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�e rolling bearing fault test signal has nonstationary and nonlinear characteristics. �e feature extraction method based on
variational mode decomposition (VMD) and permutation entropy can e�ectively measure the regularity of the signal and detect
weak changes. Since the center frequency of the intrinsic mode function (IMF) of each fault test signal contains more details, this
paper further extracts the multiscale permutation entropy feature for each IMF.�e training samples and test samples of each IMF
are constructed, and then the support vector machine (SVM) and theK-nearest neighbor algorithm (KNN) are used to identify the
faults. �e test results of the IMF components are used to determine the classi�cation results combined with the maximum
attribution index. Compared with the relevant feature extraction, the experimental results show that the method achieves a certain
improvement in the accuracy of fault identi�cation. �e research results of rolling bearing fault data show that the multiscale
permutation entropy and SVM/KNN can more accurately diagnose di�erent fault modes, di�erent fault sizes, and di�erent
operating states of rolling bearings.

1. Introduction

In the diagnosis �eld of rolling bearings fault, machine
learning-based fault diagnosis methods have attracted much
attention, mainly including two procedures: feature ex-
traction and pattern recognition.

In terms of feature extraction of faults, many statistical
parameter estimation methods have been applied. In recent
decades, entropy has commonly been used as the evaluation
criteria of classi�cation or clustering results, of which ap-
proximate entropy, permutation entropy, sample entropy,
and fuzzy entropy have been introduced by many scholars in
rolling bearing fault diagnosis.

In 1948, Shannon [1] proposed to take Shannon entropy
as a measure of uncertainty for stochastic process results. As
described in Shannon’s seminal paper, information entropy
provides a measure of information content. High entropy
levels imply a high degree of “unpredictability”in the system.
Conversely, if each subsequent state of a system can be easily
predicted from the previous state, the system is said to have
low entropy. Subsequently, Kolmogorov [2] de�ned the

concept of entropy for a new class of dynamic systems. In
1991, Pincus et al. [3, 4] modi�ed Kolmogorov–Shannon
(KS) entropy and created an approximate entropy (ApEn),
which can be used tomeasure the complexity of real-life time
series without coarse-grained procedures. In 2000, Richman
and Moorman [5, 6] further modi�ed ApEn and created
sample entropy (SampEn), which has two advantages over
ApEn: data length independence and higher relative
agreement under multiple parameters. In 2002, Costa et al.
proposed multiscale entropy (MSE) [7, 8] to address the
problem of classifying healthy individuals, patients with
congestive heart failure, and patients with unstable ar-
rhythmias on a single time scale. �e concept of a coarse-
grained process was proposed in the entropy calculation
process. In addition, Richman and Moorman [5] proposed
cross-SampEn for the measurement of asynchrony and
phase anisotropy of two di�erent time series.

Guo et al. used dynamic time warping (DTW) and
symplectic geometry mode decomposition(SGMD) to rec-
ognize the fault type of the test sample [9]. Kumar et al.
employed an entropy-based state space model for estimating
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the remaining useful life (RUL) and carrying out the dy-
namic degradation monitoring of rolling element bearings
[10]. Liu et al. solved the problem of failure samples being
difficult to obtain by constructing FEMmodels with faults to
obtain simulation signals [11]. Li et al. proposed a new
complexity measure for analyzing time series and termed it
as reverse dispersion entropy (RDE) [12].

In terms of uncertainty and randomness, sample entropy
is superior to approximate entropy [9], and permutation
entropy (PE) is superior to sample entropy [10]. PE has high
sensitivity to signal change, strong noise elimination ability,
and fast operation speed, as proposed by Bandt and Pompe,
it is also available for the detection of the randomness of time
series [11]. Considering these features, it can be used to
quantify the fault sign gearbox signal present in vibration
[12]. When any gear fault occurs during operation, it shows
obvious signal characteristics. )erefore, the vibration sig-
nals obtained from such a system result in varied PE values
in different health conditions. )e smaller the entropy
values, the lower the uncertainties present in the signal, and
vice versa [13]. Due to the better predictability of the faults,
the entropy will increase as the faults increase. As a con-
sequence, PE can be used to distinguish bearing faults.

Among them, permutation entropy, as one of the most
commonly used entropy methods, can effectively measure
the regularity of signals and detect weak changes. It has the
advantages of antinoise and invariance to nonlinear
monotonic transformations. In the case of rolling bearing
failure, the nonlinear dynamic complexity changes ac-
cordingly. )erefore, PE is well suited for feature extraction
of rolling bearings. However, since PE analyzes time series
on only one scale, the implementation of multiscale methods
[14] has led to multiscale permutation entropy (MPE)
techniques [15]. )is enables permutation entropy to search
for information contained in long-term trends in the signal,
which can be lost if its original data points are analyzed
directly. Similar to traditional single scale nonlinear metrics,
PE can only measure the complexity of a signal (time series)
on a single scale. In order to make up for the shortcomings,
Aziz and Arif developed a multiscale permutation entropy
(MPE) with better robustness than PE on the basis of PE
[16], which was successfully applied to estimate the com-
plexity and randomness of time series at different scales.
Hsieh et al. used MPE to quantitatively analyze the vibration
signals of rotating machinery at different scales and con-
struct the original feature set [17]. A multichannel fused
convolutional neural network was constructed to extract
features from PE at multiple scales for fault identification of
rolling bearings. Wang et al. proposed a data-driven method
combining multiscale permutation entropy and linear local
tangent spatial alignment to diagnose faults in vehicle
suspension systems [18].

Furthermore, PE and MPE rely on pattern counts inside
the signal, which itself is simply a sample series from a wider
phenomenon. )us, the measured entropy content is not a
measure of certainty but an estimator [19, 20].

Considering the above theory and application re-
sults, after decomposing the original time series by
VMD, we used multiscale permutation entropy (MPE)

to perform feature extraction of intrinsic modal func-
tion components again, which were classified by the
SVM method. Finally, the features were comprehen-
sively judged using the calculation method of attribution
degree. Multiscale permutation entropy of the original
time series and VMD-based permutation entropy were
applied for feature extraction. Moreover, two classifi-
cation methods, KNN and SVM, were used for
comparison.

2. Multiscale Permutation Entropy

Permutation entropy is used tomeasure the complexity of time
series.)e size of the permutation entropy value corresponding
to different time series varies. )e more complex the time
series, the greater the permutation entropy value; the more
regular the time series, the smaller the permutation entropy
value [21–23]. Due to the different harmonic content of current
signals of different types of faults, the complexity is quite
different. )erefore, the fault signal feature extraction can be
realized by calculating the arrangement entropy of fault current
signals. Compared with permutation entropy, multiscale
permutation entropy canmeasure the complexity of time series
from different time scales by overcoming the problem of a
single feature of time series in a single scale permutation en-
tropy metric. )e steps to calculate multiscale permutation
entropy are as follows:

Step 1. Coarse-grain the IMF components obtained
after decomposition at the s-scale and obtain a new
time series at the s-scale, which is formulated as follows:

yj(s) �
1
s



js

i�(j−1)s+1
xi. (1)

In (1) s � 1, 2, · · · , n is the scale factor; j � 1, 2, · · · , N/s;
N is the sequence length; and · indicates rounding
down.
Step 2. Perform phase space reconstruction with em-
bedding dimensionm and delay time t on the new time
series after coarse-graining processing and incremen-
tally arrange the interior of each subsequence X(i). At
this time, map each m-dimensional subsequence X(i)

to one of the m! arrangements.
Step 3. )rough the above steps, represent an m-di-
mensional subspace as a symbol sequence and denote
the probability distribution of all symbols by
P1, P2, · · · PK, where K≤m!. Calculate the probability
of the occurrence of each set of sequences at different
time scales. )e multiscale permutation entropy ex-
pression for each IMF component can be obtained as
follows:

Hp(m) � − 
k

i�1
Pi lnPi. (2)

When Pi � 1/m!, take the maximum value ln(m!) of Hp(m).
Normalize Hp(m), then
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Hp(m) �
Hp(m)

ln(m!)
. (3)

In (3): 0≤Hp(m)≤ 1, which reflects the degree of
randomness of the time series, of which the degree becomes
stronger as the entropy value increases.

)e multiscale permutation entropy algorithm is mainly
affected by three parameters: scale factor, embedding di-
mension, and delay time. )erefore, it is very important to
select three parameters of the embedding dimension m,
delay time τ, and scale factor s of multiscale permutation
entropy. Furthermore, the changes of these three parameters
will affect our calculation results to a great extent. Zheng [24]
et al. experimentally analyzed the change of the entropy
value of the multiscale arrangement of the signal when the
value of delay τ was different and verified that when τ was
changed from 1–6, the entropy value of multiscale ar-
rangement changed little, indicating that the effect of delay τ
on entropy value of the multiscale arrangement was small, so
τ = 1 was selected to calculate the entropy of the multiscale
arrangement. Aziz and Arif [14] suggested that when the
value of embedding dimension m was generally 3–7, the
operation result reached the optimal state. When the value
was 1–2, the number of reconstruction vector states was
small, and the change of signal dynamics mutation could not
accurately detect the change of signal. When the value was
6–7, the reconstruction of signal space homogenizes the time
series, and the calculation amount of multiscale arrangement
entropy increased dramatically and could not well reflect the
subtle change in the time-series. He et al. [25] showed that
the value of multiscale permutation entropy reaches an
optimal state when the embedding dimension m= 5, m= 6,
orm= 7. )erefore, in this paper, the embedding dimension
m= 6 was selected.

In this paper, the vibration data of roller bearings were
taken as the research object. )e data source was the bearing
vibration experimental data of the Electrical Engineering
Laboratory of Case Western Reserve University. )e driving
end bearing model was deep groove ball bearing SKF6205,
with 9 rollers, fault diameter of 0.1778mm, motor load of 2
horsepower, motor speed of 1750 r/min, and sampling
frequency of 12KHz. )e fault location was the inner ring,
roller, and outer ring, so the data labels were divided into 4
types (normal state, inner ring fault, roller fault, and outer
ring fault}. Figure 1 is the data display in one of the time
series windows, and the number of sampling points is 2048.

It can be seen from the data diagram that the occurrence
of a fault leads to the occurrence of a vibration shock,
resulting in shock fluctuations in the amplitude of the three
vibration signals. )e shock frequency of the inner ring fault
was large, the amplitude was small, and the shock frequency
of the outer ring fault was relatively small, but the amplitude
was large.

)e results of the calculation of permutation entropy for
the original time series of the four states are shown in
Figure 2. )e number of sampling points per frame was
2048, the head of the next frame was adjacent to the tail of
the previous frame, and a total of 50 frames were obtained,

with an average of 1.9247, 2.1105, 2.4871, and 1.5809 for the
four states. Different thresholds were selected for compar-
ison, and the results are shown in Table 1.

)e normal state vibration data can be regarded as the
superposition of noise and a certain frequency signal.
According to the permutation entropy calculation rule, the
appearance of a single periodic signal will make the entropy
value reduce, and the amplitude and the number of a single
signal will increase this reduction. So, the appearance of a
periodic signal and its amplitude reduce the entropy value by
0.3438. For the roller, the irregular signal increases due to the
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Figure 1: Original time series of four bearing states.
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Figure 2: Permutation entropy calculation of the original time
series.
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irregular rotation of the roller itself, and then the entropy
value increases.

)e appearance of fault signals makes it difficult to
analyze the entropy features of samples, so it is necessary to
perform modal decomposition of the original time series.

3. VMD

3.1. VMD Rationale. VMD is a signal decomposition esti-
mation method with better time-frequency distribution than
EMD and LMD (local mean decomposition), and its overall
framework is a variational problem, that is, it decomposes
the signal according to the number of preset modal com-
ponents. )e original signal f(x) is decomposed into K
modal function uk with central frequencies of ωk, where K is
the number of preset modal components. In the VMD al-
gorithm, the intrinsic mode function (IMF) is redefined as
an AMP-FM signal.

uk(t) � Ak(t)cos ϕk(t)( , (4)

where, phase ϕk(t) is a nondecreasing function, ϕk
′(t)≥ 0;

the envelope is non-negative, Ak(t)≥ 0; and the envelope
Ak(t) and the instantaneous frequency ωk(t) � ϕk

′(t) are
retarded for the phase ϕk(t).

In order to obtain K modal components with certain
bandwidth frequencies, first of all, for each modal function
uk, the marginal spectrum is obtained by Hilbert transform;
then, for each modal analytical signal, a central frequency is
mixed and estimated; the spectrum of each modal is
modulated to the corresponding base frequency band; then
the square L2 norm of the analytical signal gradient is
calculated to estimate the bandwidth of each modal signal.
)e constrained variable problem is as follows:

min
uk{ }, ωk{ }


k

zt δ(t) +
j

πt
 ∗ uk(t) e

− jωkt 2
2

⎧⎨

⎩

⎫⎬

⎭,

subject.to. 
K

k�1
uk � f(t),

(5)

where, uk  � u1, u2, · · · , uk  is number (K) of modal
components obtained by decomposition;
ωk  � ω1,ω2, · · · ,ωk  is the frequency center of each
component; and δ(t) is the pulse function.

In order to obtain the optimal solution to the above
constrained variable problem, the quadratic penalty factor
and Lagrange multiplication operator are introduced, and
the alternate direction method of multipliers is used to solve
the above variable problem.)e saddle point of the extended
Lagrange expression is gained by alternately updating un+1

k ,
ωn+1

k and λn+1.

)e value of the modal function un+1
k can be expressed as

follows:

u
n+1
k � argmin

uk∈X
αzt δ(t) +

j

πt
 ∗ uk(t) e

− jωkt 2
2+ , (6)

where, a is the penalty parameter; λ is the Lagrange
multiplier.

By using the Parseval/Plancherel Fourier isometric
transform, the (6) is transited to the frequency domain.

u
∧n+1

k � argmin
u
∧

k,uk∈X

αj ω − ωk(  (1 + sgn(ω)u
∧

k(ω) 
2

2


+f
∧

(ω) − 
i

u
∧

i(ω) +
λ
∧
(ω)

2

2

2

⎫⎪⎪⎬

⎪⎪⎭
.

(7)

)e solution of the quadratic optimization is obtained
after further transformation as follows:

u
∧n+1

k (ω) � f
∧

(ω) − 
i≠k

u
∧

i(ω) +
λ
∧
(ω)

2
⎛⎜⎜⎝ ⎞⎟⎟⎠,

1
1 + 2a ω − ωk( 

2,

(8)

where, ωk is the core of the power spectrum of the current
modal function, and it can be seen that the Wiener filter is
embedded in the VMD algorithm, and the algorithm has
better noise robustness.

)e value of the center frequency ωk can be expressed as
follows:

f(t) 
i

ui(t) +
λ(t)

2

2

2

⎫⎬

⎭,

ωn+1
k � argmin

ωk

zt δ(t) +
j

πt
∗ uk(t)  e

− jωkt 2
2 .

(9)

According to the same process, the value taking of the
center frequency is first transformed into the frequency
domain.

ωn+1
k � argmin

ωk


 ∞

0
ω − ωk( 

2
u
∧

k(ω)





2
dω . (10)

)e solution to the quadratic optimization of the center
frequency is as follows:

ωn+1
k �


 ∞
0 ω u
∧

k(ω)



dω


 ∞
0 u
∧

k(ω)





2
dω

. (11)

)e VMD algorithm steps are as follows:

Step 1. Initialize u
∧1

k , ω
∧ 1

k , λ
∧1

and n;
Step 2. According to the formula (11) update uk and ωk;
Step 3. Update λ;

Table 1: Comparison of calculation results of different thresholds.

R� 0.1 R� 0.15 R� 0.2 R� 0.25
Normal status 0.5914 0.7515 0.8424 0.8488
Inner ring fault 0.6892 0.8767 0.9222 0.9068
Roller fault 0.6896 0.8851 0.9218 0.9089
Outer ring fault 0.6844 0.8905 0.9241 0.9169
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λ
∧n+1

(ω)⟵λ
∧n

(ω) + τ f
∧

(ω) − 
k

u
∧n+1

k (ω)⎛⎝ ⎞⎠. (12)

Step 4. Repeat Steps 2 and 3, the cycle is ended until the
iteration stop condition 

k

u
∧n+1

k − u
∧n

k
2
2/u
∧n

k
2
2 < ε is met,

and the result is output to obtain a modal component.

4. Data Analysis and Discussion

VMD was used to decompose the original time series. It was
necessary to determine the number of modes K and the
penalty factor. In this paper, three cases of K� 3, 4, and 5
were analyzed, and the results are shown in Table 2–4. )e
center frequency aliasing was small in the case of K� 4, so
K� 4 was determined. By referring to the references, the
penalty factor was finally determined to be� 2000.

)e original time series of various states are selected for
VMDdecomposition.)e decomposition results of the normal
state are selected, and the results are shown in Figure 3.

For the four selected bearing operation states (normal
state, loss diameter 0.1778 inner ring fault, roller fault, and
outer ring fault), the time windows of each running state
were decomposed by VMD. )e time window length se-
lected was 2048, and the overlap between adjacent windows
is determined. A total of 50 time windows were used for
permutation entropy extraction, and the permutation en-
tropy mean value of 50 time windows was also calculated.
)e results are shown in Figure 4.

One of the time windows was selected for the extraction
of entropy from multiscale samples, with a scale factor se-
lection of 20 and nonoverlapping adjacent scales. )e results
are shown in Figure 5.

For each modal component of the four states, 100 time
windows were selected and extracted for multiscale permu-
tation entropy to obtain 100 ∗ 20 training samples, and finally,
400 ∗ 20 samples of the four states were labeled and used as
input for SVM and KNN classifiers, with effects shown in
Figure 6. )e remaining IMF classification results were 100%.

To compare the accuracy of multiscale permutation
entropy, the permutation entropy of modal components of
each state was constructed as 100 ∗ 5 training samples, and
finally 400 ∗ 5 samples of the four states were labeled and
used as inputs for SVM and KNN classifiers. )e effects are
shown in Figure 7. It can be seen from the figure that four
normal test samples are misjudged as roller faults when
performing SVM classification.

To further compare the accuracy of multiscale permu-
tation entropy, the time window of each state was used to
extract the multiscale permutation entropy, which was

constructed as 100 ∗ 20 training samples. Finally, 400 ∗ 20
samples of the four states were labeled and used as the input
of SVM and KNN classifiers. From Figure 8, it can be seen
that both classification methods reached 100% when per-
forming classification.

For the selected four bearing operation states (normal
state, inner ring fault with a loss diameter of 0.1778, roller
fault, and outer ring fault), the test of data combination 1 was
performed.)e comprehensive test results are shown in Table
Table 3. In the VMD-comprehensive test, the calculation
method was to perform a membership degree calculation
for the prediction results of four components and the
residual error. )at is, if one result belongs to one state
with the most times, the result is judged to belong to the
state. It can be seen from the table that the comprehensive
judgment method can reach 100% judgment (Table 5).

To further validate the method proposed in this paper,
the test of data combination 2 was performed. )e running
states of the four bearings were under load of 2 horsepower,
the loss diameters of the inner ring fault were 0.1778mm,
0.3556mm, 0.5334mm, and 0.7112mm, respectively, which
are shown in Table 6. It can be seen that in this test, except
for misinformation in a small number of samples in IMF4
and residual errors, the VMD-synthesis method can reach
100% judgment.

)e test of data combination 3 was performed. )e four
states were bearing normal operation states under different
loads. From Table 7, it can be seen that the use of SVM for
multiscale permutation entropy of the original time series
has a better test effect; the use of KNN for permutation
entropy obtained after VMD decomposition of the original
time series has a better test effect; the use of VMD-multiscale
permutation entropy combined with KNN has the best test
effect, and its SVM classification effect is intermediate be-
tween the other two methods.

Table 2: Comparison of different thresholds (K� 3).

Center frequency (Hz)
Normal condition 108 1046 2101
Inner ring fault 684 2753 3559
Roller fault 677 2918 3372
Outer ring fault 779 2836 3422

Table 3: Comparison of different thresholds (K� 4).

Center frequency (Hz)
Normal condition 108 1046 2101 4884
Inner ring fault 608 1385 2757 3560
Roller fault 577 1053 2921 3373
Outer ring fault 756 2830 3370 3614

Table 4: Comparison of different thresholds (K� 5).

Center frequency (Hz)
Normal condition 106 1040 1289 2102 4888
Inner ring fault 608 1384 2745 3336 3636
Roller fault 576 1050 2867 3268 3428
Outer ring fault 644 1105 2836 3421 5183
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Table 5: Classification results for data combination 1.

Multiscale MSE Single scale SE
KNN (%) SVM (%) KNN (%) SVM (%)

VMD

IMF1 100 100

100 99
IMF2 100 100
IMF3 100 100
IMF4 100 99

Residual error 100 100
Integrative 100 100 100 99

Original time series (OTS) 100 100
A

m
pl

itu
de

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
-0.2

0
0.2

Original Data and Intrinsic Mode Function (IMF)

Original signal

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
-0.05

0
0.05

IMF1

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
-0.1

0
0.1

IMF2

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
-0.05

0
0.05

IMF3

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
-0.02

0
0.02

IMF4

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
Time (s)

-0.05
0

0.05

Residual

Figure 3: Multiscale permutation entropy for each IMF.
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Figure 4: Permutation entropy calculation of the original time series. (a) Mean values of IMF1: 0.2710, 0.3767, 0.3960, and 0.4611, (b) mean
values of IMF2: 0.4428, 0.5097, 0.4970, and 0.5571, (c) mean values of IMF3: 0.4708, 0.6383, 0.6432, and 0.5447, (d) mean values of IMF4:
0.5982, 0.5996, 0.5562, and 0.5847, and (e) mean values of residual: 0.7986, 0.9045, 0.9071, and 0.9573.
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Figure 5: Multiscale permutation entropy for each IMF.
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Figure 6: KNN and SVM classification comparison of IMF4 multiscale permutation entropy. (a) SVM test classification and (b) KNN test
classification.
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Figure 7: Comparison of permutation entropy classification after the original time series VMD decomposition. (a) SVM test classification
and (b) KNN test classification.
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Figure 8: Comparison of multiscale permutation entropy classification for original time series. (a) SVM test classification and (b) KNN test
classification.

Table 6: Classification results for data combination 2.

Multiscale MSE Single scale SE
KNN (%) SVM (%) KNN (%) SVM (%)

VMD

IMF1 100 100

100 99
IMF2 100 100
IMF3 100 100
IMF4 100 99

Residual error 92.25 82.75
Integrative 100 100 100 99

Original time series (OTS) 100 100

Table 7: Classification results for data combination 3.

Multiscale MSE Single scale SE
KNN (%) SVM% KNN (%) SVM (%)

VMD

IMF1 37 43.25%

87.50 66.25

IMF2 77.50 85.25%
IMF3 87.25 80.75
IMF4 46.5 53.75%

Residual error 59.75 65.75%
Integrative 87.75 84.25%

Original time series (OTS) 76.75 87.25%
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5. Conclusion

In view of the fact that the central frequency of the intrinsic
mode function (IMF) after test signal VMD decomposition
contains more details, this paper further extracted the fea-
tures of multiscale permutation entropy for each IMF.
Subsequently, the training and test samples of each IMFwere
constructed, followed by the fault identification using
support vector machines and KNN. )e test results of the
five modal components were applied to determine the
classification results through the maximum assignment
index. )e feature extraction used at the same time includes
the permutation entropy after VMD decomposition of the
original time series as well as the multiscale permutation
entropy of the original time series. )e combinations of data
used include varied fault modes, fault sizes, and operating
states of rolling bearings. On account of obvious charac-
teristics of fault mode and fault size, the above feature ex-
traction mode could reach 99% extraction at the lowest.
Compared with other feature extractions, this method could
improve the accuracy of fault identification in different load
test data combinations under normal operations. )e re-
search results of fault data of rolling bearings showed that
the diagnosis of varied fault modes, fault sizes, and operating
states of rolling bearings could be accurately performed
based on multiscale permutation entropy and SVM/KNN.
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