (+2, +1, 0, −1, −2) are par-
titioned by the positive and negative values of the
two threshold parameters (β and α). Figure 1 is the
symbol allotment of SloE.
*e specific symbol modes of SloE are assigned in a
very unequivocal way. *e vertical increments of
SloE are decided by β and α, and the horizontal
increment between the samples of the continuous
dynamic number sequence is always set up as 1. If
β � 0.296, the inclination of the borderlines is 16.5°
and −16.5°. And if α � 0.09, the boundaries slope of
the region of symbol “0” is 5° and -5°.
*e specific distribution principles are as follows: if
di+1 − di > β, the symbol mode is +2; if α< di+1−

di ≤ β, the symbol mode is +1; if |di+1 − di|≤ α, the
symbol mode is 0; if −β≤di+1 − di < − α, the symbol
mode is -1; if di+1 − di < − β, the symbol mode is -2,
where β> α> 0.

(3) Mode sequences M1, M2, . . . , Mk, which are corre-
sponding to D1, D2, . . . , Dk, are gained after symbol
allotment, M1 � m1, m2, . . . , mn−1􏼈 􏼉, M2 � m2, m3,􏼈

. . . , mn}, . . ., Mk � mk, mk, . . . , mN−1􏼈 􏼉, where
k � N − n + 1, m1, m2, . . . , mN−1 are the symbol
modes calculated by d2 − d1, d3 − d2, . . ., dN − dN−1
through step (2).

(4) Mode sequences have x � 5n− 1 diverse forms. *e
quantity of each form is f1, f2, . . . , fn. *e fre-
quencies of the mode sequences are the proportions
of the number of times they appear: R1 � f1/f,

R2 � f2/f, . . ., Rn � fn/f. *e calculation formula
of SloE is defined as follows in view of the classical
Shannon entropy:

Es(m) � − 􏽘
n

j�1
Rj ln Rj. (1)

2.2. Example. Here is a dynamic number sequence
D � 9, 7, 6, 4, 2, 1, 7, 8, 6, 4, 2, 1, 6, 4, 2, 1{ }, sequence length
N � 16. Set up the delay time ε � 1, the embedding di-
mension m � 4, and the two threshold parameters β � 1 and
α � 0.001. *e specific steps of calculating SloE are as
follows:

(1) According toD, get the subsequencesD1 � 9, 7, 6, 4{ },
D2 � 7, 6, 4, 2{ }, D3 � 6, 4, 2, 1{ }, D4 � 4, 2, 1, 7{ },
D5 � 2, 1, 7, 8{ }, D6 � 1, 7, 8, 6{ }, D7 � 7, 8, 6, 4{ },
D8 � 8, 6, 4, 2{ }, D9 � 6, 4, 2, 1{ }, D10 � 4, 2, 1, 6{ },
D11 � 2, 1, 6, 4{ }, D12 � 1, 6, 4, 2{ }, D13 � 6, 4, 2, 1{ }.

(2) *en, according to the subsequences, obtain the mode
sequences: M1 � −2, −1, −2{ }, M2 � −1, −2, −2{ },
M3 � −2, −2, −1{ }, M4 � −2, −1, +2{ }, M5 � −1, +2,{

+1},M6 � +2, +1, −2{ },M7 � +1, −2, −2{ },M8 � −2,{

−2, −2},M9 � −2, −2, −1{ },M10 � −2, −1, +2{ },M11 �

−1, +2, −2{ }, M12 � +2, −2, −2{ }, M13 � −2, −2, −1{ }.
(3) *ere are 10 types of mode sequences. *e frequency

of −2, −2, −1{ } is 3, the frequency of −2, −1, +2{ } is 2,
and the frequency of other types is all 1. *erefore,
the probabilities are R1 � 1/13, R2 � 1/13, R3 � 3/13,
R4 � 2/13, R5 � 1/13, R6 � 1/13, R7 � 1/13,
R8 � 1/13, R9 � 1/13, R10 � 1/13.

(4) Finally, the value of SloE obtained by equation (1) is
Es(m)

� ﹣(8 × 1/13 × ln 1/13 + 3/13 × ln 3/13 + 2/13 ×

ln 2/13) � 2.2048.

3. Proposed Method

A single feature extraction method is put forward for the six
types of bearing signals in this experiment. As shown in

Table 2: *e mean and AMMD of different features.

Entropy Type 100 108 121 133 147 160

PE Mean 2.4693 2.9093 2.6961 2.8296 2.4503 2.7676
AMMD 0.019

WPE Mean 0.6214 0.8406 0.7852 0.8016 0.7414 0.7856
AMMD 0.0004

DE Mean 0.7635 0.8968 0.8452 0.6769 0.7302 0.8086
AMMD 0.0366

FDE Mean 0.5751 0.7666 0.7435 0.6117 0.6624 0.7192
AMMD 0.0231

RDE Mean 0.0302 0.0122 0.0169 0.1134 0.0312 0.026
AMMD 0.001

SloE Mean 0.1529 4.3098 3.7154 4.0954 3.3072 3.9055
AMMD 0.1901
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Figure 5: Feature classi�cation and recognition distribution. (a) PE, (b) WPE, (c) DE, (d) FDE, (e) RDE, (f ) SLoE.
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Figure 2 is the flow chart of the single feature extraction
method, the particular procedures of the method are as
follows.

(1) *e six types of bearing signals are imported after
being normalized.

(2) For the normal bearing signals or each type of
bearing fault signals, which are normalized, 120
samples are selected, where each sample contains
1000 sample points. *e features of PE, WPE, DE,
FDE, RDE, and SloE are extracted.

(3) K-nearest neighbor (KNN) is chosen as the classifier
to classify the features of six kinds of bearing signals.
For each type, 40 groups of sample signals are se-
lected as training samples, and 80 groups of sample
signals are selected as test samples. *e number of
nearest samples is set as k� 3.

(4) *e identification ratios are obtained by operation.

*rough these steps, we can conclude that SloE is ef-
fective in single-feature classification by comparing the
identification ratio calculated by SloE and the others of the
five other kinds of entropy.

4. Feature Extraction

4.1. Six Types of Signals. *e features of the six types of
signals are extracted, which are normal signals, bearing inner
race, ball, and outer race fault signals [49]. According to the
position relative to the load zone, which is centered, or-
thogonal, and opposite, there are three types of bearing outer
race faults signals. *e signals come from the same website,
and they are acquired under the same fault diameter, motor
load, and motor speed. *e names of these signals are
replaced by 100, 108, 121, 133, 147, and 160 in the paper.
Types and codes of the signals are shown in Table 1.

*e lengths of sampling points for them are 485643,
122917, 121556, 122571, 122281, and 122136. *e normal-
ized six types of bearing signals are shown in Figure 3.

4.2. Extraction Method. In the feature extraction experi-
ment, for normal signals or each type of bearing fault signal,
120 samples are chosen, and every sample includes 1000
sampling points. *ese samples almost contain all sampling
points of the five bearing fault signals.

For reasonable and scientific comparison, because all
kinds of entropy have the same settable parameters the
embedding dimension and the delay time, set up them as
m � 4 and ε � 1. *e number of categories is the same

settable parameters of DE and two changed versions of DE,
set up it as c� 3. DE and FDE have the same mapping
format, which is the normal cumulative distribution func-
tion (NCDF). *e two threshold parameters of SloE are set
up as β � 0.296 and α � 0.09. Feature distribution of six
types of bearing signals is shown in Figure 4.

It can be inferred from Figure 4, for PE distribution, the
entropy points of 100 and 147 and the entropy points of 108,
121, 133, and 160 are near to each other; for WPE distri-
bution, almost all entropy points of 121, 133, and 160 are
mixed together; for DE and FDE distribution, the entropy
points of all types of signals intersect in varying degrees; for
RDE distribution, only the entropy points of 133 are sig-
nificantly distinguished from those of the other five types of
signals; for SloE distribution, only a few entropy points of
160 are close to those of 121 and 133. It indicates that SloE
has better classification ability on the six types of bearing
signals.

For proving the validity of SloE, the mean and the ab-
solute minimum mean difference (AMMD) of diverse fea-
tures are computed. AMMD is set to the absolute value of the
minimummean difference, and it can intuitively express the
distance between the entropy points of the two types of
signals, whose entropy points are the closest to each other in
the six types of signals. *e larger the MMD, the more
reliable the interclass separability of the entropy. Table 2
shows the mean and AMMD of different features.

As Table 2 shows, with regard to the six kinds of entropy,
the average value of each type of signal has diverse degrees of
diversity. RDE has the minimum AMMD of 0.001, and the
AMMD of SloE is the maximum, which is 0.1901. It is
preliminarily judged that RDE has the worst interclass
separability and SloE has the better.

4.3. Feature Classification. For proving the better effect of
bearing fault signals feature extraction and classification
based on SloE, KNN classification is led into this experiment.
For the normal bearing signals or each type of bearing fault
signals, which are normalized, 120 samples are selected,
where each sample contains 1000 sample points. For each
type, 40 groups of sample signals are chosen as training
samples, and 80 groups of sample signals are classified as test
samples. *e feature classification and recognition distri-
bution are shown in Figure 5.

As shown in Figure 5, for these six types of signals, PE
andDE have diverse quantities of wrongly classified samples,
where the ones of 100 and 160 are separately the largest;
WPE, FDE, and RDE only correctly classify the samples of

Table 3: Identification ratios of the feature.

Signals 100 (%) 108 (%) 121 (%) 133 (%) 147 (%) 160 (%) Average (%)
PE 60 91.25 77.5 63.75 62.5 66.25 70.21
WPE 100 96.25 43.75 58.75 97.5 48.75 74.17
DE 90 96.25 80 93.75 87.5 57.5 84.17
FDE 76.25 85 67.5 88.75 100 72.5 81.67
RDE 47.5 83.75 67.5 100 57.5 30 64.38
SloE 100 100 95 100 100 91.25 97.71

Shock and Vibration 7



100, 147, and 133, respectively, but a large number of
samples in other signals are classified wrongly; SloE has only
a few misclassified samples for 121 and 160, which are
classified to 160, 121, and 133, and the other four types of
signals are classified correctly; among the six feature ex-
traction methods, 160 has the worst classification effect,
while SloE has the best average classification effect. Iden-
tification ratios of the feature are shown in Table 3.

As shown in Table 3, for 100, WPE and SloE have the
highest classification and identification ratio of 100%, that of
DE is 90%, and those of PE, FDE, and RDE are less than 80%;
for 108, the classification and identification ratios are more
than 90% expect FDE and RDE, where that of SloE is 100%;
for 121 and 160, only the classification and C of SloE are
more than 90%, and the other kinds of entropy have the
classification and identification ratios less than or equal to
80%; for 133, SloE and RDE have the highest classification
and identification ratio of 100%, andWPE has the lowest one
of 58.75%; for 147, SloE and FDE have the highest classi-
fication and identification ratio of 100%, and RDE has the
lowest one of 57.5%; for the six types of signals, SloE has the
maximum average identification ratio of 97.71%. *e mean
identification ratios of the other five kinds of entropy are
lower than 85%.

*e results show that the SloE classification of six kinds
of signal samples is the most accurate, and the average
identification ratio is the highest.

5. Conclusions

SloE is applied to the field of bearing fault diagnosis, and a
new method of extracting features is put forward. *e
practicability of the proposed method is proved by the
feature distribution and the recognition distribution of the
six types of measured bearing signals. *e main innovations
and conclusions are as follows.

(1) SloE is applied to the field of bearing fault diagnosis
for the first time.

(2) A new single feature extraction method based on
SloE is proposed, and all methods in the paper adopt
single feature extraction, which saves a lot of time.

(3) *e proposed single feature extraction method based
on SloE in this paper has larger AMMD than the
single feature extraction method of the six signals
based on PE,WPE, DE, FDE, and RDE, which proves
that the interclass separability of SloE is better.
Moreover, it has the highest average identification
ratio of 97.71%, which is higher by at least 13.54%
than the others of the other five kinds of entropy.

Data Availability

*e data supporting the findings of this study are available
within the reference [49].
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