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�is paper focuses on the free vibration analysis of bulkhead-sti�ened functionally graded open shell (FGOS) bymeans of the �rst-
order shear deformation theory (FSDT) and the meshless strong form method. �e bulkhead-sti�ened FGOS is decomposed into
several segments without bulkhead, and the equations of motion and boundary conditions for each segment are discretized by
meshless strong form method, and the displacement components are approximated using meshfree Legendre–RIPM shape
function using the combined basis of multi-quadrics (MQ) radial function and Legendre polynomials. �e continuous conditions
of displacement are applied at the interfaces between segments. �e boundary and continuous conditions are enforced by using
the arti�cial spring technique. �e accuracy and reliability of the current method are validated by comparing the present results
with those of the kinds of literature and the �nite element program ABAQUS. �e e�ects of some geometrical parameters and
boundary conditions on the natural frequencies of bulkhead-sti�ened FGOS are investigated through numerical examples, which
may serve as benchmark data.

1. Introduction

Functional grade materials (FGMs) are special composites
whose material properties change smoothly and continu-
ously from one surface to another, usually created by mixing
two or more phases of materials for speci�c design re-
quirements. In particular, a mixture of ceramic and metal
can take advantage of desirable properties such as the heat
and corrosion resistance of ceramic and high tensile
strength, toughness, and bonding ability of metal. De-
veloping an e�ectivemethod tomore accurately calculate the
natural frequency, which is the basic dynamic parameter of
the functionally graded shell and plate, has always been the

focus of scholars’ research. In the past, many studies were
conducted to determine the natural frequencies and mode
shapes of various functionally graded shells and plates. Su
et al. [1] presented the free vibration analysis of functionally
graded open cylindrical, conical and spherical shells with
arbitrary circumferential included angle and general
boundary conditions. It was assumed that the material
properties of the open shells varied continuously and
smoothly in the thickness direction based on general four-
parameter power-law distributions. An exact analytical so-
lution for free vibration analysis of a moderately thick
functionally graded annular sector plate was presented by
Saidi et al. [2]. Rouzegar and Abad [3] presented an
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analytical solution for free vibration analysis of a function-
ally graded plate integrated with piezoelectric layers using
a four-variable refined plate theory. Chakraverty and
Pradhan [4] investigated free vibration characteristics of
functionally graded rectangular plates subject to different
boundary conditions within the framework of classical or
Kirchhoff’s plate theory. Natarajan et al. [5] studied the
linear free flexural vibrations of FGM plates with a through
center crack using an 8-noded shear flexible element. In their
study, the Mori–Tanaka homogenization scheme was used
to estimate the effective material properties. Many studies
have been conducted on the dynamic analysis of coupled
shells and plates with various geometries, which are widely
used in practical applications [6–8]. Bagheri et al. [9] pre-
sented the free vibration analysis for a FGM conical-
spherical shell by using the semi analytical generalized
differential quadrature method. In their study, governing
equations of the shell system were established using the
continuity conditions of displacement components at the
intersection between the conical and spherical shells. Wang
et al. [10] investigated the free vibration characteristics of
irregular elastic coupled plate systems by means of Che-
byshev–Ritz method, in which the coupling conditions
between each plate were simulated by artificial virtual
springs. +e theories on which studies for the analysis of
static and dynamic characteristics of composite plates and
shells are based can be classified into two types: two-di-
mensional theory and three-dimensional theory [11–14].
Two-dimensional theories include classical plate theory
(CPT) [15–17], FSDT [18, 19], and high order shear de-
formation theory (HSDT) [20–23]. Two-dimensional the-
ories are based on the Kirchhoff hypothesis that normal to
themiddle surface remains normal to it during deformations
and such assumptions are characterized by the middle
surface displacements [24]. +e advantage of two-di-
mensional theory over three-dimensional theory is that it
reduces the dimension of governing equations, which greatly
decreases the computational cost. In particular, FSDT is
widely used in formulations for static and dynamic analysis
of different plates and shells because of its high accuracy and
low computational cost. Qu et al. [25] derived a general
formulation for free, steady-state, and transient vibration
analyses of functionally graded shells of revolution by means
of a modified variational principle in conjunction with
a multi-segment partitioning procedure on the basis of the
FSDT. Xie et al. [26] presented a Haar wavelet discretization
(HWD) method-based solution approach for the free vi-
bration analysis of functionally graded spherical and para-
bolic shells of revolution with arbitrary boundary conditions
on the basis of FSDT. Natarajan et al. [19] used the FSDT in
order to study the flutter behavior of functionally graded
material plates immersed in a supersonic flow. For static and
dynamic analysis of various plates and shells, several ef-
fective methods including semi analytical method [27],
spectral-Tchebychev solution technique [28], Cheby-
shev–Ritz method [29], Fourier series solution method [30],
and finite element method [31–34] have been applied. Ye
et al. [35] developed a general classical shell theory in
conjunction with Chebyshev polynomials and Rayleigh–Ritz

procedure for the free vibration analysis of open shells
subjected to arbitrary boundary conditions. Xue et al. [36]
conducted the free vibration analysis of porous square plate,
circular plate, and rectangle plate with a central circular hole
in the framework of isogeometric analysis (IGA). +e dy-
namic stiffness method (DSM) is applied for free vibration
analysis of thin functionally graded rectangular plates by
Kumar et al. [37]. Talebitooti and Anbardan [38] in-
vestigated the free vibrational characteristics of the generally
doubly curved shells of revolution by means of an explicit
method based on the HWD approach. Studies were also
conducted to apply the meshless method to the dynamic
analysis of plates and shells. +e meshless methods use a set
of nodes scattered within the problem domain and on the
boundaries to represent the problem domain and its
boundaries [39]. In meshless method, the nodes do not form
a mesh, meaning it does not require any a priori information
on the relationship between the nodes for the approximation
of the unknown functions. Zarei and Khosravifard [40] in-
vestigated the vibrational behavior of prestressed laminated
plates bymeans ofmeshless radial point interpolationmethod
(RPIM). Fallah andDelzendeh [41] proposed ameshless finite
volume (MFV) method for free vibration analysis of lami-
nated composite plates. In their study, moving least square
(MLS) shape function was used to approximate field variables.
Vu et al. [42] presented a numerical method based on the
moving Kriging (MK) interpolation meshless method for
analysis of static bending, free vibration, and buckling of
functionally graded (FG) plates. Zhang et al. [43] investigated
the free vibration characteristics of functionally graded
nanocomposite triangular plates reinforced by single-walled
carbon nanotubes using the element-free IMLS-Ritz method.
+e bulkhead-stiffened shells, which achieve high stiffness
and lowweight properties by connecting thin plates to various
shell structures, are widely used in various industries in-
cluding ship and aerospace. When the plate is attached to the
conical shell, the dynamic properties of the coupled system
change significantly, and the frequency response also changes
[44]. +erefore, it is an important issue to develop a calcu-
lation method for the dynamic characteristics analysis of the
bulkhead-stiffened shells. Qu et al. [45] developed a semi
analytical method to predict the vibration and acoustic re-
sponses of submerged coupled spherical-cylindrical-spherical
shells stiffened by circumferential rings and longitudinal
stringers. Chen et al. [46] presented a wave-basedmethod that
can be recognized as a semi analytical and semi numerical
method to analyze the free vibration characteristics of ring
stiffened cylindrical shells with intermediate large frame ribs.
+rough literature review, it can be seen that there are very
few studies on the free vibration analysis of FGOS stiffened
with wide bulkheads. Moreover, the stiffeners were not
considered as individual structures, and the bulkhead-stiff-
ened shells were treated as a structure with reinforced stiff-
ness. However, if the geometric dimensions of the stiffeners
are relatively large, the stiffness conversion method cannot be
applied.

+e purpose of this paper is to analyze the free vibration
characteristics of the FGOS with axial or circumferential
bulkheads using meshless strong form method. A bulkhead-
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stiffened FGOS is decomposed into several shells and
bulkheads, and each segment are transformed into square
plates through the coordinate mapping technique. +e
governing equations and boundary conditions of each
segment derived by FSDT and Hamilton’s principle are
discretized using meshless strong form method. In this
paper, a Legendre-RIPM shape function is employed to
approximate the displacement components of equations.
+e Legendre-RIPM shape function uses the combined basis
of the Legendre polynomial and the MQ radial basis
function [47]. Radial basis functions are powerful tools for
multivariate scattered data interpolation and have enjoyed
considerable research in recent decades [48]. Legendre
polynomials are chosen because they have exponential
convergence behavior and superior numerical stability and
accuracy. +e convergence of the proposed method is in-
vestigated, and the reliability and accuracy are verified
through comparison with the results of kinds of literature
and finite element software ABAQUS. +e effects of the
geometry of bulkhead and boundary conditions on the
frequency parameters of FGOS are investigated through
numerical examples.

2. Theoretical Formulations

In this section, the bulkhead-stiffened FGOS is decomposed
into several open shells and bulkheads, and the governing
equations and boundary conditions of each segment are
derived by the FSDT and Hamilton’s principle. +e gov-
erning equations of the entire system are obtained using the
continuous conditions of displacement components at the
interfaces between the segments, and the displacement
components in the equations are approximated by the
meshless Legendre-RPIM shape function.

2.1. Description of the Model. Figure 1 shows the geometry
and coordinate system of bulkhead-stiffened FGOS. In
Figure 1(a), L1, θ1, and θ2 are the axial and circumferential
sizes of FGOS.+e symbols α, R and h denote the semi vertex
angle, small edge radius, and thickness of the shell, re-
spectively. +e FGOS is stiffened with a rectangular plate of
length L1 and height d. In Figure 1(b), the FGOS is stiffened
using two annular or conical open shells. In this study, the
bulkhead-stiffened FGOS is decomposed into several seg-
ments, and orthogonal coordinate systems (x, β, and z) are
introduced into the middle surfaces of the segments.

From the assumption that each segment of FGOS is
made of a mixture of ceramic and metal, the effective
material properties are proportional to the volume fraction
Vc [1].

E � Ec − Em( 􏼁Vc + Em, μ � μc − μm( 􏼁Vc + μm, ρ � ρc − ρm( 􏼁Vc + ρm,

(1)

where E, μ, and ρ are Young’s modulus, Poisson’s ratios, and
mass density of the functionally graded material, re-
spectively. +e indices c and m describe the ceramic and
metallic constituents.

In this study, the volume fraction is expressed as follows:

Vc �

1 − a 0.5 +
z

h
􏼒 􏼓 + b 0.5 +

z

h
􏼒 􏼓

c

􏼔 􏼕
p

: FGMI,

1 − a 0.5 −
z

h
􏼒 􏼓 + b 0.5 −

z

h
􏼒 􏼓

c

􏼔 􏼕
p

: FGMII,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where p is the power law index. +e symbols a, b, and c
denote the parameters of the material composition in the
thickness direction.

2.2. Governing Equations and Boundary Conditions for Each
Segment. Based on the assumption of FSDT, the displace-
ment components of moderately thick FGOS are expressed
as follows [25]:

u(x, β, z, t) � u(x, β, t) + zψx(x, β, t),

v(x, β, z, t) � v(x, β, t) + zψβ(x, β, t),

w(x, β, z, t) � w(x, β, t),

⎧⎪⎪⎨

⎪⎪⎩
(3)

where t is time variable, and u, v, and w are the gener-
alized displacements in the x, β, and z directions, re-
spectively. +e symbols u, v, and w represent the
translating displacements along x, β, and z directions on
the middle surface, respectively. Besides, ψx and ψβ are
the rotations of transverse normal with respect to β and
x-axes.

Meanwhile, the matrix form of the displacement-strain
relationship of a moderately thick FGOS can be expressed as
follows:

ε � Bu, (4)

where ε is a strain vector, which is composed of the middle
surface strains and the curvature changes.

ε � ε0x ε0β c0
xβ χx χβ χxβ c0

βz c0
xz􏽨 􏽩

T
, (5)

where ε0i and c0
ij denote the normal and shear strains; χi and

χij are the curvature and twist changes. In equation (4), u
and B represent the displacement vector in the middle
surface and the partial differential operator matrix,
respectively.
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u � u v w ψx ψβ[ ]T,

B �

z

zx
P Q

z

zβ
0 0 0 0 0

0 Q
z

zβ
z

zx
− P 0 0 0 −S 0

0 S 0 0 0 0 Q
z

zβ
z

zx

0 0 0
z

zx
P Q

z

zβ
0 1

0 0 0 0 Q
z

zβ
z

zx
− P 1 0





T

.

(6)

In the abovementioned equation, the symbols P,Q, and S
are as follows:

P �
sin α
R
,Q �

1
R
, S �

cosα
R

: Conical shell,

P � S � 0, Q � 1: Rectangular plate.




(7)

�e matrix form of the internal force-strain relationship
of a moderately thick FGOS can be expressed as follows:

N � Dε, (8)

where the internal force vector N is as follows:

N � Nx Nβ Nxβ Mx Mβ Mxβ Qβ Qx[ ]T, (9)

where Ni and Nij indicate the normal and shear internal
forces; Mi and Mij are the bending and twisting moments,
respectively. In addition, Qi is the transverse shear force. In
(8), the symbol D represents the material property matrix of
the FGOS.

D �

A11 A12 0 B11 B12 0 0 0

A12 A11 0 B12 B11 0 0 0

0 0 A66 0 0 B66 0 0

B11 B12 0 D11 D12 0 0 0

B12 B11 0 D12 D11 0 0 0

0 0 B66 0 0 D66 0 0

0 0 0 0 0 0 A44 0

0 0 0 0 0 0 0 A55





, (10)

where sti�ness coe¤cients Aij, Bij, and Dij are as follows:

Aij � ∫
h/2

−h/2
Qijdzi, j � 1, 2, 6, Bij � ∫

h/2

−h/2
Qijzdzi, j � 1, 2, 6,

Aii � ks ∫
h/2

−h/2
Qiidzi � 4, 5, Dij � ∫

h/2

−h/2
Qijz

2dzi, j � 1, 2, 6,




(11)

where ks is the shear correction factor, which is selected as 5/
6 in this paper. �e symbol Qij is the elastic sti�ness
coe¤cients.

Q11 �
E

1 − μ2
,

Q12 �
Eμ

1 − μ2
,

Q44 � Q55

� Q66

�
E

2(1 + μ)
.

(12)

Meanwhile, according to Hamilton’s principle, the
matrix form of governing equations of a moderately thick
FGOS is expressed as follows:

x

R
d

θ2 θ1
α

h

z

β 

L1

(a)

Rα
θ1

d

h

β 

z
x

L1 L2 L3

(b)

Figure 1: �e geometry of bulkhead-sti�ened functionally graded open conical shell (a) axial bulkhead (b) circumferential bulkhead.
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LN + m€u � 0, (13)

where €u and m are acceleration vector and mass matrix,
respectively.

€u � €u €v €w €ψx
€ψβ􏽨 􏽩

T
,

m �

−I0 0 0 −I1 0

0 −I0 0 0 −I1

0 0 −I0 0 0

−I1 0 0 −I2 0

0 −I1 0 0 −I2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(14)

where the inertia terms are as follows:

I0, I1, I2􏼂 􏼃 � 􏽚
h/2

−h/2
ρ 1, z, z

2
􏽨 􏽩dz. (15)

In (13), the partial differential operator matrix L is as
follows:

L �

z

zx
+ P −P Q

z

zβ
0 0 0 0 0

0 Q
z

zβ
z

zx
+ 2P 0 0 0 S 0

0 −S 0 0 0 0 Q
z

zβ
z

zx
+ P

0 0 0
z

zx
+ P −P Q

z

zβ
0 −1

0 0 0 0 Q
z

zβ
z

zx
+ 2P −1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Substituting (4) and (8) into (13)

ku + m€u � 0, (17)

where stiffness matrix k is

k � LDB. (18)

+e elements Lij of stiffness matrix k are shown in
Appendix A. By assuming harmonic motion, a standard
characteristic equation can be achieved from (17).

k − ω2m􏼐 􏼑u � 0, (19)

where ω is natural frequency of the system.
+e matrix form of boundary conditions can be

expressed as follows:

cxN − kx0u � 0: Left,

cxN + kx1u � 0: Right,

⎧⎨

⎩

cβN − kβ0u � 0: Bottom,

cβN + kβ1u � 0: Top,

⎧⎪⎨

⎪⎩

(20)

where the mapping matrices cx and cβ are as follows:

cx �

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

cβ �

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

+e spring stiffness matrices kij (i� x, β; j� 0, 1) are as
follows:
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kij �

k
ij
u 0 0 0 0

0 k
ij
v 0 0 0

0 0 k
ij
w 0 0

0 0 0 k
ij
x 0

0 0 0 0 k
ij

β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

where k
ij
u , k

ij
v , k

ij
w, k

ij
x , and k

ij

β denote stiffness values of
boundary spring.

Substituting (4) and (8) into (20),

Ciu � 0, (23)

where the matrix Ci (i� x, β) is as follows:

Ci � ciDB ± kij, (24)

where the elements of matrix Ci are shown in Appendix B.

2.3. Meshless Discretization

2.3.1. Legendre-RPIM Shape Function. +e Legendre-RPIM
shape function uses a combined basis of the MQ radial
functions and the Legendre polynomials [47]. +e dis-
placement u(x) of a point x in problem domain is ap-
proximated by the Legendre-RPIM shape function as
follows:

u(x) � 􏽘
n

i�1
Ri(x)ai + 􏽘

m

j�1
Lj(x)bj

� RT
(x)a + LT(x)b,

(25)

where Ri(x) and n are the MQ radial basis function and its
number, Lj(x) and m are the Legendre polynomials and its
number, respectively.+e unknown coefficient vectors a and
b are as follows:

a � a1 a2 . . . an􏼈 􏼉
T
,

b � b1 b2 . . . bm􏼈 􏼉
T
.

(26)

In the two-dimensional domain, Legendre polynomial
basis function is expressed as Kronecker product of one-
dimensional basis functions.

L(x, y) � L0(x) · · · Lj(x) · · ·􏽮 􏽯
T
⊗ L0(y) · · · Lj(y) · · ·􏽮 􏽯

T
,

(27)

where Lj(x) is a one-dimensional Legendre polynomial.

Lj(x) �
1

2j
j!

d
j

dx
j

x
2

− 1􏼐 􏼑
j
, j � 0, 1, 2 . . . . (28)

+e abovementioned equation can be applied in the in-
terval of x∈ (−1, 1). +erefore, in general, in order to ap-
proximate the displacements using the Legendre polynomial,
the two-dimensional domain must be transformed into
a square domain through coordinate mapping technique [28].

In (25), the MQ radial function Ri can be written as
follows:

Ri(x, y) � r
2
i + κ2d2

a􏼐 􏼑
η
, (29)

where κ and η are the shape parameters of MQ radial basis
function. da and ri are the average nodal spacing and the
distance between the point of interest and a node,
respectively.

+e unknown vectors a and b can be determined by
applying equation (27) to be satisfied at n nodes included in
the support domain. +e matrix form of the n linear
equations is expressed as follows:

us � R0a + Lmb, (30)

where the symbol us describes a vector composed of n
displacement components. +e moment matrix of radial
basis functions R0 and the polynomial moment matrix Lm
are as follows:

R0 �

R1 r1( 􏼁 R2 r1( 􏼁 · · · Rn r1( 􏼁

R1 r2( 􏼁 R2 r2( 􏼁 · · · Rn r2( 􏼁

⋮ ⋮ ⋱ ⋮

R1 rn( 􏼁 R2 rn( 􏼁 · · · Rn rn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Lm � L x1, y1( 􏼁 L x2, y2( 􏼁 · · · L xn, yn( 􏼁􏼂 􏼃
T
.

(31)

In equation (33), rk in Ri (rk) is the distance between the
i-th and k-th nodes.

Since there are n+m variables in equation (32), m
equations are added using the following constraint
conditions:

􏽘
n

i�1
Lj xi( 􏼁ai � LT

ma � 0, j � 1, 2, . . . , m. (32)

Combining (30) and (32) yields the following set of
equations:

us �
us
0

􏼨 􏼩

�
R0 Lm
LTm 0

⎡⎣ ⎤⎦
a

b
􏼨 􏼩

� Ga0.

(33)

From the abovementioned equation,

a0 � a b􏼈 􏼉
T

� G− 1
us. (34)

Substituting (34) into (25),

u(x, y) � RT
(x, y) LT

(x, y)􏽮 􏽯G− 1
us � ΦT

(x)us, (35)

where the original Legendre-RPIM shape function is
expressed as follows:

ΦT
(x) � ΦT(x, y) ΦT

m(x, y)􏽮 􏽯
T

� ϕ1 ϕ2 . . . ϕn ϕn+1 . . . ϕn+m􏼈 􏼉,
(36)
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where the Legendre-RPIM shape function for the nodal
displacements Φ(x, y) can be written as follows:

ΦT
(x, y) � ϕ1 ϕ2 . . . ϕn􏼈 􏼉. (37)

By the Legendre-RPIM shape function, the node dis-
placements are approximated as follows:

u(x) � ΦT
(x)us

� 􏽘
n

i�1
ϕiui.

(38)

2.3.2. Discretization of Governing Equation and Boundary
Condition. Assuming that the two-dimensional domain is
discretized by N nodes, the displacements at node I are
approximated by the proposed Legendre-RPIM shape
function as follows:

u xI, βI( 􏼁 � uI vI wI ψI
x ψI

β􏽮 􏽯
T

� ΦT
xI, βI( 􏼁us.

(39)

Considering (38), the Legendre-RPIM shape function
matrix Φ (xI, βI) for five displacement components at node I
can be written as follows:

ΦT
xI, βI( 􏼁 �

ϕ1 0 0 0 0 · · · ϕN 0 0 0 0

0 ϕ1 0 0 0 · · · 0 ϕN 0 0 0

0 0 ϕ1 0 0 · · · 0 0 ϕN 0 0

0 0 0 ϕ1 0 · · · 0 0 0 ϕN 0

0 0 0 0 ϕ1 · · · 0 0 0 0 ϕN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)

Similarly, displacement vector us is as

us � u1 v1 w1 ψx1 ψβ1 . . . un vn wn ψxN ψβN􏽨 􏽩
T

.

(41)

Substituting (39) into (19), the nodal discrete equation
corresponding to node I is obtained.

kI − ω2mI􏼐 􏼑us � 0, (42)

where the nodal stiffness matrix kI and the nodal mass
matrix mI are as follows:

kI � kΦT
I ,

mI � mΦT
I .

(43)

Similarly, the nodal discrete equations established for all
nodes in the problem domain are grouped according to the
node number to obtain the stiffness matrix and mass matrix
of a segment.

Kj � k1 k2 . . . kN􏼂 􏼃
T
,

Mj � m1 m2 . . . mN􏼂 􏼃
T
,

(44)

where index j denotes the number of segment.
Similarly, substituting equations (42) into (25),

CiΦ
T
kus � 0. (45)

+e above equation means the discretized boundary
condition for a node k on the boundary of the j-th segment.

2.4. Continuous Conditions. If the j-th segment is axially
connected to the left or right side of the i-th segment, the
continuation condition can be written as

CxDBui ± kc ui − uj􏼐 􏼑 � 0, (46)

where ui and uj are the displacement vectors in the interface
between the i-th and j-th segments, respectively. +e
combination stiffness matrix kc is as follows:

kc �

kc 0 0 0 0

0 kc 0 0 0

0 0 kc 0 0

0 0 0 kc 0

0 0 0 0 kc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (47)

where kc is the combination stiffness value between the
segments, which must be large enough to represent the rigid
connection of the shells.

Similarly, when the i-th segment and the j-th segment are
connected in the circumferential direction, the continuity
condition is as follows:

CβDBui ± kc ui − uj􏼐 􏼑 � 0. (48)

3. Numerical Results and Discussion

Based on the abovementioned derivations, some numerical
examples for the free vibration of FGOS with axial and
circumferential bulkheads are presented in this section.
Firstly, the convergence study of the present method is
performed in order to determine proper number of nodes
and spring stiffness values. Secondly, the comparisons of
numerical results with those of published pieces of literature
and finite element software ABAQUS are performed to
validate the accuracy and reliability of the present method.
Finally, several numerical examples of the free vibration
analysis of FGOS with various bulkheads and boundary
conditions are provided. Numerical results by the proposed
method are provided through self-compiled MATLAB code.
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Unless otherwise stated, the bottom boundary of the
bulkhead is clamped and the material properties of the
FGOS are given as: Em � 70GPa, μm � 0.3, ρm � 2707 kg/m3,
Ec � 168GPa, μc � 0.3, and ρc � 5700 kg/m3.

3.1.VerificationandConvergence Study. In order to solve the
free vibration problem of the FGOS with various bulkheads
using the meshless strong form method, the shell is divided
into several segments and each segment domain is dis-
cretized by N�Nx ×Nβ nodes. In this paper, the segmented
domain is converted to a square shape through coordinate
mapping technology, so Nx �Nβ is set. In numerical
methods, the number of elements or nodes directly affects
the accuracy and efficiency of the results. Figure 2 shows the
change in frequency parameters Ω � (ωL2/h

�����
ρc/Ec

􏽰
)

according to the number of nodes Nx in FGMI (a� 1/b� 0/
p� 1) open shells with axial and circumferential bulkheads.

+e geometries of the shells are as follows:
FGOS with a axial bulkhead: R� 1m, L/R� 2, d/R� 0.5,

h/R� 0.1, θ1 � θ2 � π/4, and α� 0.
FGOS with a circumferential bulkhead: R� 1m, d/

R� 0.5, h/R� 0.1, L1 � L2 �1m, θ1 � π/2, and α� π/6.
From Figure 2, it can be seen that the variations of all

numerical results afterNx � 10 are very small. Based on these
results, Nx � 11 is used in all the following examples.

Next, one boundary of the shell is selected as the elastic
boundary and the other boundaries are fixed to study the
convergence of stiffness value of boundary spring. +e ge-
ometries of FGMI (a� 1/b� 0/p� 1) open shells considered
in this study are same as those in Figure 2. Figure 3 shows the
variation of frequency parameters according to the spring
stiffness values of elastic boundaries in FGOS with axial and
circumferential bulkheads.

As can be seen in Figure 3, the variation of the frequency
parameters according to kw is relatively quick in the interval
of 106∼1011. +ereafter, when the spring stiffness value
exceeds 1013, the frequency parameters tend to be stable,
which shows that the clamped boundary can be simulated.

Based on the abovementioned study, the spring stiffness
value of clamped boundary is selected as 1014 in the fol-
lowing numerical examples. In this paper, clamped
boundary, free boundary, elastic supported boundary, and
simply supported boundary are considered, and the spring
stiffness values of the ground according to the type of
boundary conditions are shown in Table 1.

+e accuracy of the proposed method for the free vi-
bration analysis of FGOS with axial and circumferential
bulkheads is verified through the comparison with the re-
sults of pieces of literature and finite element software
ABAQUS. +e FGOS without bulkhead is a special case of
FGOS with bulkheads. +erefore, in Table 2, the funda-
mental frequency parameters Ω of FGMII (a� 1/b� 0) open
cylindrical shells with various sizes of thickness and radius
obtained by the proposed method are compared with the
results of literatures [1, 49]. +e material properties of the
shell are as follows: Em � 70GPa, μm � 0.3, ρm � 2707 kg/m3,
Ec � 151GPa, μc � 0.3 and ρc � 3000 kg/m3. Table 3 shows the
fundamental frequencies of functionally graded open conical

shells with various power-law indices and semi vertex angles
obtained by the proposed method compared with the results
of literature [1]. From Tables 2 and 3, it can be seen that the
numerical results obtained by the proposed method agree
well with those of the published pieces of literature.

In order to further confirm the accuracy and reliability of
proposed method, the natural frequency comparisons of the
FGOS with axial and circumferential bulkheads are con-
ducted. Due to the lack of literature on the FGOS with
bulkheads, these results are compared with those of the finite
element software ABAQUS. In Table 4, the natural fre-
quencies of functionally graded open cylindrical shells with
a circumferential bulkhead obtained by the proposed
method are compared with the results by ABAQUS. +e all
boundaries of bulkhead are clamped. In addition, Table 5
shows the comparison of natural frequencies of functionally
graded open conical shells with two axial bulkheads obtained
by the proposed method with those of ABAQUS. In the
bulkheads, the bottom boundaries are free and the other
boundaries are clamped. As shown in Tables 4 and 5, the
natural frequency results of FGOS with bulkheads by the
proposed method agree well with those of ABAQUS.
Figures 4–7 show the comparison of first four mode shapes
of FGOS with bulkheads with those of ABAQUS.

3.2. Numerical Examples. Based on the verification of the
convergence and accuracy of the proposed method, in this
subsection, the vibration characteristics of bulkhead-stiff-
ened FGOS with different geometries and boundary con-
ditions are studied. First, the effect of the geometric size and
position of the bulkhead on the frequency parameters of the
FGOS is investigated. Figure 8 shows the change of fre-
quency parameters Ω according to the circumferential po-
sition of bulkhead φ1 in FGMI (a� 1/b� 0/p� 1) open
cylindrical shell with one axial bulkhead. As can be seen in
Figure 8, under CCCC, CSCS, and CFCF boundary con-
ditions, the frequency curves are symmetric in the line
θ1 � 45°, but lose symmetry under other boundary condi-
tions. In particular, the frequency curve with CSCC (CFCC)
boundary condition and the frequency curve with CCCS
(CCCF) boundary condition are symmetric in the line
θ1 � 45°, with each other. In addition, in the curves of the
CSCC and CFCC boundary conditions, the maximum
frequency occurs when the axial bulkhead is deflected from
the center to the S or F boundary.

+e change of fundamental frequency parameters Ω
according to axial position of bulkhead L1 in FGMII (a� 1/
b� 0/p� 1) open conical shell with one circumferential
bulkhead is illustrated in Figure 9. As can be seen from
Figure 9, as the semi vertex angle α increases, the funda-
mental frequency parameter decreases, and the fundamental
frequency parameter of the shell with α� 0 (cylindrical) is
greatest when the bulkhead is at the center. However, the
fundamental frequency parameter of the conical shell with
α> 0 is greatest when the bulkhead is deflected toward
a large radius side from the center of the shell.

Figure 10 shows the change of frequency parameters
according to the height of bulkhead d in FGM (a� 0/
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Figure 3: Continued.
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Figure 2: Variation of frequency parameters with various numbers of nodes; (a) axial bulkhead, (b) circumferential bulkhead.
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Table 2: Comparison of fundamental frequency parameters for functionally graded open cylindrical shells with SSSS boundary condition
(L� 1m, θ1R� L).

h/L R/L p� 0 p� 0.5 p� 1 p� 2 p� 5 p� 10 p�∞

0.1

2
Reference [1] 6.1674 5.5622 5.2964 5.0895 4.9117 4.7787 4.4206
Reference [49] 6.1552 5.5522 5.2876 5.0812 4.9032 4.7700 4.4119

Present 6.1666 5.5615 5.2957 5.0889 4.9111 4.7781 4.4200

3
Reference [1] 5.9517 5.3602 5.1058 4.9155 4.7568 4.6293 4.2660
Reference [49] 5.9456 5.3548 5.1012 4.9111 4.7524 4.6249 4.2616

Present 5.9509 5.3595 5.1052 4.9149 4.7562 4.6288 4.2655

5
Reference [1] 5.8364 5.2532 5.0052 4.8241 4.6755 4.5506 4.1833
Reference [49] 5.8337 5.2504 5.0031 4.8220 4.6734 4.5486 4.1814

Present 5.8357 5.2525 5.0046 4.8235 4.6749 4.5501 4.1828

10
Reference [1] 5.7867 5.2079 4.9632 4.7861 4.6416 4.5175 4.1477
Reference [49] 5.7855 5.2065 4.9622 4.7852 4.6407 4.5166 4.1469

Present 5.7860 5.2073 4.9625 4.7855 4.6411 4.5170 4.1472

0.02

2
Reference [1] 13.7006 12.5648 11.9635 11.3494 10.6986 10.3552 9.8201
Reference [49] 13.6904 12.5575 11.9578 11.3440 10.6928 10.3488 9.8128

Present 13.6956 12.5602 11.9592 11.3451 10.6947 10.3515 9.8167

3
Reference [1] 10.1949 9.3158 8.8722 8.4446 8.0073 7.7589 7.3076
Reference [49] 10.1854 9.3077 8.8651 8.4379 8.0006 7.7522 7.3006

Present 10.1886 9.3100 8.8666 8.4393 8.0023 7.7542 7.3029

5
Reference [1] 7.7722 7.0583 6.7257 6.4355 6.1600 5.9794 5.5694
Reference [49] 7.7616 7.0497 6.7171 6.4280 6.1525 5.9721 5.5633

Present 7.7631 7.0512 6.7180 6.4289 6.1535 5.9732 5.5644

10
Reference [1] 6.4720 5.8413 5.5673 5.3596 5.1790 5.0357 4.6388
Reference [49] 6.4620 5.8314 5.5586 5.3502 5.1711 5.0285 4.6317

Present 6.4624 5.8322 5.5589 5.3505 5.1714 5.0289 4.6321
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Figure 3: Variation of frequency parameters with various sti�ness values of boundary springs: (a) axial bulkhead and (b) circumferential
bulkhead.

Table 1: Sti�ness value of boundary spring is according to the boundary condition.

BCs k u kv kw k x k β

F (free) 0 0 0 0 0
S (simply supported) 0 1014 1014 0 1014

E (elastic supported) 108 1014 1014 1014 1014

C (clamped) 1014 1014 1014 1014 1014
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Table 3: Comparison of fundamental frequencies (Hz) for functionally graded open conical shells with various boundary conditions
(R� 1m, L/R� 2, h/R� 0.1, θ1 � 60°).

α p
CCCC SCSC EEEE

Reference [1] Present Diff, % Reference [1] Present Diff, % Reference [1] Present Diff, %
FGMI (a� 1/b� 0.5/c� 2)

30°
0.5 509.46 510.54 −0.212 464.13 466.39 −0.487 337.57 336.80 0.228
1 507.09 508.18 −0.215 461.94 464.18 −0.485 336.52 335.69 0.247
20 489.95 491.00 −0.214 445.93 448.04 −0.473 329.72 328.46 0.382

60°
0.5 307.55 308.61 −0.345 259.31 261.28 −0.760 260.82 261.05 −0.088
1 306.28 307.34 −0.346 258.22 260.16 −0.751 259.96 260.16 −0.077
20 298.16 299.16 −0.335 251.01 252.80 −0.713 255.12 255.09 0.012

FGMII (a� 1/b� 0.5/c� 2)

30°
0.5 509.23 510.32 −0.214 463.91 466.17 −0.487 337.27 336.50 0.228
1 506.68 507.76 −0.213 461.55 463.79 −0.485 335.96 335.14 0.244
20 489.51 490.55 −0.212 445.50 447.61 −0.474 329.14 327.88 0.383

60°
0.5 307.46 308.53 −0.348 259.23 261.20 −0.760 260.72 260.95 −0.088
1 306.12 307.18 −0.346 258.06 260.01 −0.756 259.76 259.96 −0.077
20 297.99 298.99 −0.336 250.85 252.64 −0.714 254.91 254.88 0.012

Table 4: Comparison of first five natural frequencies (Hz) for FGMI (a� 0/b� −0.5/c� 2/p� 2) open cylindrical shell with a circumferential
bulkhead (R� 1m, L1 � L2 �1m, d/R� 0.5, θ1 � 90°).

BCs Ω
h� 0.02m h� 0.05m h� 0.1m

FEM Present Diff, % FEM Present Diff, % FEM Present Diff, %

CCCC

1 388.63 387.97 0.170 615.17 616.90 −0.281 898.85 899.58 −0.081
2 400.69 399.89 0.200 632.40 631.86 0.085 915.18 922.85 −0.838
3 418.07 417.82 0.060 680.83 680.60 0.034 936.60 936.52 0.009
4 420.33 419.34 0.236 700.73 700.56 0.024 938.06 940.16 −0.224
5 436.19 433.42 0.635 885.98 885.89 0.010 1347.3 1351.2 −0.289

CSCS

1 323.30 321.83 0.455 497.17 497.13 0.008 743.80 743.92 −0.016
2 348.93 347.50 0.410 524.98 525.31 −0.063 757.10 754.30 0.370
3 371.81 370.94 0.234 621.40 618.22 0.512 760.62 763.44 −0.371
4 382.05 381.12 0.243 625.40 624.95 0.072 792.11 798.75 −0.838
5 404.78 405.96 −0.292 635.43 634.71 0.113 1113.9 1119.6 −0.512

FCFC

1 221.59 221.41 0.081 370.53 372.07 −0.416 606.35 611.27 −0.811
2 235.37 236.25 −0.374 375.53 375.67 −0.037 617.56 618.18 −0.100
3 236.81 236.41 0.169 502.02 502.28 −0.052 686.63 688.25 −0.236
4 252.59 252.26 0.131 524.64 524.26 0.072 709.12 710.18 −0.149
5 418.62 421.16 −0.607 723.07 726.56 −0.483 926.62 931.06 −0.479

Table 5: Comparison of first five natural frequencies (Hz) for FGMI (a� 0/b� −0.5/c� 2/p� 2) opens conical shell with two axial bulkheads
(R� 1m, L/R� 2, h/R� 0.05, d/R� 0.5, θ1 � θ2 � θ3 � 30°).

BCs Ω
α� 30° α� 45° α� 60°

FEM Present Diff, % FEM Present Diff, % FEM Present Diff, %

CCCC

1 165.01 165.64 −0.382 160.98 161.71 −0.453 156.33 156.98 −0.416
2 178.36 178.80 −0.247 175.43 175.94 −0.291 172.62 173.18 −0.324
3 289.58 290.47 −0.307 286.22 287.15 −0.325 267.06 267.55 −0.183
4 296.33 296.89 −0.189 294.59 295.19 −0.204 289.66 290.28 −0.214
5 367.51 368.56 −0.286 311.55 312.26 −0.228 290.06 290.88 −0.283

FCFC

1 160.34 160.58 −0.150 152.30 152.22 0.053 138.64 138.16 0.346
2 176.44 176.62 −0.102 172.30 172.46 −0.093 165.37 165.32 0.030
3 273.03 271.00 0.744 220.83 218.83 0.906 182.62 181.62 0.548
4 293.65 293.58 0.024 252.85 250.91 0.767 196.83 195.71 0.569
5 314.04 311.28 0.879 292.89 293.32 −0.147 212.52 213.99 −0.692

CFCF

1 116.02 117.02 −0.862 107.16 108.13 −0.905 98.106 98.794 −0.701
2 122.68 123.68 −0.815 111.33 112.30 −0.871 100.99 101.69 −0.693
3 174.34 174.76 −0.241 167.07 167.62 −0.329 161.37 161.89 −0.322
4 182.04 182.32 −0.154 177.44 177.82 −0.214 174.56 174.99 −0.246
5 257.49 258.40 −0.353 243.34 244.08 −0.304 229.02 229.50 −0.210
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1st Mode 2nd Mode 3rd Mode 4th Mode

(b)

Figure 5: Mode shapes of functionally graded open cylindrical shell with a circumferential bulkhead and FCFC boundary condition
(h� 0.05m): (a) present and (b) ABAQUS.
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1st Mode 2nd Mode 3rd Mode 4th Mode
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Figure 4: Mode shapes of functionally graded open cylindrical shell with a circumferential bulkhead and CSCS boundary condition
(h� 0.05m): (a) present and (b) ABAQUS.
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Figure 7: Mode shapes of functionally graded open conical shells with two axial bulkheads and CFCF boundary condition (α� 30°): (a)
present and (b) ABAQUS.
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Figure 6: Mode shapes of functionally graded open conical shells with two axial bulkheads and CCCC boundary conditions (α� 30°): (a)
present and (b) ABAQUS.
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Figure 8: Variation of frequency parameters of functionally graded open cylindrical shell with an axial bulkhead according to cir-
cumferential position of bulkhead (R� 1m, L/R� 2, h/R� 0.05, d/R� 0.5, θ1 + θ2� 90°): (a) 1st mode; (b) 2nd mode; (c) 3rd mode; (d) 4th

mode.
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Figure 9: Continued.
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Figure 10: Variation of frequency parameters for FGOS with various heights of bulkheads: (a) FGMI open shell with two axial bulkheads
and (b) FGMII open shell with two circumferential bulkheads.
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Figure 9: Variation of fundamental frequency parameters for functionally graded open conical shell with a circumferential bulkhead
according to axial position of bulkhead (R� 1m, L1 + L2� 2m, h/R� 0.05, d/R� 0.5, θ1� 60°): (a) CCCC; (b) SCSC; (c) FCFC; (d) CECE.
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Table 6: Frequency parameters for FGMI (a� 1/b� 0) open conical shell with one axial bulkhead and CCCC boundary condition according
to power law index p (R� 1m, α� π/6, d/R� 0.5, h/R� 0.1m, θ1 � θ2).

L 1/R θ 1 Ω
P

0 0.5 1 2 5 10 20 ∞

1

π/6
1 14.008 13.583 13.477 13.565 13.807 13.788 13.617 13.121
2 15.986 15.581 15.456 15.482 15.614 15.562 15.402 14.974
3 21.309 20.769 20.618 20.694 20.920 20.848 20.609 19.960

π/4
1 10.245 9.937 9.854 9.902 10.060 10.047 9.930 9.596
2 11.581 11.269 11.177 11.208 11.335 11.307 11.184 10.848
3 17.261 16.741 16.608 16.718 17.022 17.006 16.796 16.168

π/3
1 9.226 8.966 8.891 8.918 9.031 9.013 8.916 8.642
2 10.087 9.823 9.742 9.759 9.855 9.828 9.725 9.448
3 12.597 12.201 12.102 12.187 12.421 12.411 12.255 11.799

π/2
1 8.807 8.570 8.498 8.515 8.602 8.581 8.492 8.250
2 9.252 9.018 8.943 8.949 9.021 8.993 8.903 8.666
3 9.529 9.252 9.175 9.215 9.352 9.337 9.230 8.926

2

π/6
1 32.965 31.879 31.615 31.860 32.531 32.522 32.109 30.878
2 40.475 39.369 39.052 39.181 39.652 39.554 39.118 37.913
3 45.224 43.790 43.432 43.734 44.579 44.545 43.991 42.360

π/4
1 21.352 20.714 20.539 20.633 20.953 20.927 20.687 20.000
2 27.848 27.171 26.951 26.967 27.166 27.074 26.799 26.086
3 32.790 31.804 31.536 31.684 32.184 32.144 31.775 30.714

π/3
1 18.372 17.917 17.766 17.770 17.897 17.840 17.666 17.209
2 23.681 23.185 22.997 22.939 22.972 22.865 22.662 22.182
3 27.672 26.757 26.538 26.752 27.332 27.328 26.974 25.919

π/2
1 16.739 16.285 16.150 16.187 16.355 16.312 16.143 15.679
2 19.188 18.653 18.505 18.577 18.744 18.672 18.493 17.973
3 19.268 18.834 18.682 18.661 18.834 18.794 18.576 18.049

Table 7: Frequency parameters for FGMII (a� 1/b� 0) open conical shell with one circumferential bulkhead and CCCC boundary condition
according to power law index p (R� 1m, α� π/6, d/R� 0.5, h/R� 0.1, L1 � L2).

θ 1 L 1/R Ω
P

0 0.5 1 2 5 10 20 ∞

π/4

0.5
1 19.514 18.798 18.566 18.581 18.832 18.857 18.727 18.279
2 20.824 20.395 20.251 20.254 20.350 20.251 20.036 19.506
3 24.025 23.384 23.187 23.231 23.451 23.383 23.147 22.504

1
1 34.147 33.085 32.772 32.868 33.329 33.306 32.972 31.985
2 44.671 43.461 43.103 43.221 43.719 43.614 43.142 41.844
3 49.402 47.658 47.199 47.501 48.476 48.513 47.970 46.274

1.5
1 48.641 47.326 46.904 46.939 47.371 47.268 46.811 45.562
2 70.269 67.712 67.073 67.597 69.159 69.243 68.417 65.819
3 74.884 72.874 72.252 72.370 73.102 72.927 72.181 70.144

2
1 64.090 62.552 62.008 61.925 62.227 62.018 61.461 60.033
2 87.781 84.554 83.765 84.470 86.515 86.634 85.570 82.223
3 96.001 93.038 92.194 92.541 93.944 93.872 92.866 89.923

π/2

0.5
1 17.098 16.440 16.226 16.234 16.461 16.497 16.396 16.015
2 18.125 17.818 17.698 17.661 17.658 17.547 17.369 16.979
3 18.557 18.038 17.826 17.787 17.870 17.821 17.698 17.383

1
1 29.451 28.607 28.338 28.365 28.653 28.607 28.340 27.586
2 30.534 29.536 29.248 29.356 29.823 29.821 29.518 28.601
3 34.757 33.950 33.683 33.700 33.913 33.778 33.433 32.557

1.5
1 40.088 38.894 38.536 38.630 39.128 39.084 38.689 37.550
2 41.046 39.967 39.608 39.610 39.893 39.781 39.419 38.447
3 49.474 47.942 47.504 47.675 48.415 48.391 47.870 46.341

2
1 49.438 48.087 47.656 47.698 48.154 48.053 47.588 46.308
2 51.951 50.469 50.014 50.114 50.641 50.533 50.043 48.662
3 63.899 62.314 61.771 61.721 62.138 61.971 61.385 59.853
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Table 9: Fundamental frequency parameters for FGOS with two circumferential bulkheads and various boundary conditions (R� 1m,
L1 � L2 � L3 �1m, d/R� 0.5, θ1 � π/2).

h/R α p
Boundary conditions

CCCC SCSC CFCF FCFC CECE ECEC SESE EEEE
FGMI (a� 1/b� 0.5/c� 2)

0.05

π/6
0.5 79.218 68.455 53.402 30.933 76.759 78.935 66.379 76.704
1 78.899 68.167 53.194 30.818 76.437 78.619 66.095 76.382
10 77.512 66.777 52.723 30.371 74.998 77.255 64.658 74.942

π/3
0.5 56.969 44.835 47.938 18.335 56.604 56.835 42.124 56.321
1 56.738 44.665 47.756 18.264 56.372 56.608 41.990 56.096
10 55.959 44.031 47.461 17.880 55.582 55.850 41.434 55.340

0.1

π/6
0.5 58.299 47.463 45.867 21.764 56.685 57.846 43.033 54.433
1 58.058 47.282 45.668 21.680 56.430 57.620 42.852 54.180
10 57.041 46.391 45.166 21.277 55.358 56.607 41.769 52.880

π/3
0.5 46.856 36.926 43.045 13.259 46.534 46.761 27.154 45.758
1 46.662 36.815 42.860 13.202 46.340 46.568 27.075 45.569
10 46.172 36.509 42.486 12.912 45.856 46.070 26.611 44.851

FGMII (a� 1/b� 0.5/c� 2)

0.05

π/6
0.5 79.168 68.407 53.434 30.907 76.728 78.884 66.335 76.676
1 78.807 68.083 53.253 30.770 76.381 78.526 66.015 76.330
10 77.366 66.639 52.821 30.294 74.909 77.108 64.526 74.860

π/3
0.5 56.976 44.806 47.980 18.325 56.616 56.836 42.090 56.326
1 56.751 44.611 47.831 18.245 56.394 56.611 41.929 56.106
10 55.983 43.942 47.583 17.854 55.621 55.861 41.332 55.362

0.1

π/6
0.5 58.277 47.393 45.932 21.736 56.707 57.793 42.984 54.453
1 58.019 47.154 45.786 21.629 56.469 57.524 42.764 54.217
10 56.983 46.177 45.360 21.194 55.422 56.449 41.623 52.941

π/3
0.5 46.899 36.865 43.116 13.249 46.582 46.801 27.122 45.780
1 46.740 36.703 42.991 13.185 46.427 46.641 27.015 45.608
10 46.299 36.324 42.698 12.885 45.996 46.189 26.514 44.885

Table 8: Fundamental frequency parameters for FGOS with two axial bulkheads and various boundary conditions (R � 1m, L1/R � 2,
d/R � 0.5, 2θ1 � θ2 � 2θ3 � π/4).

h/R α p
Boundary conditions

CCCC CSCS CFCF FCFC CECE ECEC ESES EEEE
FGMI (a� 1/b� 0.5/c� 2)

0.05

π/6
0.5 32.474 28.651 14.631 17.548 29.315 31.868 27.905 28.628
1 32.327 28.523 14.580 17.462 29.187 31.724 27.783 28.507
10 31.596 27.924 14.511 17.081 28.576 31.028 27.234 27.947

π/3
0.5 19.869 18.863 11.618 8.743 19.083 19.535 18.693 18.934
1 19.782 18.782 11.578 8.705 19.002 19.451 18.614 18.855
10 19.424 18.473 11.535 8.591 18.689 19.114 18.319 18.552

0.1

π/6
0.5 22.967 21.159 13.575 12.674 21.366 22.721 20.881 21.095
1 22.873 21.076 13.524 12.613 21.283 22.629 20.799 21.014
10 22.493 20.779 13.446 12.357 20.982 22.262 20.516 20.728

π/3
0.5 15.583 15.207 10.966 7.301 15.300 15.457 15.163 15.258
1 15.522 15.149 10.925 7.270 15.241 15.397 15.105 15.200
10 15.353 15.001 10.873 7.192 15.092 15.235 14.960 15.053

FGMII (a� 1/b� 0.5/c� 2)

0.05

π/6
0.5 32.469 28.648 14.633 17.546 29.310 31.863 27.903 28.623
1 32.317 28.518 14.584 17.460 29.178 31.715 27.779 28.498
10 31.578 27.912 14.519 17.076 28.558 31.010 27.225 27.931

π/3
0.5 19.871 18.866 11.622 8.745 19.085 19.537 18.697 18.936
1 19.786 18.788 11.585 8.708 19.006 19.455 18.620 18.859
10 19.430 18.482 11.547 8.597 18.693 19.119 18.328 18.557

0.1

π/6
0.5 22.961 21.155 13.582 12.673 21.359 22.715 20.877 21.088
1 22.862 21.067 13.537 12.610 21.270 22.618 20.792 21.002
10 22.471 20.761 13.468 12.353 20.956 22.240 20.500 20.704

π/3
0.5 15.587 15.213 10.975 7.305 15.304 15.461 15.168 15.262
1 15.529 15.158 10.941 7.278 15.248 15.404 15.114 15.207
10 15.363 15.015 10.900 7.205 15.101 15.245 14.975 15.063
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b� −0.5/c� p� 2) open shell with two bulkheads. All
boundaries of the shell are clamped and the geometrical
dimensions are as follows:

FGOS with two axial bulkheads: R� 1m, L/R� 2, h/
R� 0.05, θ1 � θ2 � θ3 � π/6.

FGOS with two circumferential bulkheads: R� 1m, h/
R� 0.05, 2L1 � L2 � 2L3 �1m, θ1 � π/2.

From Figure 10, it can be seen that the frequency pa-
rameters decrease as the height of the bulkhead increases. It
means that the overall stiffness of the structure decreases as
the height of the plate increases.

Next, research on the vibration characteristics of bulk-
head-stiffened FGOS with different geometries and
boundary conditions is conducted. Tables 6 and 7 show the
frequency parameters of FGOS with one axial and cir-
cumferential bulkheads according to the power law index. In
Tables 6 and 7, the frequency parameters of FGOS decrease
as the power law index increase. In addition, when the
circumferential size θ1 of the shell increase, the frequency
parameters decrease because the stiffness of the structure
decreases as the geometric dimensions increase. Tables 8 and
9 show the frequency parameters of FGOS with two bulk-
heads and different boundary conditions. +e results in
Tables 6–9 can be used as benchmark data for researchers in
this field.

4. Conclusions

In this paper, the free vibration analysis of bulkhead-
stiffened FGOS with various geometry and boundary
conditions is performed by a meshless Legendre-RPIM
shape function that uses a combined basis of Legendre
polynomials and MQ radial functions. A bulkhead-
stiffened FGOS is decomposed into several shells and
bulkheads, and the governing equations and boundary
conditions of each segment are derived from Hamilton’s
principle and FSDT. Continuous conditions of dis-
placement are applied at the interfaces between the
segments. In order to solve these equations, the meshless
strong form method is adopted. In the equations dis-
cretized by the meshless strong form method, the dis-
placement components are approximated by the
Legendre-RPIM shape function, and the boundary and
continuous conditions are applied using artificial spring
technology. +e accuracy and reliability of the proposed
method for free vibration analysis of bulkhead-stiffened
FGOS are confirmed through the convergence study and
comparison with the results of pieces of literature and
ABAQUS. +e effects of the geometry of bulkhead, pa-
rameters of material composition, and boundary con-
ditions on the frequency parameters of bulkhead-
stiffened FGOS are investigated through some numerical
examples, and these results can be used as benchmark
data for research in this field.

Appendix

A. Detailed Expressions of the Constants Lij
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B. Detailed Expressions of the Constants Cxij
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