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An analytical, numerical, and experimental investigation on the transverse vibrations of a �nite beam with periodically arrayed
beam-like resonators was carried out. A continuous-discrete model of the �nite locally resonant beam was established by
employing the “mass-spring- mass” subsystem. �e analytical solution of the coupling vibration equations was derived based on
the modal superposition method, and the analytical expression of average velocity response and vibration transmissibility were
given. �en, the minimum periodic number of di�erent units which could result in a bandgap was determined. Finally, the
bandgap of a �nite locally resonant beam was con�rmed by a vibration experiment on a simply supported beam with twelve
uniformly distributed beam-like resonators. �e numerical and experimental results show that �nite locally resonant beams have
low-frequency bandgaps like in�nite locally resonant beams, and the bandgap position is close to the resonance frequency of
resonators. In addition, for a beam with a di�erent type of locally resonant units, the minimum number of units that can generate
the bandgap is nearly the same. Within considered frequency ranges, the experimental results are consistent with the theoretical
results, meaning that the transverse vibration in locally resonant beams could be substantially attenuated.�e conclusions may be
supported to the application of locally resonant theory to control low-frequency vibration and radiation noise.

1. Introduction

Structures with periodically attached resonators which can
manipulate the elastic wave propagation have been applied to
the vibration and noise attenuation or isolation in mechanical
and structural engineering. Beams as typical structural ele-
ments in practical engineering, low-frequency vibration
control methods of beams have always been a relevant issue.
Due to the “e�ective” negative mass density [1] and negative
moduli [2] in certain frequency ranges, beams with period-
ically attached resonators (locally resonant beams) can pre-
vent elastic waves completely, this overcomes the limitation of
wavelength to control lower-frequency vibration by sub-
wavelength structures. �is is di�erent from traditional
bandgap generation mechanisms such as the Bragg scattering
mechanism. However, there are still challenges in applying
the locally resonant mechanism to control low-frequency
vibration and radiation noise of beams.

Since the concept of a locally resonant mechanism was
proposed [3], investigations of such structures have received
much attention for their promise of physical properties and
potential applications. A locally resonant beam is usually
modelled as a continuous-discrete system, where a con-
tinuous beam is coupled with discrete subsystems. �e
discrete subsystems are used to describe the vibration of
resonators which are regarded as single or multidegree- of-
freedom “spring-damping-mass” systems. �e locally res-
onant beam is usually considered to be an in�nite system,
and many solutions have been employed to calculate the
vibration transmission properties of locally resonant beams,
such as the transfer matrix method [4, 5], the plane wave
expansion method [6–9], the �nite element method [10, 11],
the generalized function method [12], and the direct inte-
gration and complex modal analysis approach [13]. �ese
methods considered a single unit of locally resonant
structure with the Floquet–Bloch periodic condition, which
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was mainly suitable for the infinite periodic structure.
However, the bandgap properties of finite locally resonant
beams are more important in practical engineering appli-
cations. Recently, the boundary conditions were proved to
be an important factor on the bandgap characteristics of
these beams. Sangiuliano et al. [14] investigated the influence
of boundary conditions on the bandgap of the finite locally
resonant beam and found that the boundary conditions
could weaken the level of vibration attenuation.

.e bandgap of locally resonant beams is closely related to
the parameters of resonators; many studies are devoted to
bandgap adjustments such as broadening the bandgap or
generating multiple bandgaps. To broaden the frequency
range of the bandgap in a locally resonant beam, the appli-
cation of continuous vibration absorbers [15] and distributed
dynamic absorbers by Chen and Wu [16] has been proposed.
Wang et al. [17] considered two types of resonators attached
to a free Euler–Bernoulli beam and investigated the effects of
the separation distance of resonators on the further widening
of the bandgaps. By usingmultiple resonators, Zhou et al. [18]
investigated the multilow-frequency bandgaps in beams by
adding more resonators with different resonance frequencies
surrounding the target frequency. Claeys et al. [19] proposed a
novel lightweight solution of locally resonant subsystems,
which were designed as cantilever beams with additional mass
at the end and investigated the efficiency of the locally res-
onant structure numerically and experimentally. .e vibra-
tion absorber is a common realization form of the resonator,
and the nonlinear vibration absorber has a good research
prospect in bandgap expansion. Habib et al. [20] introduced a
nonlinear vibration absorber for mitigating the nonlinear
resonance of a mechanical system and developed a nonlinear
generalization of Den Hartog’s equal-peak method which can
provide a reference for the design of vibration absorbers.
Casalotti and Lacarbonara [21] investigated the response of
the nonlinear vibration absorber to harmonic excitations by
the asymptotic approach and explored transfers of energy
from the structure to the absorber which achieved optimal
vibration amplitude reduction. In another work, Casalotti
et al. [22] applied nonlinear absorbers to the vibration re-
duction design of the hinged-hinged beam, then studied and
optimized the multimode vibration absorption capability of
the metamaterial beam with an array of embedded nonlinear
absorbers.

In this paper, the bandgap characteristics of the locally
resonant beamwith finite boundary are investigated, and the

locally resonant bandgap is calculated by the modal su-
perposition method and the harmonic balance method,
which is different from the calculation method for structure
with infinite boundary. .e coupling effect between the
additional resonators and the beam can weaken the prop-
agation of vibration waves in the structure, which is the
essence of the vibration reduction effect of the locally res-
onant bandgap. In the study of the finite locally resonant
beam, the number of resonators is an important factor af-
fecting its bandgap characteristics. Hence, the effect of the
number and parameters of the additional resonators on the
bandgap is studied, and the minimum number of units that
can generate the bandgap is determined in this paper.

.is paper is organized as follows: following this in-
troduction, we propose a locally resonant beam with peri-
odically attached beam-like resonators and the equivalent
simplified model and derive the analytical solution of the
coupled vibration with the modal superposition method in
Section 2. Section 3 includes the effects of the structural
parameters of beam-like resonators and the type and
numbers of locally resonant units on the vibration attenu-
ation performance of the finite locally resonant beam. In
Section 4, we describe the design and fabrication of a locally
resonant beam experimental sample and compare the ex-
perimental results with the theoretical and numerical so-
lutions. Finally, the findings are summarized in Section 5.

2. Model and Formulations

2.1. Model and Simplification. .e finite locally resonant
beam considered here consists of a simply supported alu-
minum beam and periodic arrays of several beam-like
resonators, in which the “periodic arrays” of beam-like
resonators refer to M locally resonant units and each unit
contains N beam-like resonators so that the total number of
resonators can be defined as MN. A dynamic model of a
finite locally resonant beam is shown in Figure 1. .e length
and cross-sectional of the beam are L and A, respectively.
.e dimension of the beam-like resonator is 2l × w × t,
where ls is the rigid support length of the beam-like reso-
nator, as denoted in Figure 2(a). .e simply supported beam
vibrated under a harmonic point force F(t) � F0 sin ωt at
the coordinate of x0.

Assuming each beam-like resonator is connected to the
host beam by a lumped point when the first resonant fre-
quency is of a smaller order than the other resonant
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Figure 1: A dynamic model of the finite locally resonant beam.
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frequencies, the beam-like resonators can be treated as a
“mass-spring-mass” system with a damping component
[23]..e parameters of the equivalent system can be denoted
as m0,mr, kr, and cr, as shown in Figure 2(b), where m0 is the
additional lumped mass attached to the host beam at the
point where the beam-like resonator is mounted and mr, kr,
and cr are the effective mass, effective stiffness, and effective
damping of the beam-like resonator, respectively. To sim-
plify the calculation, the damping cr is set to be 0.1N s/m.

Supposing that Young’s modulus of the beam-like res-
onator is Er and the density is ρr, within the low-frequency
range, the relevant parameters of its equivalent system [24]
can be expressed as follows:

m0 � ρrArls + 0.395ρrAr 2lr( , (1)

mr � 0.605ρrAr 2lr( , (2)

kr � 14.953
ErIr

l
3
r

, (3)

where Ar � brtr is the cross-sectional area of the beam-like
resonator, and Ir � brt

3
r/12 is the second axial moment of

area of the beam-like resonator. .e resonance frequency of
the beam-like resonator can then be calculated by the fol-
lowing expression:
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(4)

Next, the locally resonant beam can be simplified into an
equivalent theoretical model, as shown in Figure 3. m0ij, mij,
kij, and cij represent the attached mass, effective mass, ef-
fective stiffness, and effective damping of the beam-like
resonator in the jth resonator of the ith unit, respectively.

2.2. Formulations. Ignoring the influence of shear defor-
mation and the moment of inertia of the section around the
neutral axis, the beam is considered as a Bernoulli–Euler
beam. .e finite locally resonant beam is a continuous-
discrete coupled system. According to the vibration prin-
ciple, the coupling vibration equation of the continuous
beam with discrete resonators can be written as follows:

ρA
z
2
w(x, t)

zt
2 + EI

z
4
w(x, t)

zx
4 � F(t)δ x − x0( 

+ 

M

i�1


N

j�1
Fij xij, t  + ω2

m0ijw xij, t ⎡⎢⎢⎣ ⎤⎥⎥⎦δ x − xij ,

(5)

mij €uij xij, t  + cij _uij xij, t  + kijuij xij, t 

� m0ij €wij xij, t  + cij _wij xij, t  + kijw xij, t , (6)

with

Fij � Fkij + Fcij,

Fkij � −kij w xij, t  − uij xij, t  ,

Fcij � −cij _w xij, t  − _uij xij, t  ,

uij xij, t  � Usij sin ωt + Ucij cos ωt,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where ρ, E, and I are the density, Young’s modulus, and
second axial moment of area of the simply supported beam,
respectively. w(x, t) is the transverse vibration displacement
of the locally resonant beam at coordinate x. F(t) is the point
force applied at the position of x0, which can be expressed as
F(t) � F0 sin ωt. Fij(xij, t) is the reaction force of the
resonator at the coordinate of xij on the beam; the reaction
force of the resonator contains the spring’s reaction force
Fkij and the damping reaction force Fcij. δ is the Dirac
function. uij(xij, t) is the displacement of the resonator mass
at coordinate xij, where Usij and Ucij represent the sine and
cosine components of uij(xij, t) at the coordinate of xij.

By employing the modal superposition method, the
transverse vibration displacement of the simply supported
beam can be expressed as follows:
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Figure 2: (a) Schematic diagram of the beam-like resonator. (b) Simplified equivalent system.
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w(x, t) � 
∞

m�1
Wm(x) Wsm sin ωt + Wcm cos ωt( , (8)

where m refers to the modal order, W(x) � sin(mπx/L) is
the mode shape function, Wsm and Wcm are the sine and

cosine components of the modal displacement, and ω is the
excitation angular frequency.

After multiplying both sides of (5) by sin(nπx/L) and
integrating x from 0 to L, (5) can be written as follows:

−ρAω2
+ EI

mπ
L

 
4

 
L

2
  Wsm sin ωt + Wcm cos ωt(  � F(t)sin

nπx0

L
 

− 
M

i�1


N

j�1
kij − ω2

m0ij w xij, t  − kijuij xij, t  sin
nπxij

L
  − 

M

i�1


N

j�1
cij _w xij, t  − _uij xij, t  sin

nπxij

L
 .

(9)

Taking the Q-order mode of the beam to participate in
the calculation, (9) can be converted into the matrix form as
follows:

Gq � F, (10)

where G is the coefficient matrix, F is the force vector, and q
is the unknown vector of the coupled equations needing to
be solved, given by the following equation:

q �

Ws

Wc

Us

Uc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where Ws � [Ws1, · · · , WsQ]T and Wc � [Wc1, . . . , WcQ]T,
Us � [Us1, . . . , UsMN]T and Uc � [Uc1, . . . , UcMN]T.

Matrix G can be written as follows:

G �

K1 C1 K2 C2

−C1 K1 −C2 K2

K3 C3 K4 C4

−C3 K3 −C4 K4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)
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Figure 3: A simplified model of the finite locally resonant beam.
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where Λi � −ρAω2 + EI(iπ/L)4. i represents the modal or-
der, which is in the range of 0–Q.

Stiffness matrices K2, K3, and K4 can be written as
follows:

K2 � −

k11 sin
πx11

L
· · · kMN sin

πxMN

L

⋮ ⋱ ⋮

k11 sin
Qπx11

L
· · · kMN sin

QπxMN

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K3 �

k11 − m011ω
2

 sin
πx

L
· · · k11 − m011ω

2
 sin

Qπx

L

⋮ ⋱ ⋮

kMN − m0MNω
2

 sin
πx

L
· · · kMN − m0MNω

2
 sin

Qπx

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K4 � −

k11 − m11ω
2

· · · 0

⋮ ⋱ ⋮

0 · · · kMN − mMNω
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)

Matrix K1 contains the stiffness contribution of resona-
tors to the beam. Matrices K2 and K3 represent the coupled
effects of resonators on the finite locally resonant beam.

Damping matrices C2, C3, and C4 can be written as
follows:

C2 �

c11ω sin
πx11

L
· · · cMNω sin

πxMN

L

⋮ ⋱ ⋮

c11ω sin
Qπx11

L
· · · cMNω sin

QπxMN

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C3 � −

c11ω sin
πx11

L
· · · c11ω sin

QπxMN

L

⋮ ⋱ ⋮

cMNω sin
πx11

L
· · · cMNω sin

QπxMN

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C4 �

c11ω · · · 0

⋮ ⋱ ⋮

0 · · · cMNω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)

Matrices C1, C2, and C3 represent the effects of the
damping of resonators on the locally resonant beam.

.e right side of the matrix (10) represents the force
vector acting on the beam surface at the coordinate of x0,
which can be expressed as follows:

F � F1, 01×(Q+MN) 
T
, (16)

where

F1 � F0 sin
πx0

L
, sin

2πx0

L
, . . . , sin

Qπx0

L
 

T

. (17)

Considering the frequency of harmonic force f � ω/2π,
the solution of the unknown vector q at excitation frequency
f can be obtained by the following equation:

q � G− 1F. (18)

Furthermore, the unknown matrix at every excitation
frequency [f1, f2, . . ., fe ] can be described as follows:

q �

W1
s W2

s · · · We
s

W1
c W2

c · · · We
c

U1
s U2

s · · · Ue
s

U1
c U2

c · · · Ue
c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where q is a 2(Q + MN) × e dimensional unknown matrix.
Based on equations (8), (12), and (21), defining the

modal shape vector Wm, the matrices qws and qwc can be
expressed as follows:

Wm � sin
πx

L
 , sin

2πx

L
 , . . . , sin

Qπx

L
  , (20)

qws � W1
s W2

s . . . We
s

 

�

W
1
s1 W

2
s1 . . . W

e
s1

W
1
s2 W

2
s2 . . . W

e
s2

⋮ ⋮ ⋱ ⋮
W

1
sQ W

2
sQ . . . W

e
sQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,
(21)

qwc � W1
c W2

c . . . We
c
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W
1
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W

1
cQ W

2
cQ . . . W

e
cQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(22)

Considering the principle of the modal superposition
method again and combining (8), (20), (21), and (22), the
transverse amplitude vector w at coordinate x on the finite
beam can be written as follows:

w � w1 w2 . . . we , (23)

where

wi �

�����������������������������������



Q

j�1
W

i
sj sin

jπx

L
 ⎡⎢⎢⎣ ⎤⎥⎥⎦

2

+ 

Q

j�1
W

i
cj sin

jπx

L
 ⎡⎢⎢⎣ ⎤⎥⎥⎦

2



. (24)

.e two parts under the radical sign in (24) represent the
sine and cosine components of the amplitude, respectively.
.en, the velocity amplitude vector of the finite beamat x at each
excitation frequency can be calculated by the following equation:

v � ωw, (25)

Shock and Vibration 5



where each element v(f) in the vector v corresponds to the
velocity amplitude at a particular excitation frequency.

Here, the average velocity level which could represent
the vibration energy is used to assess the vibration control
effect. .e surface average velocity levels can be given by the
following equation:

Lv(f) � 10lg
V(f)

V0
, (26)

where V0 is the reference vibration speed in calculating, and
V0 � 5 × 10− 8m/s.

3. Results and Discussion

To investigate the control performance with regard to low-
frequency vibration, some numerical examples of finite
locally resonant beams are presented and discussed. It is
known that the periodic arrangement and antiresonance
effect of locally resonant units is the main factor in elastic
wave attenuation. .erefore, we first consider finite locally
resonant beams with different resonator length, thickness,
and width. Next, we will cover the periodic number of the
locally resonant units required to suppress the propagation
of elastic waves, as well as the minimum periodic number of
units to form a bandgap. Specifically, the root mean square
of the average surface velocity level is used to define the
average velocity response of the whole finite beam. As-
suming that the measuring points are set on the beam and
combined with (26), the average velocity response of the
whole finite beam is defined as follows:

Lv(f) �

������������


S
i�1 Lvi(f) 

2

S



, (27)

where S is the number of selected points. Lvi(f) is the
average vibration speed level of the ith measuring point at
frequency f.

3.1. Influences of the Locally Resonant Unit. To provide a
preliminary insight into the influences of the locally resonant
unit on the vibration attenuation properties, the finite locally
resonant beam with a simply supported boundary is
established, and the parameters of the beam are shown in
Table 1 where L, B, H, E, ρ, and ] represent length, width,
thickness, Young’s modulus, density, and Poisson’s ratio of
the finite beam, respectively. Considering the space occupied
by the resonators, reducing the additional mass as much as
possible and ensuring the vibration attenuation properties.
Assuming that twelve locally resonant units are distributed
uniformly on the simply supported beam, consider that the
unit contains one or two beam-like resonators to form a
single-resonator unit and double-resonator unit. To realize
single-frequency and multifrequency vibration control

below 500Hz, two different beam-like resonators are
designed, and the structural parameters and resonance
frequency (calculated by (4)) of two types of beam-like
resonators are shown in Table 2 where 2l, h, and w represent
the total length, thickness, and width of the beam-like
resonators, respectively. .e beam-like resonators are made
of steel with material density ρr � 7930 kg/m3, Young’s
modulus Er � 1.34×1011 Pa, and Poisson’s ratio υr � 0.3.
After calculation, the mass of the beam is about 829.4 g, and
the mass of resonator1 and resonator2 account for 4.59%
and 4.97% of the beam mass, respectively.

Considering a unit excitation force applied at 3L/20 on
the simply supported beam with the frequency range of
0–600Hz, the influences of locally resonant units on the
vibration characteristics of the finite beam are analyzed. By
using (27), the average velocity responses Lv(f) of the lo-
cally resonant beams with two types of units can be obtained
(see Figure 4). Figure 4 shows some similar trends: the
resonance frequencies of beams can be decreased by adding
the resonator, while the effects on lower resonance fre-
quencies are weaker than on higher ones. In addition, one
minimum point in the average velocity response (see
Figure 4(a)) is much lower than other frequency points, and
the corresponding frequencies of minimum point are
401.6Hz, two minimum points in Figure 4(b) correspond to
401.6Hz and 340Hz. Noted that the frequencies of mini-
mum points correspond to the resonance frequencies of
Resonator1 and Resonator2 (as shown in Table 1); the
phenomenon may be called locally resonant bandgap [3].
.is may be the main effect of boundary conditions on the
bandgap of finite compared to infinite locally resonant
beams.

To further verify the correctness of theoretical results
concerning the low-frequency vibration characteristics of
the finite beam, taking the beam in Figure 4(a) as an ex-
ample, the theory to simulate the average velocity response
in this paper is examined by using the finite element software
package ANSYS Workbench R19.0. .e comparisons of
theoretical result and finite element result for the finite beam
without resonator are shown in Figure 5, and good agree-
ments can be found in the figure. .e positions and sizes of
the resonance peaks in Figure 5 are basically the same, and
the errors at other frequency positions may be due to the
average velocity response calculated by several measuring
points cannot completely replace the results of the whole
surface for the finite beam.

For further insight into the vibration characteristics of a
locally resonant beam within a bandgap, taking the host
beam and the locally resonant beam in Figure 4(a) as ex-
amples, the vibration responses of the host beam and the
locally resonant beam are numerically simulated using the
finite element software of ANSYS. .e model of a finite

Table 1: Parameters of the finite beam.

L (mm) B (mm) H (mm) E (Pa) ρ (kg·m−3) ]
1160 50 5 6.8×1010 2860 0.33

Table 2: Parameters and resonance frequency of beam-like
resonators.

2l (mm) h (mm) w (mm) m (g) fr (Hz)
Resonator1 120 2 20 38.1 401.57
Resonator2 130 2 20 41.2 339.89
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beam with periodic arrays of Resonator1 under simply
supported boundary conditions is illustrated in Figure 6.
Figure 7 shows the displacement profiles of the beam
without resonators and the locally resonant beam at
401.6Hz. .e figure proves the suppression of the bandgap
on the vibration of the simply supported beam, the maxi-
mum amplitude of the finite beam without a resonator is
0.43mm (see Figure 7(a)), and the maximum amplitude of
the finite locally resonant beam is about 2.92×10−3mm (see
Figure 7(b)). .e vibration responses over almost the whole
surface of the locally resonant beam are much lower than
that of the beam without resonators. .is may be due to the
periodic arrangement of the resonators and antiresonance
effects of locally resonant units, which is different from the

traditional bandgap mechanism [25, 26]. Hence, the finite
element results can verify the vibration attenuation per-
formance of bandgaps.

3.2. Influences of the Number and Parameters of Resonators.
It is of interest to investigate the effects of the number and
parameters of resonators on vibration and noise control. In
order to identify the bandgap width, one assumes the center
frequency, the upper and lower bound frequency, and the
vibration attenuation to be fR0, fRU and fRL, and ΔLv,
respectively. For example, supposing the center frequency
is fR0 � 401.6Hz, Lv (fR0) � 75.46dB, and selecting
ΔLv � 40 dB, fRU and fRL can be calculated by the evalu-
ation index: Lv (fRU)≥ Lv(fR0) + ΔLv, Lv (fRU)≥
Lv (fR0) + ΔLv.

First, we will discuss the influence of the length of
resonators on the bandgap characteristics of the finite locally
resonant beam. Taking the finite locally resonant beam with
twelve Resonator1 as an example, then reducing and in-
creasing the length of Resonator1 by 10mm, and calculating
the average velocity response of the finite locally resonant
beam with resonators of different lengths. .e bandgaps of
finite locally beams are labeled by the shaded area in
Figures 8(a)–8(c). From the comparison between
Figures 8(a)–8(c), several significant results can be obtained:
the resonance frequencies of the finite locally resonant beam
are decreased by increasing the length of the beam-like
resonator. When the length of the beam-like resonator
changes from 110mm to 120mm and 130mm, the average
velocity response Lv(f) at the center frequency of the
bandgap increases from 75.46 dB to 76.95 dB to 78.35 dB,
and the vibration attenuation tends to decrease..e width of
the bandgaps correspond to the three kinds of resonator are
16.3Hz, 16.4Hz, and 16.5Hz, so the resonator length has
little influence on bandgap width. From 110mm to 130mm,
the mass increases by 3 g for every 10mm in length, which is
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about 0.375% of the beammass; therefore, it is impossible to
change the bandgap width due to the small change in mass.

Next, we will discuss the influence of the thickness of
resonators on the bandgap characteristics of the finite locally
resonant beam. Taking the thickness of Resonator1 as the
initial thickness, and increasing and decreasing its thickness
by 0.2mm, then calculating the average velocity response of
the finite locally resonant beam with three types of reso-
nators as shown in Figure 9. It can be seen that resonator
thickness has a significant influence on the average velocity
response of the beam in terms of the following aspects: (i) the
increase in resonator thickness causes the resonance fre-
quency of the finite locally resonant beam to shift to higher
frequencies, with weaker effects on the lower resonance
frequencies than on the higher ones. (ii).e average velocity
responses Lv(f) at the center frequencies of the bandgap are
79.65 dB (1.8mm thick), 75.46 dB (2mm thick), and
71.66 dB (2.2mm thick), so for every 0.2mm increase in
resonator thickness, the average velocity response at the
minimum point is reduced by about 4 dB.

In the range of 0–600Hz, the bandgaps induced by the
resonance effect are labeled in Figures 9(a)–9(c), with
bandgap frequency ranges of 354.9–370.4Hz,
395.4–412.7Hz, and 432.4–455.2Hz; the bandgaps corre-
spond to the resonance frequency of the resonator with a
thickness of 1.8mm (361.42Hz), resonator with a thickness
of 2.0mm (401.57Hz), and resonator with a thickness of
2.2mm (441.73Hz). Meanwhile, (2) and (4) show a positive
correlation between resonator thickness and resonance

frequency. With increased resonator thickness, resonator
mass also increases to enhance the resonance effect of
coupling with the beam; this is the main reason for the
improvement of the vibration attenuation performance of
the bandgap. A comparison between Figures 8 and9 shows
that the resonator thickness is more sensitive to bandgap
than resonator length. Hence, the thickness should be ad-
justed more precisely when controlling the resonance fre-
quency of resonators.

We also analyzed the influence of resonator width on the
bandgap characteristics of the finite locally resonant beam.
According to (2), the resonance frequency of a resonator is
independent of its width. However, resonator width is
positive to the mass, so that bandgap characteristics can be
controlled by the width. Assuming that the width of Res-
onator1 is the initially calculated width, and increases and
decreases its thickness by 10mm, we will discuss three
examples of the finite beam with periodic arrays of reso-
nators. Several obvious phenomena can be observed in
Figure 10: (i) the resonance frequencies of the finite locally
resonant beam decrease with increasing resonator width and
compared with the higher resonance frequency, the lower
resonance frequency changes less. (ii).e center frequencies
of the bandgaps are not changed, while the bandgap width
increases from 11.8Hz to 17.3Hz to 24.5Hz, and the vi-
bration response at the center frequency of the bandgaps is
80.09 dB, 75.46 dB, and 67.37 dB. Every 10-mm increase in
the width of a resonator increases its mass by 19 g, as shown
in Table 1. .is remarkable change in mass enhances the

G: Harmonic Response
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Components: (Real) 0. ,-1. ,0. N
Components: (Imag) 0. ,0. ,0. N
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Figure 6: Structural model diagram of the finite beam with periodic arrays of Resonator1.
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Figure 7:.e displacement profiles of (a) the finite beam and (b) the finite beam with periodic arrays of Resonator1 (401.57Hz) at 401.6Hz.
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resonance effect in the finite locally resonant beam. Fur-
thermore, as resonator width increases, the bandgap is
widened and the vibration attenuation performance of the
bandgap is improved, which can also be attributed to the
change in mass caused by the change in resonator width.

To further investigate the effects of periodic units’
number on the bandgap, we established a dynamic model of
the finite beam with several Resonator1 (see Figure 11), with
a unit harmonic force applied at L/20 and the measuring
point at 19L/20. .e average velocity response at the
measuring point is employed to analyze the elastic wave
attenuation characteristics between the force application
point and the measuring point.

.e unit harmonic forceF0 represents the input signal, and
the velocity response of the measuring point represents the

output signal by LvP(f). Given a frequency range of 0–600Hz
and calculating the vibration response diagram of the mea-
suring point on the beam based on 0–26 periodic units, one
assumes the number of periods is represented by NR. Com-
paring the numerical results of LvP(f) under different periodic
units by formulations in Section 2.2, the conclusion that there is
a bandgap that meets the demand for vibration reduction as
periods’ numbers are above 9 can be drowned. .erefore, by
analyzing the average velocity response at the measuring point
when NR is 1 and 9, it can be confirmed that the periodic
structure is necessary for the formation of bandgaps, and the
average vibration attenuation at the bandgap when NR ≥ 9 are
calculated in Figure 12(b).

FromSection 3.1, periodic resonators can affect the vibration
performance of the finite beam. In Figure 12(a), it is clear that a

A
ve

ra
ge

 v
el

oc
ity

 re
sp

on
se

 (d
B)

0 100 200 300 400

(481.8 Hz, 74.20 dB)

500 600
60

80

100

120

140

160

180

200

220

Frequency (Hz)

Host beam
-10 mm

(a)

A
ve

ra
ge

 v
el

oc
ity

 re
sp

on
se

 (d
B)

0 100 200 300 400

(401.6 Hz, 76.73 dB)

500 600
60

80

100

120

140

160

180

200

220

Frequency (Hz)

Host beam
Initial length

(b)

A
ve

ra
ge

 v
el

oc
ity

 re
sp

on
se

 (d
B)

0 100 200 300 400

(339.9 Hz, 77.22 dB)

500 600
60

80

100

120

140

160

180

200

220

Frequency (Hz)

Host beam
+10 mm

(c)

Figure 8: Influence of the beam-like resonator’s length on the vibration properties of the locally resonant beam.
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single-resonator also has a certain inhibitory effect on the vi-
bration of the finite beam, and all resonance peaks of the finite
beam are reduced, the resonance frequency is decreased and the
effects on lower resonance frequency is smaller than higher
resonance frequency, which is similar to the periodic resonators.
However, the finite beamwith a single resonator does not have a
bandgap that corresponds to the resonance frequency of the
resonator like the finite locally resonant beam with periodic
resonators. In Figure 12(b), as the number of unit increases, the
average vibration attenuation within the bandgap gradually
shows an upward trend and then to be stable. When NR varied
from 9 to 12, the average vibration attenuation changes faster
thanNR in the range of 13 to 26 and gradually tends to converge.

Additional resonators appeared to decrease the resonance
frequency of the finite beam, and the resonance frequency of

the finite locally resonant beam with multiple resonators was
lower than that of the finite beam with a single resonator,
which may be due to the increasing mass of the total reso-
nators affecting the mass matrix of the coupling equation.
Because the periodic structure has richer wave-filtering
properties, waves cannot propagate freely within the fre-
quency range of the bandgap. In Figure 12(a), a bandgap only
exists in the finite locally resonant beam with periodic arrays
of resonators instead of the finite beam with a single reso-
nator, and the results confirmed that the periodic structure is
the reason for bandgap formation. Trends that vibration
attenuation is proportional to the number of units shown in
Figure 12(b) illustrates the effect of the periodic number of
units on the transfer function when the parameters of a
periodic unit are fixed. When NR increases, the range of
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Figure 9: Influence of the beam-like resonator’s thickness on the vibration properties of the locally resonant beam.
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attenuation in the finite locally resonant beam is closer to the
boundary of the bandgap, which can enhance the average
vibration attenuation. .en, when the periodic number of
units is large enough, the range of vibration attenuation
completely matches the boundary of the bandgap, so the
average vibration attenuation tends to be stable.

3.3. Determination of the Minimum Number of Units to
Generate Bandgaps. .eminimum number of units that can
form a bandgap is studied in this section. .e index used to
evaluate the bandgap is as follows: the minimum average
velocity response at the bandgap is lower than the 115.46 dB
proposed in Section 3.2 by more than 20 dB. Two types of
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Figure 10: Influence of the beam-like resonator’s width on the vibration properties of the locally resonant beam.
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beam-like resonators are shown in Table 3, where the pa-
rameters are consistent with Table 2. We considered four
types of locally resonant beams with different units: (i) the
beam with several single-resonator units (N� 1) that con-
tained Resonator2 (see Table 2). (ii) .e beam with several
double-resonator units (N� 2) that contained Resonator1
(see Table 2) and Resonator2. (iii) .e beam with several
three-resonator units (N� 3) that contained Resonator1,
Resonator2, and Resonator3 (see Table 3). (iv) .e beam
with several four-resonator units (N� 4) that contained
Resonator1, Resonator2, Resonator3, and Resonator4 (see
Table 2). .e average velocity responses of these beams with
different types of units are shown in Figure 13.

We calculated the average velocity responses of the lo-
cally resonant beams with four types of units with the
equations in Section 2.2, and the numerical results showed
that the minimum number of units that can form bandgaps
were all 10 (M� 10), based on the above-given index. .e
finite locally resonant beam with periodic arrays of multiple-
resonator units could generate multiple bandgaps that
corresponded to each resonator in a unit. Because of the
coupling effect with each resonator in a unit, the vibration
attenuation performance in the same bandgap is different, as
shown in Figures 13(a)–13(d). In addition, it can be seen
from Figure 13 that the resonance frequency of the finite
locally resonant beam decreases with a greater total number
(MN) of resonators. Meanwhile, multiple adjacent bandgaps

can broaden the bandgap frequency range to achieve ef-
fective control of the vibration response with excitation at
multiple frequencies. Determination of the minimum
number of units to generate a bandgap for a locally resonant
beam with different units is meaningful because it can re-
duce the design cost.

4. Experimental Results

To further validate the bandgap characteristics of the finite
locally resonant beam, we built and tested an experimental
sample of the finite locally resonant beam, which consisted
of a simply supported beam and 12 periodically distributed
beam-like resonators. .e geometric parameters of the
simply supported beam were as follows: length L� 1.16m,
width B� 0.05m, and thickness H� 0.005m. With regard
to the material parameters, the beam had Young’s modulus
of E � 6.8 ×1010 Pa, Poisson’s ratio of ]� 0.33, and density
of ρ� 2860 kg/m3. .e beam-like resonator was made of
alloy steel with a material density ρr � 7930 kg/m3, Young’s
modulus E � 1.34 ×1011 Pa, and Poisson’s ratio ]r � 0.3, and
the size of the beam-like resonator and its equivalent pa-
rameters are shown in Table 2, where 2l, lr, w, and t
represent the total length, cantilever length, width, and
thickness of the beam-like resonator, respectively, and m0,
mr, kr, and fr represent the additional lumped mass, the
effective mass, effective stiffness, and resonance frequency
of the equivalent system, respectively. Each resonator was
fixed on the simply supported beam by a shim with a width
of 5mm. .e distance between adjacent resonators in the
sample was a � 90mm, and the distance between the in-
stallation position of the first and last resonators in the
sample was 85mm from the end of the simply supported
beam.
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Figure 12: (a).e velocity response of the finite beamwith different periods of units. (b) Effects of the period number of units on the average
vibration attenuation within the bandgap.

Table 3: Parameters and resonance frequency of beam-like
resonators.

2l (mm) h (mm) w (mm) m (g) fr (Hz)
Resonator3 140 2 20 44.4 291.40
Resonator4 120 1.8 20 34.3 361.42
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Figure 13: .e average velocity response of the finite locally resonant beam with a minimum number of different types of units.
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Figure 14: Schematic diagram of experimental system connection.
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Figure 14 shows the schematic diagram of the experi-
mental system connection. .e primary equipment used in
the experimental test was the DH5922D dynamic signal
acquisition and analysis system. To simulate simply sup-
ported boundary conditions, the finite locally resonant beam
was fixed in the test bed by two supports. Twelve beam-like
resonators were evenly arranged onto one side of the finite
beam, and ICP accelerometers were arranged at 20 mea-
suring points on the other side of the beam. We applied an
exciting force at the finite beam with a hammer. .e ex-
perimental sample and experimental environment are
shown in Figure 15. .e signals measured by the hammer
and accelerometer were processed by the signal acquisition

and analysis system and then transferred to the computer for
postprocessing, and the transfer functions measured by the
19 accelerations were averaged.

We processed the test data with (28) to obtain the av-
erage velocity response of the finite locally resonant beam
under 1N excitation force; the measured results of the finite
beam without resonators and the finite locally resonant
beam with 12 beam-like resonators (see Table 4) are plotted
in Figure 16.

Lv(ω) �

�����������������


Nm

i�1 ai(ω)ω/F(ω) 
2

Nm



, (28)

Figure 16 shows the average velocity response of the finite
beamwithout a resonator and the finite locally resonant beam
with periodic resonators. According to the bandgap
calculation method explained in Section 3.2, the frequency
range of the bandgap in the experiment was obtained as
367.68Hz–417.48Hz, which corresponded to the resonance
frequency of the resonator, 399.01Hz. .e total mass of the
beam-like resonators was 0.40 kg, which accounted for about
48.23% of the mass of the simply supported beam (0.8294 kg).
.is arrangement achieved vibration attenuation of the finite
locally resonant beam at the bandgap by about 34.95 dB.
Meanwhile, the resonance frequency of the finite beam de-
creased when periodic arrays of beam-like resonators were
attached to the finite beam. Despite the expected difference,
the measured results and theoretical analysis results were still
in agreement. .erefore, we were able to realize a low-fre-
quency vibration control method with a small, lightweight
locally resonant beam.

5. Conclusion

In this paper, we designed a finite locally resonant beamwith
periodic arrays of beam-like resonators and studied the
transverse vibration of the finite locally resonant beam
theoretically by the modal superposition method and har-
monic balance method, as well as experimentally. First, we
arranged several periodic single-resonator units onto the
finite beam and evaluated the performance in the bandgap of
the beam. .en, we analyzed the influence of the length,
thickness, width, and the number of resonators on the vi-
bration characteristics of the finite locally resonant beam.
We simulated the model of the finite locally resonant beam

(a) (b)

Figure 15: (a) Locally resonant beam with 12 beam-like resonators and (b) experimental environment.

Table 4: Size and equivalent parameters of the beam-like resonator
in experiment.
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Figure 16: Average velocity responses of the simply supported
beam without resonator and the locally resonant beam.
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with the finite element method to explore the effects of
resonators on the vibration performance of the beam. Fi-
nally, the minimum number of locally resonant units that
could generate bandgaps in the finite beam was obtained.
Looking at the combined results from the theoretical
analysis and experiments, the conclusions are as follows:

(i) .e finite locally resonant beam can generate several
low-frequency locally resonant bandgaps in the
target frequency range, which is similar to the locally
resonant beam with infinite boundary conditions.

(ii) .e position, width, and vibration attenuation
performance of bandgaps are influenced by the
parameters and the periodic number of resonators.
.e position of bandgaps corresponds to the res-
onance frequency of each resonator. Increasing the
length, thickness, and width of resonators can en-
hance vibration attenuation performance and widen
the bandgap by the additional mass, which also
affects the resonance frequency of the beam. As the
number of resonators increases, the average vi-
bration attenuation of the bandgap increases and
tends to stabilize.

(iii) Multiresonators units have multiple bandgaps
corresponding to the resonance frequency of each
resonator in the unit. .e minimum number of
units that can generate bandgaps which reach the
index is almost the same in the locally resonant
beam with a different types of periodic units.
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