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�e Monte Carlo simulation method for along-wind loads on tall buildings performed in the time and space domain may be the
only analytical viable option for speci�c problems such as nonlinearity behavior, nonclassically damping, and detailed structural
models in commercial software. However, both across-wind and torsional-wind loads due to vortex shedding are not usually
simulated in time domain because the vertical decay constants are unknown or the empirical coherence functions cannot be
applied in Monte Carlo simulation methods. In this paper, the spectral representation (SR) method is used to simulate in time
domain the along-wind, across-wind, and torsional-wind loads on rectangular tall buildings considering the vertical correlation
between the signals. �e Krenk root-coherence function is used for the normalized cross-spectrum on the along-wind direction,
whereas the Davenport root-coherence function is used for the other two types of wind loads. For both across-wind and torsional-
wind loads, the Davenport root-coherence function was assessed at the vortex shedding frequency by changing the vertical decay
constants until converge between the Davenport model and the Liang empirical coherence model was achieved. Based on a three-
dimensional model with two translational and one torsional degree of freedom for each �oor, the proposed vertical decay
constants were validated by comparing the elastic response between frequency domain and time domain approaches. Generally
speaking, the results show that peak displacements are signi�cantly underestimated for both across-wind and torsional directions
when vertical correlation is neglected. In addition, the advantages of time domain simulation were shown by performing
a nonlinear time history analysis considering a bilinear isotropic material hardening model in both translational directions.

1. Introduction

Tall buildings are usually susceptible to wind-induced vi-
brations, which are usually computed analytically in the
frequency domain by using empirical cross-spectrum den-
sity functions of wind loads and simpli�ed continuous beam
models [1, 2]. However, some particular problems hinder the
use of a frequency domain approach to compute the wind-
induced response such as nonlinearity behavior (hysteric
loops), nonclassical damping (soil-structure interaction and
passive energy dissipation devices) [3–6], and detailed
structural models in commercial software where the user can
only de�ne time history functions as dynamic loads.
�erefore, the temporal response analysis has to be

performed in such cases rather than the analysis in the
frequency domain.

�e autoregressive moving average (ARMA) algorithm
[7] and the spectral representation (SR) model [8] are the
most commonly used methods to simulate along-wind loads
on tall buildings in time domain. �e essential feature of the
SR method [8] is that a random process can be simulated by
a series of cosine functions with random frequency; then, the
density function of the random frequency is derived from
the speci�ed cross-spectral density matrix for multivariate
process or from the speci�ed spectral density function for
a multidimensional process. It is worth mentioning that the
summation of a large set of trigonometric terms involved in
the SR method renders the approach computational less
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efficient. On the other hand, the parameters associated with
ARMA models are determined in such a manner that the
spectral description of the system response to white noise
approximates the target spectral characteristics in an opti-
mum sense. However, for the multivariate ARMA models
such as the wind field simulation, a large number of non-
linear equations must be solved, which is why the SRmethod
is usually preferred.

For along-wind loads, the SR method is based on the
assumption that fluctuating components of the wind velocity
field can be idealized as a mean-zero multivariate and
multidimensional Gaussian process, where the normalized
cross-spectrum describes the statistical dependence between
the turbulent components at two points at a given frequency.
*e real part of the normalized cross-spectrum is called the
normalized cospectrum, and the root-coherence function is
defined as the absolute value of the normalized cross-
spectrum. On a purely empirical basis, Davenport [9]
originally suggested an exponential expression as the root-
coherence function, where the vertical decay constant
controls the vertical correlation between turbulence at two
points. *e vertical decay constant usually ranges from 7 to
11.5 [9–12].

*e empirical root-coherence function proposed by
Davenport [9] has the advantage of simplicity, but in-
corporates two inconsistencies [11]: (1) the function is
positive for any separation, which is in conflict with the
definition of the longitudinal turbulence component with
a zero mean; (2) the normalized cospectrum approaches
unity for small frequencies, which is not true for separations
of the same order of magnitude or even larger than the
average size of gusts, where the wind structure is charac-
terized by a lack of correlation even at low frequencies.
Consequently, Krenk [13] derived a simple modified ex-
ponential format not encumbered by the two inconsistencies
mentioned above. Using full-scale measurements with
vertical separations of the order of 10–20m, Hansen and
Krenk [14] determined that a vertical decay constant of 5
corresponds to a vertical decay constant of 7.5 in the ex-
ponential format proposed by Davenport [9], i.e., close to the
vertical decay constant of 8 used by some building codes.
Different power-spectral density (PSD) functions have been
successfully used to simulate the turbulent along-wind ve-
locity component [15–18]. However, these wind time series
are usually simulated using the exponential format [9] in-
stead of the modified exponential format [13]. It is worth
mentioning that there are other models for the root-co-
herence function of the along-wind turbulent component,
such as the Frøya model [19] and the IEC model [20];
however, both models are usually used to simulate along-
wind loads on offshore wind turbines.

Based on the above, different kinds of power-spectral
density (PSD) functions can be used to simulate along-wind
loads of line-like structures by using the SR method.
However, Bojórquez et al. [21] demonstrated that the PSD
functions of Von Kármán, Von Kármán Harris, and Solari
generated wind time series with better characteristic of
turbulence intensity and scale length, compared with the
models of Davenport, Kaimal, and modified Kaimal.

For tall buildings with aspect ratios of over 3, their
across-wind responses usually exceed along-wind responses
and can even reach them several times. Across-wind dy-
namic load on tall buildings is induced by three mechanisms:
(1) along-wind turbulence, (2) across-wind turbulence, and
(3) wake excitation (vortex shedding). Vortex shedding is
the main contributor to the across-wind response of a tall
building, particularly when either of its lowest translational
natural frequencies approaches the vortex shedding fre-
quency. In addition to transmission lines, bridge pylons, and
bridge deck sections, potential super slim and tall buildings
can also be subjected to self-excited forces in the across-wind
direction; that is, galloping. In fact, the galloping effect can
be measured in a wind tunnel by using different method-
ologies like the hybrid aeroelastic-pressure balance tech-
nique [22].

Generally speaking, wind-induced vibrations can be
reduced in three different ways: (1) by changing the stiffness
or mass, (2) by increasing the damping with passive or
active control devices [3–6, 23–26], and (3) by reducing
wind loads with aerodynamic shapes such as tapering. *e
fact that a tapered tall building might spread the vortex
shedding over a broad range of frequencies makes it more
effective for reducing across-wind responses has been
established [27]. However, Chen et al. [28] discovered
a new phenomenon called partial reattachment, which
suppresses vortex shedding in reattached regions and
forms a separation envelope. Based on the partial reat-
tachment phenomenon, tapering promotes the unsteady
effect, and galloping interaction near the free end, making
the prism more susceptible to wind-induced vibrations.
Overall, tapering promotes a structure’s susceptibility to
wind-induced vibrations and may cause unanticipated
perils in engineering practice [28].

For tapering cylinder-like structures, Vickery and Clark
[29] proposed a formula for the normalized across-wind
load, whereas Gu and Quan [30] proposed new formulas for
the power spectra of the base moment induced by across-
wind loads for 15 typical tall building models. However,
these power spectra are not useful to simulate across-wind
loads along the height of the building. In fact, the literature
features some empirical formulas for the power spectra of
across-wind loads on square cross section buildings [31, 32]
and rectangular tall buildings [1, 33] as a result of wind
tunnel tests.

Tsukagoshi et al. [15] simulated across-wind loads on
a square tall building using the power spectrum proposed
by Ohkuma and Kanaya [31], the empirical root-coherence
function proposed by Davenport [9], and a vertical decay
constant equal to 3. However, Tsukagoshi et al. [15] did not
justify the value of the vertical decay constant used in the
simulation process. On the other hand, Slooten [34]
simulated across-wind loads on a rectangular tall
building by using the power spectrum proposed by
Liang et al. [1]; however, Slooten [34] did not consider the
vertical correlation between the signals, which is physically
wrong.

Wind-induced torsional vibration of tall buildings can
enlarge the dynamic response near the peripheries of their
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cross section, especially when the side faces of a rectangular
tall building are wider, and/or it is asymmetric, and/or its
lowest torsional natural frequency approaches either of its
lowest translational natural frequencies. Choi [35] and
Carini [36] studied the wind-induced torsional response on
tall buildings using experimental data, whereas Liang et al.
[2] proposed an empirical formula for the power spectra of
torsional-wind loads on rectangular tall buildings.

*e most widely used empirical formulas for across-
wind force spectra and torque spectra are those proposed by
Liang et al. [1, 2], which are valid for rectangular buildings
with various side ratios at normal attack angles. Based on the
experimental research, Liang et al. [1, 2] also proposed
empirical formulas for the root-coherence function of
across-wind loads and torque between two different levels
within the spectral peaks. However, these empirical formulas
of vertical correlation cannot be used directly by the SR
method because they do not depend on the frequency
content of the spectra and lead to a negative definite co-
herence matrix that cannot be factorized through the
Cholesky decomposition.

In this paper, a review of the parameters involved in
simulating wind-induced loads on rectangular tall buildings
was carried out in order to unify the simulation process by
using the SR method. *e vertical decay constants for both
across-wind and torsional-wind loads are proposed based on
a comparative analysis between Liang coherence function
[1, 2] and Davenport coherence function [9], In this way,
both correlated and uncorrelated simulated signals are used
in time domain dynamic analysis in order to study the effect
of vertical correlation on 3D wind-induced vibrations of
rectangular tall buildings, particularly for across-wind and
torsional responses. Furthermore, a nonlinear time history
analysis was performed to demonstrate the advantages of
performing a time domain simulation against the frequency
domain approach.

2. Wind Loads on Tall Buildings

Under the action of turbulent wind, tall buildings are loaded
simultaneously in the along-wind, across-wind, and tor-
sional directions as shown in Figure 1. When a vortex forms
on the side of a building, it creates a suction force that can
induce large amplitude vibrations in the plane normal to the
wind when the vortex shedding is in resonance with one of
the natural frequencies of vibration of the building. In
a similar way, torque is mainly induced by the asymmetric
distribution of wind pressure caused by vortex shedding.

Based on Figure 1, wind loads on a uniform N-story
building are given by
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where j� 1,2,3, . . ., N; FD(zj, t) is the along-wind force at
height zj at time t; FL(zj, t) is the across-wind force at height
zj at time t; M(zj, t) is the wind-induced torque at height zj

at time t; ρa is the density of air, which depends on the
barometric pressure and the average annual temperature; pw

is the windward pressure; pl is the leeward pressure; U(zj, t)

is the wind velocity in the longitudinal direction at height zj

at time t; U(zj) is the mean wind velocity at height zj, that is,
the mean value of U(zj, t); u(zj, t) is the turbulent com-
ponent in the wind direction at height zj at time t, that is, the
fluctuating component of U(zj, t); Aj is the projected area of
the jth story, which is taken perpendicular to U(zj, t); B is
the width of the windward side; D is the depth of the cross
section of the building; H is the total height of the building;
CD is the drag coefficient (see Appendix A); FL(zj, t) is the
nondimensional lift force at height zj at time t; and M(zj, t)

is the nondimensional torque at height zj at time t.

2.1. Mean Wind Velocity. In practical wind load codes and
standards, the power law and the logarithmic law are used to
describe the wind profile in the atmospheric boundary layer.
However, neither law is valid at very high altitudes above
ground [11]. A more precise expression based on the
mathematical model developed by Harris and Deaves [37] is
the corrected logarithmic law, which fits the experimental
data accurately and covers surface roughness changes.
According to Harris and Deaves [37], the mean wind ve-
locity is given by
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(3)

u∗ is the friction velocity, κ is the Von Kármán´s constant
(κ∼ 0.4), zo is the surface roughness length, zg is the gradient
height, zr is the reference height (zr � 10 m), fc is the
Coriolis parameter, Ω is the angular velocity of the Earth
(Ω � 7.27 × 10− 5 rad/s), and λ is the latitude. According to
Simiu and Scanlan [38], typical values of zo for various types
of built-up terrain are shown in Table 1.

2.2. Power Spectral Density Functions. *e power-spectral
density (PSD) function of a time series describes the dis-
tribution of power into the frequency components com-
posing that signal, that is, the variations (energy) as
a function of frequency.*e unit of a PSD function is energy
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(variance) per frequency (width), and the energy within
a specific frequency range can be obtained by integrating the
PSD function within that frequency range. Generally
speaking, the PSD function of a stationary stochastic process
gj(t) can be defined as

Sg zj, f  �
Rg zj, f  σ2g zj 

f
, (4)

where the subscript g is referred to the stationary sto-
chastic process gj(t), that is, u(zj, t), FL(zj, t),or M(zj, t);
Rg(zj, f) is the nondimensional PSD function of gj(t);
and σg(zj) is the standard deviation of gj(t). For rect-
angular tall buildings, the PSD functions of u(zj, t),
FL(zj, t), and M(zj, t) are shown in Appendices A, B, and
C, respectively.

2.3. Vertical Correlation between Two Points. Tall buildings
are usually modeled as line-like structures, which means
that wind loads are simulated along the z-axis. *e sta-
tistical dependence between the power spectra at two
points Pj(0, 0, zj) and Pk(0, 0, zk) at frequency f is given
by [11]

Cohjk(f) �
Sjk(f)

�������������������
Sg zj, f Sg zj + rz, f 

 , (5)

where Cohjk(f) is the root-coherence function between the
two points; Sjk(f) is the cross-spectrum of the two signals at
points Pj(0, 0, zj) and Pk(0, 0, zk), respectively; rz is the
vertical separation between the two points; Sg(zj, f) is the
PSD function of the stochastic process at point Pj(0, 0, zj),
and Sk(zj + rz, f) is the PSD function of the stochastic
process at point Pk(0, 0, zk).

2.4. Strouhal Number. In fluid dynamics, vortex shedding is
an oscillating flow that takes place when a fluid such as air or
water flows past a bluff body at certain velocities, depending
on the size and shape of the body. In this flow, vortices are
created at the back of the body and detach periodically from
either side of the body forming a Von Kármán vortex street.
*e fluid flow past the object creates alternating low-pres-
sure vortices on the downstream side of the object (see
Figure 1). *e object will tend to move toward the low-
pressure zone. If the frequency of vortex shedding matches
the resonance frequency of the structure, then the structure
may begin to resonate in the across-wind and torsional-wind
directions. Accordingly, the vortex shedding frequency is
given by

fs(z) �
St U(z)

B
, (6)

where St is the Strouhal number, which is a nondimensional
quantity describing oscillating flow mechanisms. When

1/4≤D/B≤ 4, the Strouhal number for across-wind loads on
rectangular tall buildings is given by [1]

St �
0.094 1/4≤D/B≤1/2,

0.002(D/B)
2

− 0.023(D/B) +0.105 1/2<D/B≤4,


(7)

and the Strouhal number for wind-induced torque is given
by [2]

St �
0.081 1/4≤D/B≤ 1/2,

0.032(D/B) − 0.12
����
D/B

√
+ 0.15 1/2<D/B≤ 4.



(8)

2.5. Stochastic SimulationbyUsing theSpectralRepresentation
Method. In this paper, the bandwidth of the power-spectral
density (PSD) function is ranged from f1 � 0.001 Hz to
fm � 10 Hz in order to include the wind gust frequencies
and the structural frequencies of any tall building. Based on
the Nyquist theorem, the sampling interval for the signals is
given by

Δt �
1

2 fm

, (9)

and the sampling frequency for the PSD function is given by

Δf �
Δt fm − f1( 

Ts

, (10)

where Ts is the total duration of the signals, which is usually
equal to 600 s.

Let us consider a set of N homogeneous Gaussian
multidimensional processes gj(t)(j� 1,2,3, . . ., N) with
mean-zero and with the cross-spectral density matrix
[Sgg(fn)] defined by
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, (12)

Cohjk(fn) is the root-coherence function between the two
points at frequency fn, Sg(zj, fn) is the PSD function at
point Pj(0, 0, zj) at frequency fn , Sg(zk, fn) is the PSD
function at point Pk(0, 0, zk) at frequency fn, and
n � 1, 2, 3, ..., m. *rough the Cholesky decomposition, the
cross-spectral density matrix can be decomposed into the
following format:

Sgg fn(   � H fn(   H fn(  
T
, (13)

where
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and the superscript T represents matrix transpose.
*e power spectra of both the across-wind loads and

wind-induced torque may lead to a negative definite Her-
mitian cross-spectral density matrix that cannot be
decomposed through the Cholesky factorization. *e SR
method, based on the Cholesky decomposition of the lagged
coherency matrix [39], is another form of the SR method
that can solve this problem if certain types of empirical root-
coherence functions are used. Alternatively, the cross-
spectral density matrix can be expressed as follows [39]:
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T
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For certain types of empirical root-coherence functions,
the coherence matrix [Γ(fn)] is a nonnegative definite
Hermitian matrix and can be factorized through the Cho-
lesky decomposition

Γ fn(   � E fn(   E fn(  
T

, (17)

where [E(fn)] is a lower triangular matrix expressed as
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then, the stationary stochastic process gj(t)(j� 1,2,3, . . .,
N) can be simulated by the following equation (8):

gj(t) � 
N

k�1


m

n�1
Hjk fn( 




������
2 Δf


cos 2 π fn t + ϕkn ,

(19)

where

Hjk fn(  � εjk fn( 

���������

Sg zj, fn 



, (20)

and ϕkn are independent random phase angles uniformly
distributed between 0 and 2π.

Based on (19), the longitudinal turbulent component of
wind velocity u(zj, t), the across-wind load FL(zj, t) , and
the wind-induced torque M(zj, t), can be simulated with
prior knowledge of the PSD functions and the empirical
root-coherence functions. For the along-wind direction, the
simulated turbulent component at height zj must be filtered
by multiplying the aerodynamic admittance function (see
Appendix A) by the discrete Fourier transform of u(zj, t);
subsequently, u(zj, t) must be retrieved into the time do-
main through the inverse discrete Fourier transform in order
to compute the along-wind load using Equation (1).

3. Vertical Decay Constants

3.1. Along-Wind Loads. On a purely empirical basis, Dav-
enport [9] originally suggested an exponential expression as
the root-coherence function of the along-wind turbulence,
which is given by

Cohjk fn(  � exp
− 2fn Cz rz

U zj  + U zk( 
⎛⎝ ⎞⎠, (21)

where fn is the nth frequency, rz is the vertical separation
between points Pj(0, 0, zj) and Pk(0, 0, zk), and Cz is the
vertical decay constant that controls the vertical correlation
between turbulence at the two points. Some building codes
propose a vertical decay constant of 8; whereas Davenport
[9], Strømmen [10], Dyrbye and Hansen [11], and Solari [12]
propose a vertical decay constant equal to 7, 9, 10, and 11.5,
respectively.

As mentioned earlier, (21) has the advantage of sim-
plicity, but incorporates two inconsistencies [11]: (1) the
function is positive for any separation, which is in conflict
with the definition of the longitudinal turbulence compo-
nent with a zero mean; and (2) the function approaches
unity for small frequencies, which is not true for separations
of the same order of magnitude or even larger than the
average size of gusts. To solve the two inconsistencies
mentioned above, Krenk [13] suggested a modified
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Figure 1: Wind-induced responses of tall buildings.
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Table 1: Values of surface roughness length for various types of built-up terrain.

Type of surface zo(m)

Sand 0.0001–0.001
Snow surface 0.001–0.006
Mown grass 0.001–0.01
Low grass, steppe 0.01–0.04
Fallow field 0.02–0.03
High grass 0.04–0.1
Palmetto 0.1–0.3
Pine forest 0.9–1
Sparsely built-up suburbs 0.2–0.4
Densely built-up suburbs, towns 0.8–1.2
Centers of large cities 2–3
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Figure 2: Comparison of root-coherence functions for along-wind loads.
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Figure 3: Vertical correlation for across-wind forces: B/H = 0.15.
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exponential expression as the root-coherence function,
which is given by

Cohjk fn(  � 1 −
f
∗

Cz rz

U zj  + U zk( 
⎛⎝ ⎞⎠

·exp −
2f
∗

Cz rz

U zj  + U zk( 
⎛⎝ ⎞⎠,

(22)

where

f
∗

�

����������������������������

f
2
n +

U zj  + U zk( 

2 π Lu zj  + Lu zk(  
⎛⎝ ⎞⎠

2

,




(23)

and Lu(zj) is the integral length scale at height zj, which is
defined in Appendix A.

On the other hand, the IEC root-coherence function [20]
is usually used for offshore wind turbines, and is given by

Cohjk fn(  � exp − 12

�����������������������������

2fn rz

U zj  + U zk( 
⎛⎝ ⎞⎠

2

+
0.12 rz

Lc

 

2




⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(24)

where Lc is a coherence scale parameter approximately equal
to 340.2m.

For zo � 0.01 m, U(zr) � 32 m/s, and
U(zr) � 55 m/s, Figure 2 shows a comparison among the
three different models for the root-coherence function at
three different points P1(0, 0, 10 m), P2(0, 0, 30 m), and
P3(0, 0, 100 m); where different vertical decay constants
ranging from 5 to 11.5 were used in the Davenport root-

coherence function (21), whereas a vertical decay constant of
5 was used in the Krenk root-coherence function (22).

tUsing full-scale measurements with vertical separations
of the order of 10–20m, Hansen and Krenk [14] determined
that a vertical decay constant of 5 in the modified exponential
format proposed by Krenk [13] corresponds to a vertical
decay constant of 7.5 in the exponential format proposed by
Davenport [9], i.e., close to the vertical decay constant of 8
used by some building codes. For separations greater than
20m, Figure 2 also shows the same pattern, whereas the IEC
model [20] corresponds to a vertical decay constant ap-
proximately equal to 11.5 in (21). Figure 2 shows that different
values of U(zr) do not significantly modify the vertical
correlation discussed above. *erefore, it is highly recom-
mended to correlate along-wind loads by usingCz � 5 in (22).

3.2. Across-Wind Loads. According to Liang et al. [1], the
root-coherence function for across-wind loads on rectan-
gular tall buildings within the spectral peaks can be ap-
proximated by the following empirical equation:

Cohjk fs(  � exp −
rz

B Δ
 

2
 , (25)

where fs is the vortex shedding frequency, rz is the vertical
separation between points Pj(0, 0, zj) and Pk(0, 0, zk), B is
the width of the windward side, and Δ is a parameter related
to the side ratio of the building: for 1/4≤D/B≤ 1 and
Δ � 5.56, whereas for 2≤D/B≤ 4 and Δ � 7.7. However,
substitution of (25) into (16) leads to a negative definite
Hermitian coherence matrix that cannot be decomposed
through the Cholesky factorization.

As Tsukagoshi et al. [15] suggested, the root-coherence
function proposed by Davenport [9] could be used to
correlate across-wind loads. However, they did not justify
the value of the vertical decay constant used in the
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Figure 4: Vertical correlation at vortex shedding frequency for across-wind forces: D/B� 1.
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simulation process. Accordingly, a comparison of the ver-
tical coherence function between (21) and (25) within the
spectral peaks could solve the problem. Unlike Equation
(30), Equation (26) depends on the frequency content of the
spectra; however, the values of the vertical decay constants
that fit (25) are unknown.

Assuming that zo � 0.01 m, U(zr) � 32 m/s,
H � 200 m, and B � 30 m, Figure 3 compares (25) with
the Pearson correlation coefficients pjk, for different values
of the vertical decay constant, which were computed
once the across-wind loads were simulated by using (19)
and (21).

Table 2: Suggested values of the parameters Δ1 and Δ2 [2].

D/B 1/4 1/3 1/2 1.0 2–4
Δ1 0 0 0 0. 55
Δ2 1.67 2.5 5.0 5.56 7.7
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Figure 5: Vertical correlation at vortex shedding frequency for across-wind forces: D/B� 2.
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*e lack of a B/H � 0.15 single value of Cz that perfectly
matches (25) is shown in Figure 3, perhaps because both are
processes of different nature. For this reason, a proposal of
vertical decay constants not only for different values of D/B
but also for different values of H seems to be a better option.

(25) is valid within spectral peaks. *erefore, the average
vortex shedding frequency between points Pj(0, 0, zj) and
Pk(0, 0, zk) is given by

fs,jk �
St U zj  + U zk(  

2 B
, (26)

where St is the Strouhal number. If (26) is substituted into
(21), what follows is that the root-coherence function at the
vortex shedding frequency is given by

Cohjk fs(  � exp
− St Cz rz

B
 . (27)

*e values of Cz in (27) that fit (25) were determined by
assuming 6 different values of D/B ratio and 6 different
values of B, that is, a total of 36 comparative graphs were
generated for across-wind loads, 4 of which are shown in
Figures 4 and 5. Based on the 36 comparative graphs, the
values of Cz shown in Figure 6 are proposed to simulate
across-wind loads on rectangular tall buildings by using (21)
in the SR method based on the Cholesky decomposition of
lagged coherency matrix.

3.3.Wind-Induced Torque. According to Liang et al. [2], the
root-coherence function for wind-induced torque on rect-
angular tall buildings within the spectral peaks can be ap-
proximated by the following empirical equation:

Cohjk fs(  � cos
Δ1 rz

B
  exp −

rz

B Δ2
 

2
⎡⎣ ⎤⎦, (28)

where fs is the vortex shedding frequency, rz is the vertical
separation between points Pj(0, 0, zj) and Pk(0, 0, zk), B is
the width of the windward side, whereas Δ1 and Δ2 are the
parameters related to the side ratio of the building (see
Table 2). However, substitution of (28) into (16) leads to
a negative definite Hermitian coherence matrix that cannot
be decomposed through the Cholesky factorization.

Assuming that zo � 0.01 m, U(zr) � 32 m/s,
H � 200 m, and B � 30 m, Figure 7 compares (28) with
the Pearson correlation coefficients pjk, for different values
of the vertical decay constant, which were computed once
the wind-induced torque was simulated by using (19) and
(21).

B/H � 0.15Similarly to across-wind loads, the root-co-
herence function at the vortex shedding frequency for wind-
induced torque is given by (27). *e values of Cz in (27) that
fit (28) were determined by assuming 7 different values of
D/B ratio and 6 different values of B, that is, a total of 42
comparative graphs were generated for wind-induced tor-
que, 10 of which are shown in Figure 891011 to 12. For
2≤D/B≤ 4, it is assumed that Δ1 � 0, in this way, (27) can be
fitted into (28) because the cosine term is removed. Based on
the 42 comparative graphs, the values of Cz shown in
Figure 13, 14 are proposed to simulate the wind-induced
torque on rectangular tall buildings by using (21) in the SR
method based on the Cholesky decomposition of lagged
coherency matrix.

Based on Figure 15, Table 3 shows the values of (xn, yn),
βn, and rn for the nth shear frame. On the other hand, Table 4
shows the first period of vibration of the buildings in each
direction.

It was assumed that the building is located in the city of
Cancun, México, where ρa � 1.2161 kg/m3,λ � 21.10°, and
zo � 0.01 m. According to the Mexican wind load code
[45], U(zr) � 32 m/s for a 10-year return period, which is
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Figure 7: Vertical correlation for wind-induced torque: B/H = 0.15.
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related to the serviceability limit state of the building. For the
buffeting response, the aerodynamic admittance function
proposed by Castro et al. [16] was used to attenuate the
power spectra of the along-wind loads (see Appendix A).*e
aerodynamic coefficients and vertical decay constants are
shown in Table 5, whereas the Strouhal numbers are St �

0.084 and St � 0.062 for across-wind loads and wind-in-
duced torque, respectively.

For H/(
���
BD

√
) � 8, Figures 16, 17, 18, 19, and 20 show

a well-fitting simulation for the standard deviations, PSD
functions, Pearson correlation coefficients, and wind-in-
duced loads, among other parameters.

4. Wind-Induced Vibrations in Time Domain

Let us consider 1/2≤D/B≤ 4 a three-dimensional N-story
building, where the diaphragm is assumed to be rigid and

therefore there will be three degrees of freedom per floor.
Assuming a Wilson-Penzien damping [40], the equations of
motion can be grouped in the following matrix system [41]:

Mx 

My 

[J]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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€ux 

€uy 

€θz 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

Cxx  Cxy  Cxθ 

Cyx  Cyy  Cyθ 

Cθx  Cθy  Cθθ 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_ux 

_uy 

_θz 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+

Kxx  Kxy  Kxθ 

Kyx  Kyy  Kyθ 

Kθx  Kθy  Kθθ 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ux 

uy 

θz 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

�

Fx(z, t) 

Fy(z, t) 

Mz(z, t) 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

(29)
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2
n, rn � xn sin βn(  − yn cos βn( , (30)

Nm is the total number of frames of the building;
n � 1, 2, 3, . . . , Nm; j � 1, 2, 3, . . . , N; mj is the lumped mass

at the jth story of the building; Jj is the mass moment of
inertia of the jth floor about the vertical axis passing through
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the center of mass (C.M.); ξi is the ith modal damping ratio;
wi is the angular frequency of the ith mode of vibration; mg,i

is the generalized mass corresponding to the ith mode of
vibration; ϕx,i is the mode shape vector corresponding to
the ith translational mode in x-direction; ϕy,i  is the mode
shape vector corresponding to the ith translational mode in
y-direction; ϕθ,i  is the mode shape vector corresponding to
the ith torsional mode; [KD,n] is the condensed stiffness
matrix of the nth frame corresponding to the lateral degrees
of freedom; rn is the projected distance from the nth frame to
the center of the mass of the rigid diaphragm; (xn, yn) are
the Cartesian coordinates of the center of the mass of the nth
frame, assuming that the origin of the Cartesian coordinate
system is the center of the mass of the rigid diaphragm; βn is
the angle between the nth frame and the x-axis; ux  is

a vector containing the lateral displacements of the rigid
floor diaphragms in the x-direction; uy  is a vector con-
taining the lateral displacements of the rigid floor di-
aphragms in the y-direction; θz  is a vector containing the
angular displacements of the rigid floor diaphragms about
the z-axis; Fx(z, t)  is a vector containing the wind-induced
forces in the x-direction; Fy(z, t)  is a vector containing the
wind-induced forces in the y-direction; and Mz(z, t)  is
a vector containing the wind-induced torque about the
z-axis. *e matrix equation (34) can be solved using a -
numerical integration method such as the state space
method [42].

For standard structures, the across-wind and torsional
responses are generally less significant than the along-wind
response. However, for structures with significant height, the
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Figure 8: Vertical correlation at vortex shedding frequency for wind-induced torque: D/B� 1/4.
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Figure 9: Vertical correlation at vortex shedding frequency for wind-induced torque: D/B� 1/3.
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across-wind and torsional responses can become more
significant [43]. According to the National Research Council
of Italy [43], the effects of across-wind and torsional actions
should be assessed if H/

���
BD

√
≥ 3. In this paper, the analyses

were performed for a square plan building (D/B � 1) and 4
different values of H/

���
BD

√
. *ereby, the effects of vertical

correlation on along-wind, across-wind, and torsional vi-
brations can be assessed for different aspect ratios.

*e mass per unit length of the building is equal to
180000 kg/m, which means that mk (k � 1, 2, 3,

. . . , N − 1), mN, Jk (k � 1, 2, 3, . . . , N − 1), and JN are
720000 kg, 360000 kg, 1.08 × 108 kg m2, and
5.4 × 107 kg m2, respectively. Based on Figure 15, the
lateral resisting system in each translational direction

consists of 4 uniform shear frames, that is, Nm � 8. In this
idealization, the beams and floor systems are rigid (infinitely
stiff) in flexure, and several factors are neglected: the axial
deformation of the beams and columns, and the effect of
axial force on the stiffness of the columns. Assuming a story
height equal to 4m, the lateral stiffness of each column is
9.5125 × 107 N/m; therefore, the story stiffness for each
translational direction is equal to 1.522 × 109 N/m. In wind
engineering, the total damping ratio is composed of the
structural part and the aerodynamic part, where the
aerodynamic damping is caused by the interaction between
the motion of a structure and motion of the air around it.
In this numerical example, it was assumed that
ξi(i � 1, 2, 3, . . . , 3N) is equal to 0.01 [44].
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Figure 10: Vertical correlation at vortex shedding frequency for wind-induced torque: D/B� 1/2.
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Figure 11: Vertical correlation at vortex shedding frequency for wind-induced torque: D/B� 1.
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Figures 21, 22, and 23 compare the co H/
���
BD

√
� 8

related H/
���
BD

√
� 8 rooftop H/

���
BD

√
� 8 response in time

H/
���
BD

√
� 8 domain withH/

���
BD

√
� 8 the uncorrelated

rooftop response, that is, if the vertical coherence function is
neglected by reducing (19) to
gj(t) � 

m
n�1

��������������
2 Δf Sg(zj, fn)


cos [2 π fn t + ϕn]. Ac-

cordingly, Table 6 shows the root-mean-square (RMS) and
peak values of the rooftop dynamic response for both un-
correlated and correlated wind loads.

Peak displacements are frequently used to assess wind-
induced damage, whereas peak and root-mean-square
(RMS) accelerations are commonly used for human comfort
assessment to wind-induced motion [46]. *erefore, Table 6

shows the effects of the vertical correlation on the wind-
induced responses for different aspect ratios. Generally
speaking, Table 6 shows that the along-wind peak dis-
placements are slightly modified when vertical correlation is
neglected, that is, in the range of 2 to 15%; on the contrary,
the peak displacements of both across-wind and torsional
directions decrease 67–81% for all aspect ratios. When the
vertical is neglected, RMS values of along-wind accelerations
increase 62–109%, whereas peak values of along-wind ac-
celerations increase 25–42% for all aspect ratios. When the
vertical correlation is neglected, both RMS and peak values
of across-wind accelerations increase 15–51% for aspect
ratios in the range of 2 to 4, whereas they decrease 25–36%
for aspect ratios in the range of 6 to 8. On the other hand,
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Figure 13: Proposed vertical decay constants for wind-induced torque on rectangular tall buildings: D/B� 1/4 and D/B� 1/3.
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Figure 12: Vertical correlation at vortex shedding frequency for wind-induced torque: D/B� 2.
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Table 3: Cartesian coordinates, angles, and projected distances of all shear frames.

n 1 2 3 4 5 6 7 8
Frame 1x 2x 3x 4x 1y 2y 3y 4y
x (m) 0 0 0 0 − 15 − 5 5 15
y (m) − 15 − 5 5 15 0 0 0 0
β (rad) 0 0 0 0 π/2 π/2 π/2 π/2
r (m) 15 5 − 5 − 15 − 15 -5 5 15
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Figure 14: Proposed vertical decay constants for wind-induced torque on rectangular tall buildings 2≦D/B≦4.
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Figure 15: Lateral resisting system of the N-story shear building: 2D plan view.
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Table 4: First period [s] of the N-story shear building in each direction: D/B� 1.

H���
BD

√ N Translational in x-direction Translational in y-direction Torsional
2 15 1.31 1.31 1.01
4 30 2.61 2.61 2.02
6 45 3.92 3.92 3.03
8 60 5.22 5.22 4.04

Table 5: Aerodynamics coefficients and vertical decay constants for the wind loads: D/B� 1.

H���
BD

√ H (m)

Aerodynamic
coefficients Cz

CD CL CM Krenk´s model for along-wind loads Davenport´s model for across-wind loads Davenport´s model for
wind-induced torque

2 60 1.18 0.404 0.077 5 0.70 0.94
4 120 1.30 0.404 0.077 5 1.40 1.80
6 180 1.40 0.404 0.077 5 2.10 2.70
8 240 1.48 0.404 0.077 5 2.80 3.60
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Figure 17: Standard deviations along the height H/sqrt(BD)� 8.

z [
m

]

250

200

150

100

50

0

Mean wind velocity

25 30 35 40 45 50

Target Simulated

U (z) [m/s]–

(a)

z [
m

]

250

200

150

100

50

0

Iu [%]

Turbulence intensity

5 10 15 20

Target Simulated

(b)

z [
m

]

250

200

150

100

50

0

Lu [m]

Integral length scale

0 500 1000 1500 2000

Target Simulated

(c)

Figure 16: Longitudinal turbulence parameters along the height H/sqrt(BD)� 8.
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Figure 19: Vertical coherence of wind-induced forces H/sqrt(BD)� 8.
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Figure 18: Power-spectral density functions at the rooftop H/sqrt(BD)� 8.
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Figure 20: Simulation of wind-induced loads in time domain H/sqrt(BD)� 8.
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Figure 22: Rooftop velocities of the shear buildings in time domain. (a) H/√BD�2, (b) H/√ BD�4. (c) H/√BD�6. (d) H/√BD�8.
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Figure 23: Rooftop accelerations of the shear buildings in time domain. (a) H/√BD�2, (b) H/√ BD�4. (c) H/√BD�6. (d) H/√BD�8.
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Figure 21: Rooftop displacements of the shear buildings in time domain. (a) H/√BD�2, (b) H/√ BD�4. (c) H/√BD�6. (d) H/√BD�8.
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RMS torsional accelerations increase 72–243% when the
vertical correlation is neglected, whereas peak torsional
accelerations increase 97–236% for all aspect ratios.

5. Wind-Induced Vibrations in
Frequency Domain

According to Newland [47], the frequency response
function matrix between the generalized structural dis-
placements and the external forces of a multi degree of

freedom (MDOF) system can be obtained using the fol-
lowing equation:

[B(w)] � [K] − w
2
[M] + i w[C] 

− 1
, (31)

where [K],[M], and [C] are the stiffness, mass, and damping
matrices, respectively; w is the angular frequency and i is the
imaginary unit. *en, the displacement and acceleration
power-spectral density (PSD) matrices are defined, re-
spectively, as

Table 6: Effect of vertical correlation on the rooftop dynamic response of the shear buildings: time domain.

Uncorrelated/Correlated Direction H/
����
B D

√

2 4 6 8

Peak displacement (%)
Along-wind (y-direction) − 11.94 +15.33 − 1.69 +10.97
Across-wind (x-direction) − 67.79 − 75.28 − 81.23 − 77.75

Torsion about z-axis − 67.16 − 71.79 − 73.44 − 77.42

RMS acceleration (%)
Along-wind (y-direction) +109.33 +67.26 +85.42 +61.77
Across-wind (x-direction) +15.57 − 0.055 − 33.18 − 29.41

Torsion about z-axis +242.67 +122.92 +71.64 +122.09

Peak acceleration (%)
Along-wind (y-direction) +25.47 +42.40 +26.70 +34.94
Across-wind (x-direction) +51.48 +14.58 − 25.08 − 36.45

Torsion about z-axis +236.27 +96.27 +97.47 +116.04
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Figure 24: Nonlinear response in time domain of the 60th floor H/sqrt(BD)� 8.
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Figure 25: Nonlinear response in time domain of the 5th floor H/sqrt(BD)� 8.
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Su u(w)  � [B(w)]
∗

Sgg(w)  [B(w)],

S €u €u(w)  � w
4

Su u(w) ,
(32)

where the ∗ superscript denotes complex matrix conju-
gation and [Sgg(w)] is the cross-spectral density matrix of
the wind forces, which is given in (11). Next, the variance of
the response is obtained by integrating the response auto-
spectra populating the main diagonal elements of the re-
sponse PSD matrix on the frequency axis up to a maximum
(cut-off) frequency wm above which the energy of the un-
derlying processes is negligible. In this way, the RMS dis-
placement and RMS acceleration of the jth floor are
obtained, respectively, as

σu j
�

��������������


wm

0
Suj uj

(w) dw,



σ€u j
�

���������


wm

0
S €uj

€uj



(w) dw,

(33)

where Suj uj
(w) and S €uj

€uj(w) are the jth elements of the
main diagonal of [Su u(w)] and [S €u €u(w)] matrices, re-
spectively. For both across-wind and torsional-wind loads,
the peak displacement and peak acceleration of the jth floor
can be estimated, respectively, by the expressions

peak uj  � kp σu j
,

peak €uj  � kp σ €u j

, (34)
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Figure 26: Energy balance for the nonlinear time history analysis H/sqrt(BD)� 8.

Table 7: Effect of the empirical coherence function on elastic dynamic response of the shear buildings.

H���
B D

√ Rooftop response
Across-wind response [m, m/s2] Wind-induced torsional response [rad, rad/s2]
Time domain (davenport) Frequency domain (liang) Time domain (davenport) Frequency domain (liang)

2

RMS displacement 0.0060 0.0062 0.00017 0.00017
Peak displacement 0.0208 0.0228 0.00067 0.00062
RMS acceleration 0.1278 0.1241 0.0075 0.0067
Peak acceleration 0.4176 0.4546 0.0284 0.0215

4

RMS displacement 0.0318 0.0379 0.0013 0.0016
Peak displacement 0.0987 0.1315 0.0039 0.0057
RMS acceleration 0.1813 0.2020 0.0144 0.0154
Peak acceleration 0.5803 0.7014 0.0563 0.0544

6

RMS displacement 0.1045 0.1099 0.0040 0.0050
Peak displacement 0.3304 0.3687 0.0128 0.0170
RMS acceleration 0.2643 0.2652 0.0201 0.0215
Peak acceleration 0.8616 0.8896 0.0711 0.0737

8

RMS displacement 0.2158 0.2696 0.0038 0.0047
Peak displacement 0.7465 0.8809 0.0124 0.0223
RMS acceleration 0.2985 0.3682 0.0163 0.0171
Peak acceleration 1.1313 1.2031 0.0586 0.0570
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where kp is the peak factor estimated by the widely used
empirical formula [48] as follows:

kp ≈
����������

2 ln Ts/T
∗
1( 



+
0.577

����������
2 ln Ts/T

∗
1( 

 , (35)

where T∗1 is the fundamental period of vibration of the
structure in the direction of analysis and Ts is the time
duration of exposure to the wind action, which is usually
equal to 600 s.

As already mentioned above, both across-wind and
torsional-wind loads cannot be simulated in time domain by
using the empirical root-coherence functions proposed by
Liang et al. [1, 2] because these functions lead to a negative
definite Hermitian coherence matrix that cannot be
decomposed through the Cholesky factorization. However,
the empirical root-coherence functions proposed by Liang
et al. [1, 2] can be effectively used to compute the elastic
wind-induced vibrations in the frequency domain by using
Equations (50) and (34). In this way, the vertical decay
constants proposed in this paper (see Figures 6, 13, and 14)
can be validated by comparing the correlated time domain
response with the correlated frequency domain response
resulting from using the empirical coherence functions
proposed by Liang et al [1, 2]. Accordingly, Table 7 shows
a close approximation between the time domain and fre-
quency domain responses.

Generally speaking, Table 7 shows that RMS elastic
response decreases in the range of 0.3 to 20% when the time
domain analysis is used in conjunction with the proposed
vertical decay constants (see Figures 6, 13, and 14). On the
other hand, the peak elastic response decreases in the range
of 3 to 44% because the peak factor shown in (35) is just an
approximation based on along-wind response; therefore, the
RMS elastic response is the recommended one to be taken as
a validation parameter for the vertical decay constants
proposed in this paper. In this way, a time domain analysis
has a wider field of application because it is not only useful
for nonlinearity behavior, nonclassically damping, and de-
tailed structural models in commercial software but also to
compute precisely the peak elastic response compared to an
analysis in the frequency domain where the peak factor may
not be suitable for across-wind and torsional-wind
responses.

6. Nonlinear Time History Analysis

As already mentioned above, the nonlinear behavior of
a structure hinders the use of a frequency domain approach.
*erefore, a nonlinear time history analysis will show the
advantages of the vertical decay constants proposed in this
paper to simulate the wind-induced vibrations considering
the correlation along the height of the building.

In this section, the 60-story shear building (see Fig-
ure 15) is subjected simultaneously to the along-wind and
across-wind loads shown in Figure 20, which are correlated
along the height of the structure. For the nonlinear behavior,
it was assumed a bilinear isotropic hardening ASTM A992
steel model considering a Young´s modulus equal to

199GPA; a yield stress equal to 344.7MPA; and a postyield
story stiffness equal to 304.4MN/m, that is, 20% of elastic
story stiffness. Assuming a story height equal to 4m, the
yield story force and yield story displacement are 10.5MN
and 6.9mm, respectively.

*e nonlinear matrix system was solved in MATLAB by
using the Newmark β-method [42], in this way, the non-
linear displacements and hysteretic loops of the 60th floor
and 5th floor are shown in Figures 24 and 25, respectively. In
addition, Figure 26 shows the energy balance in order to
check that the total energy (kinetic + dissipated + elastic
strain + hysteresis) is equal to the input energy.

For the along-wind response, the structural material
yields from 1st story to the 31st story, whereas it remains
elastic from story the 32nd story to the rooftop. On
H/

����
B D

√
� 8 the other hand, H/

����
B D

√
� 8 for the across-

wind response, the structural material yields from 1st story to
the 50th story, whereas it remains elastic from the 51st story to
the rooftop. In fact, Figure 26 clearly shows that the
inputH/

����
B D

√
� 8 energy related to the across-wind loads is

much greater than the input energy related to the along-wind
loads. Furthermore, the hysteresis energy in Figure 26(a)
remains approximately constant over time because the along-
wind loads are strictly “positive” most of the time. *erefore,
the hysteresis behavior usually remains in the loading
branches (see Figure 25(b)). On the contrary, Figure 25(c)
shows multiple hysteresis loops related to the across-wind
vibrations, which means that both hysteresis energy and
dissipated energy increase over time (see Figure 26(b)).

For the along-wind response at the rooftop, Figure 24(a)
shows that the peak displacement is equal to 68.7 cm, which
is 1.37 times greater than that computed by a linear time
history analysis (see Table 6). On the contrary, Figure 24(a)
shows that the across-wind peak displacement at the rooftop
is equal to 51.8 cm, that is, it decreases 30.6% compared to
that computed by a linear time history analysis (see Table 6).

7. Conclusions

*e spectral representation (SR) method is frequently used
to simulate along-wind loads on tall buildings. However, it
can be used to simulate any mean-zero multivariate and
multidimensional process such as across-wind loads and
wind-induced torque. However, scientific literature reveals
that across-wind and wind-induced torque have only been
simulated in time domain without considering the vertical
correlation between the signals, which is physically in-
correct. *erefore, it has not been possible to simulate both
linear and nonlinear response induced by vortex shedding
(across and torsional directions). For the particular case of
nonlinear response, it is very important to compute the
damage induced by the wind in the 3D space.

As the first goal of this research, a review of the pa-
rameters involved to simulate along-wind, across-wind, and
torsional-wind loads on rectangular tall buildings was car-
ried out to unify the simulation process in order to compute
the 3D wind-induced vibrations. In this way, the most
important empirical models for the parameters of wind
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simulations are fully discussed. Accordingly, the following
conclusions were obtained:

(a) For along-wind loads, the power-spectral density
function proposed in ESDU adequately repre-
sents the power of the turbulent component in all
the frequency content. Furthermore, it is highly
recommended to correlate along-wind loads by
using a vertical decay constant equal to 5 in the
empirical coherence function proposed by Krenk,
which is not encumbered by the two in-
consistencies related to the empirical function
proposed by Davenport.

(b) For across-wind and torsional-wind loads, the
power-spectral density functions proposed by Liang
adequately represent the power of both types of wind
loads on rectangular tall buildings with various side
ratios. However, the empirical coherence functions
proposed by Liang cannot be used in the SR method
because they do not depend on the frequency
content of the spectra and lead to a negative definite
coherence matrix that cannot be factorized through
the Cholesky decomposition.
As the second goal of this research, a comparative
analysis between the Liang coherence model and the
Davenport coherence model was carried out to
propose vertical decay constants for various side
ratios at normal attack angle, which is the most
important contribution of this paper because it
solves the problem of vertical correlation in the
simulation of across-wind and torsional-wind loads
in time domain. Accordingly, the following con-
clusions were obtained:

(c) *ere is not a single value of the vertical decay
constant in Davenport’s empirical model that per-
fectly matches Liang coherence function, particu-
larly when H decreases and B increases.

(d) *eDavenport coherence function fits well the Liang
coherence function as H increases and B decreases.
As the third goal of this research, the effect of vertical
correlation on along-wind, across-wind, and wind-
induced torsional responses were assessed in the
time domain for shear buildings with different aspect
ratios by using a three-dimensional model with two
translational and one torsional degree of freedom for
each floor. Furthermore, the proposed vertical decay
constants were validated by comparing the elastic
response between frequency domain and time do-
main approaches. Accordingly, the following con-
clusions were obtained:

(e) Generally speaking, the results show that the peak
displacements are significantly underestimated for
both across-wind and torsional directions when the
vertical correlation is neglected. On the contrary, the
along-wind peak displacements are slightly modified.

(f ) When the vertical correlation is neglected, across-
wind acceleration increases for low-rise buildings,
whereas it decreases for high-rise buildings. On the
other hand, torsional accelerations increase signifi-
cantly when the vertical correlation is neglected.

(g) Generally speaking, the RMS elastic response de-
creases in the range of 0.3 to 20% when the time
domain analysis is used in conjunction with the
proposed vertical decay constants for both across-
wind and torsional directions.

(h) For the elastic RMS response considering vertical
correlation, the difference between time domain and
frequency domain approaches was mostly negligible.

(i) *e peak factor in the frequency domain may not be
suitable for across-wind and torsional-wind elastic
responses. *erefore, a time domain analysis has
a wider field of application.
As the final goal of this research, the advantages of
time domain simulation were shown by performing
a nonlinear time history analysis for a 60-story shear
building considering a bilinear isotropic material
hardening model in both translational directions.
Accordingly, the following conclusions were
obtained:

(j) For the along-wind direction, the structural material
yields from 1st story to the 31st story, whereas it
yields from 1st story to the 50th story for the across-
wind direction.

(k) *e along-wind peak displacement at rooftop in-
creases 37.3% when a nonlinear time history analysis
is performed. On the contrary, the across-wind peak
displacement decreases 30.6% compared to that
computed by a linear time history analysis.

Based on contributions of this research, we believe that
structural engineers will be able to compute accurately the
3D wind-induced response of rectangular tall buildings for
specific problems where frequency domain analysis is not
applicable (nonlinearity behavior, nonclassically damping,
and detailed structural models in commercial software),
particularly for across-wind and torsional responses. For
future work, the 3D wind-induced vibration of high-rise
buildings will be studied in time domain considering
nonlinear behavior and passive energy dissipation devices.

Appendix

A. Power-spectral density function of along-
wind loads

*roughout the literature, many semiempirical expressions
for the power spectrum of the turbulent component in the
wind direction have been proposed based on a number of
physical parameters. *ese expressions [49–58] can be di-
vided into two families: the so-called Kaimal spectra [54–57],
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which provide a good agreement with the natural observed
turbulence; and the Von Kármán spectra [52, 53], which are
more in agreement with the turbulence of a wind tunnel.*e
modified Von Kármán spectrum proposed in the ESDU [58]
offers both a fair agreement with empirical data together
with simple correlation implementations. In addition, this
model is the only one that adequately represents the power
spectrum of u(z, t) in all the frequency content. Based on the
ESDU [58], the power-spectral density function of u(z, t) in
(m/s)2/Hz is given by

Su(z, f) �
Ru(z, f) σ2u(z)

f
, (A − 1)

where the nondimensional power spectrum and the stan-
dard deviation in m/s are defined, respectively, as

Ru(z,f)

+ C2
1.294 nu/ε

1+ πnu/ε( 
2

 
5/6R1,

(A − 2)

σu(z) (A − 3)

where

C1 (A − 4)

C2 � 1 − C1, (A − 5)

p � η16, (A − 6)

η � 1 −
6 fc z

u
∗ , (A − 7)

ε � 0.535 + 2.76 0.138 − Ak( 
0.68

, (A − 8)

Ak � 0.115 1 + 0.3151 1 −
z

zg

 

6
⎡⎣ ⎤⎦

2/3

, (A − 9)

R1 � 1 + 0.455 exp − 0.76 nu/ε( 
− 0.8

 , (A − 10)

nu � f
Lu(z)

U(z)
, (A − 11)

Lu(z) �
A
3/2
k σu(z)/u∗ 

3
z

2.5 K
3/2
z 1 − z/zg 

2
1 + 5.75 z/zg 

,

(A − 12)

Kz � 0.19 − 0.19 − Ko( e
− Bk z/zg( 

Nk

, (A − 13)

Ko (A − 14)

Ro (A − 15)

Bk � 24 R
0.155
o , (A − 16)

Nk � 1.24 R
0.008
o , (A − 17)

Lu(z) is the integral length scale of u(zj, t), Ro is the
Richardson number, u∗ is the friction velocity, zg is the
gradient height, fc is the Coriolis parameter, and zo is the
surface roughness length.

Based on Equations (1) and (A-1), the power-spectral
density function of FD(z, t) in N2/Hz is given by

SFD zj, f 

� ρa CD Aj U zj  
2

χ zj, f 
2

Su zj, f ,

(A − 18)

where j� 1,2,3, . . ., N; χ(zj, f)2 is the aerodynamic ad-
mittance function at height zj, which represents the re-
lationship between the gust frequency and its area of
influence; ρa is the density of air; Aj is the projected area of
the jth story; U(zj) is the mean wind velocity at height zj;
and CD is the drag coefficient. *e empirical formula
commonly used for the aerodynamic admittance function in
rectangular tall buildings is given by [59]

χ zj, f 
2

� 1 +
2f

���
Aj



U zj 

⎛⎜⎜⎝ ⎞⎟⎟⎠
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 2

. (A − 19)

However, Castro et al. [16] slightly modified Equation
(A-19) by changing the exponent -2 with the exponent -7/
6. According to Castro et al. [16], this modified expression
for the aerodynamic admittance function adequately at-
tenuates the power spectrum of the along-wind loads for
two structures widely studied by other authors: a 100-
meter steel tower [60] and the CAARC standard tall
building [61, 62]. *erefore, in this paper the aerodynamic
admittance function modified by Castro et al. [16] is
recommended to attenuate the power spectrum of the
along-wind loads.

Based on wind tunnel tests or computational fluid dy-
namics, practical wind load codes and standards suggest
values of the aerodynamic coefficients for a variety of sit-
uations. Based on the Brazilian wind code [63], Patlán [64]
performed a surface fitting to compute the drag coefficient
for a rectangular tall building immersed in a turbulent flow
at normal attack angle, which is given by

22 Shock and Vibration



CD

− 0.003634
H

B
 

2
+ 0.05499

B

D
 

3
− 0.01518

B

D
 

2 H

B
  − 0.0004883

B

D
 

H

B
 

2

+ 0.0001056
H

B
 

3
+ 0.001394

B

D
 

3 H

B
  + 9.036 × 10− 5 B

D
 

2 H

B
 

2

+ 9.974 × 10− 7 B

D
 

H

B
 

3
− 1.052 × 10− 6 H

B
 

4
.

(A − 20)

When 0.5≤H/B≤ 40 and 0.2≤B/D≤ 4.

B. Power-spectral density function of across-
wind loads

According to Liang et al. [1], the power-spectral density
function of FL(z, t) in N2/Hz is given by

SFL(z, f) �
RFL(z, f) σ2FL(z)

f
, (B − 1)

where the standard deviation in N is defined as

σFL zj  �
1
2

ρa Aj CL U zj 
2
, (B − 2)

and the lift coefficient is given by

CL � 0.045(D/B)
3

− 0.335(D/B)
2

+ 0.868(D/B) − 0.174,

(B − 3)

when 1/4≤D/B≤ 4 at normal attack angle of wind flow.
When 1/4≤D/B< 3, the nondimensional power spec-

trum of the across-wind force for a rectangular tall building
(see Figure 1) is given by the following equation [1]:
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f
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fs(z) is the vortex shedding frequency and St is the Strouhal
number.

When 3≤D/B≤ 4, the nondimensional power spectrum
of the across-wind force for a rectangular tall building (see
Figure 1) is given by the following equation [1]:

RFL(z, f) � a
∗ 1.275f

2

1 − f
2
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where

C1 � 2, (B − 13)

a
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, (B − 14)
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√
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Iu(z) is the turbulence intensity of U(z, t), (s) is the pa-
rameter defined in Equation (B-6) and f is the non-
dimensional frequency defined in Equation (B-11).

C. Power-spectral density function of wind-
induced torque

According to Liang et al. [2], the power-spectral density
function of M(z, t) in (N m)2/Hz is given by

SM(z, f) �
RM(z, f) σ2M(z)

f
, (C − 1)

where the standard deviation in Nm is defined as

σM zj  �
1
2

ρa B Aj CM U zj 
2
, (C − 2)

and the torque coefficient is given by

CM � 0.054(D/B)
2

+ 0.023, (C − 3)

when 1/4≤D/B≤ 4 at normal attack angle of wind flow.
When 1/4≤D/B< 1, the nondimensional power

spectrum of the wind-induced torque for a rectangular tall
building (see Figure 1) is given by the following equation [2]:
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where
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fs(z) is the vortex shedding frequency and St is the Strouhal
number.

When 1≤D/B≤ 4, the non-dimensional power spec-
trum of the wind-induced torque for a rectangular tall
building (see Figure 1) is given by the following equation
[2]:
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+
1 − a1(  C

0.56
(f/k)

2.5

1.29 1 − (f/k)
2

 
2

+ C (f/k)
2

 
,

(C − 12)

where

a1 � g ln Iu(z)  + j, (C − 13)

Iu(z) �
σu(z)

U(z)
,

(C − 14)

g �
H

�
S

√  0.01
D

B
  − 0.09  − 0.08

D

B
  + 1.20,

(C − 15)

j �
H

�
S

√  0.03
D

B
  − 0.19  − 0.12

D

B
  + 2.92,

(C − 16)

d � 0.1 (D/B) + 0.35,

(C − 17)

24 Shock and Vibration



C � exp[− 0.4 (D/B)], (C − 18)

k � − 0.075 (D/B)
2

+ 0.045 (D/B) + 3.83, (C − 19)

Iu(z) is the turbulence intensity of U(z, t), (s) is the pa-
rameter defined in Equation (C-7) and f is the non-
dimensional frequency defined in Equation (C-11).
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