

Research Article

Free Vibration Analysis of Bulkhead-Stiffened Functionally Graded Open Shell Using a Meshless Method

Songhun Kwak¹, Kwanghun Kim⁵, Kyongjin Pang¹, Sok Kim⁴, and Pyol Kim⁵

¹Department of Mechanical Science and Technology, Kim Chaek University of Technology, Pyongyang 950003, Democratic People's Republic of Korea

²Department of Mechanical Engineering, Pyongyang University of Mechanical Engineering, Pyongyang 999093, Democratic People's Republic of Korea

³Department of Organic Chemistry, Hamhung University of Chemical Engineering, Hamhung, Democratic People's Republic of Korea

⁴Department of Information Engineering, Chongjin Mine and Metal University, Chongjin 999091,

Democratic People's Republic of Korea

⁵Faculty of Geology, Kim Il Sung University, Pyongyang 999093, Democratic People's Republic of Korea

Correspondence should be addressed to Kwanghun Kim; kimkwanghun@163.com

Received 26 May 2022; Revised 11 July 2022; Accepted 4 August 2022; Published 1 September 2022

Academic Editor: Vasudevan Rajamohan

Copyright © 2022 Songhun Kwak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on the free vibration analysis of bulkhead-stiffened functionally graded open shell (FGOS) by means of the firstorder shear deformation theory (FSDT) and the meshless strong form method. The bulkhead-stiffened FGOS is decomposed into several segments without bulkhead, and the equations of motion and boundary conditions for each segment are discretized by meshless strong form method, and the displacement components are approximated using meshfree Legendre–RIPM shape function using the combined basis of multi-quadrics (MQ) radial function and Legendre polynomials. The continuous conditions of displacement are applied at the interfaces between segments. The boundary and continuous conditions are enforced by using the artificial spring technique. The accuracy and reliability of the current method are validated by comparing the present results with those of the kinds of literature and the finite element program ABAQUS. The effects of some geometrical parameters and boundary conditions on the natural frequencies of bulkhead-stiffened FGOS are investigated through numerical examples, which may serve as benchmark data.

1. Introduction

Functional grade materials (FGMs) are special composites whose material properties change smoothly and continuously from one surface to another, usually created by mixing two or more phases of materials for specific design requirements. In particular, a mixture of ceramic and metal can take advantage of desirable properties such as the heat and corrosion resistance of ceramic and high tensile strength, toughness, and bonding ability of metal. Developing an effective method to more accurately calculate the natural frequency, which is the basic dynamic parameter of the functionally graded shell and plate, has always been the focus of scholars' research. In the past, many studies were conducted to determine the natural frequencies and mode shapes of various functionally graded shells and plates. Su et al. [1] presented the free vibration analysis of functionally graded open cylindrical, conical and spherical shells with arbitrary circumferential included angle and general boundary conditions. It was assumed that the material properties of the open shells varied continuously and smoothly in the thickness direction based on general fourparameter power-law distributions. An exact analytical solution for free vibration analysis of a moderately thick functionally graded annular sector plate was presented by Saidi et al. [2]. Rouzegar and Abad [3] presented an analytical solution for free vibration analysis of a functionally graded plate integrated with piezoelectric layers using a four-variable refined plate theory. Chakraverty and Pradhan [4] investigated free vibration characteristics of functionally graded rectangular plates subject to different boundary conditions within the framework of classical or Kirchhoff's plate theory. Natarajan et al. [5] studied the linear free flexural vibrations of FGM plates with a through center crack using an 8-noded shear flexible element. In their study, the Mori-Tanaka homogenization scheme was used to estimate the effective material properties. Many studies have been conducted on the dynamic analysis of coupled shells and plates with various geometries, which are widely used in practical applications [6-8]. Bagheri et al. [9] presented the free vibration analysis for a FGM conicalspherical shell by using the semi analytical generalized differential quadrature method. In their study, governing equations of the shell system were established using the continuity conditions of displacement components at the intersection between the conical and spherical shells. Wang et al. [10] investigated the free vibration characteristics of irregular elastic coupled plate systems by means of Chebyshev-Ritz method, in which the coupling conditions between each plate were simulated by artificial virtual springs. The theories on which studies for the analysis of static and dynamic characteristics of composite plates and shells are based can be classified into two types: two-dimensional theory and three-dimensional theory [11-14]. Two-dimensional theories include classical plate theory (CPT) [15-17], FSDT [18, 19], and high order shear deformation theory (HSDT) [20-23]. Two-dimensional theories are based on the Kirchhoff hypothesis that normal to the middle surface remains normal to it during deformations and such assumptions are characterized by the middle surface displacements [24]. The advantage of two-dimensional theory over three-dimensional theory is that it reduces the dimension of governing equations, which greatly decreases the computational cost. In particular, FSDT is widely used in formulations for static and dynamic analysis of different plates and shells because of its high accuracy and low computational cost. Qu et al. [25] derived a general formulation for free, steady-state, and transient vibration analyses of functionally graded shells of revolution by means of a modified variational principle in conjunction with a multi-segment partitioning procedure on the basis of the FSDT. Xie et al. [26] presented a Haar wavelet discretization (HWD) method-based solution approach for the free vibration analysis of functionally graded spherical and parabolic shells of revolution with arbitrary boundary conditions on the basis of FSDT. Natarajan et al. [19] used the FSDT in order to study the flutter behavior of functionally graded material plates immersed in a supersonic flow. For static and dynamic analysis of various plates and shells, several effective methods including semi analytical method [27], spectral-Tchebychev solution technique [28], Chebyshev-Ritz method [29], Fourier series solution method [30], and finite element method [31-34] have been applied. Ye et al. [35] developed a general classical shell theory in conjunction with Chebyshev polynomials and Rayleigh-Ritz

procedure for the free vibration analysis of open shells subjected to arbitrary boundary conditions. Xue et al. [36] conducted the free vibration analysis of porous square plate, circular plate, and rectangle plate with a central circular hole in the framework of isogeometric analysis (IGA). The dynamic stiffness method (DSM) is applied for free vibration analysis of thin functionally graded rectangular plates by Kumar et al. [37]. Talebitooti and Anbardan [38] investigated the free vibrational characteristics of the generally doubly curved shells of revolution by means of an explicit method based on the HWD approach. Studies were also conducted to apply the meshless method to the dynamic analysis of plates and shells. The meshless methods use a set of nodes scattered within the problem domain and on the boundaries to represent the problem domain and its boundaries [39]. In meshless method, the nodes do not form a mesh, meaning it does not require any a priori information on the relationship between the nodes for the approximation of the unknown functions. Zarei and Khosravifard [40] investigated the vibrational behavior of prestressed laminated plates by means of meshless radial point interpolation method (RPIM). Fallah and Delzendeh [41] proposed a meshless finite volume (MFV) method for free vibration analysis of laminated composite plates. In their study, moving least square (MLS) shape function was used to approximate field variables. Vu et al. [42] presented a numerical method based on the moving Kriging (MK) interpolation meshless method for analysis of static bending, free vibration, and buckling of functionally graded (FG) plates. Zhang et al. [43] investigated the free vibration characteristics of functionally graded nanocomposite triangular plates reinforced by single-walled carbon nanotubes using the element-free IMLS-Ritz method. The bulkhead-stiffened shells, which achieve high stiffness and low weight properties by connecting thin plates to various shell structures, are widely used in various industries including ship and aerospace. When the plate is attached to the conical shell, the dynamic properties of the coupled system change significantly, and the frequency response also changes [44]. Therefore, it is an important issue to develop a calculation method for the dynamic characteristics analysis of the bulkhead-stiffened shells. Qu et al. [45] developed a semi analytical method to predict the vibration and acoustic responses of submerged coupled spherical-cylindrical-spherical shells stiffened by circumferential rings and longitudinal stringers. Chen et al. [46] presented a wave-based method that can be recognized as a semi analytical and semi numerical method to analyze the free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs. Through literature review, it can be seen that there are very few studies on the free vibration analysis of FGOS stiffened with wide bulkheads. Moreover, the stiffeners were not considered as individual structures, and the bulkhead-stiffened shells were treated as a structure with reinforced stiffness. However, if the geometric dimensions of the stiffeners are relatively large, the stiffness conversion method cannot be applied.

The purpose of this paper is to analyze the free vibration characteristics of the FGOS with axial or circumferential bulkheads using meshless strong form method. A bulkheadstiffened FGOS is decomposed into several shells and bulkheads, and each segment are transformed into square plates through the coordinate mapping technique. The governing equations and boundary conditions of each segment derived by FSDT and Hamilton's principle are discretized using meshless strong form method. In this paper, a Legendre-RIPM shape function is employed to approximate the displacement components of equations. The Legendre-RIPM shape function uses the combined basis of the Legendre polynomial and the MQ radial basis function [47]. Radial basis functions are powerful tools for multivariate scattered data interpolation and have enjoyed considerable research in recent decades [48]. Legendre polynomials are chosen because they have exponential convergence behavior and superior numerical stability and accuracy. The convergence of the proposed method is investigated, and the reliability and accuracy are verified through comparison with the results of kinds of literature and finite element software ABAQUS. The effects of the geometry of bulkhead and boundary conditions on the frequency parameters of FGOS are investigated through numerical examples.

2. Theoretical Formulations

In this section, the bulkhead-stiffened FGOS is decomposed into several open shells and bulkheads, and the governing equations and boundary conditions of each segment are derived by the FSDT and Hamilton's principle. The governing equations of the entire system are obtained using the continuous conditions of displacement components at the interfaces between the segments, and the displacement components in the equations are approximated by the meshless Legendre-RPIM shape function.

2.1. Description of the Model. Figure 1 shows the geometry and coordinate system of bulkhead-stiffened FGOS. In Figure 1(a), L_1 , θ_1 , and θ_2 are the axial and circumferential sizes of FGOS. The symbols α , R and h denote the semi vertex angle, small edge radius, and thickness of the shell, respectively. The FGOS is stiffened with a rectangular plate of length L_1 and height d. In Figure 1(b), the FGOS is stiffened using two annular or conical open shells. In this study, the bulkhead-stiffened FGOS is decomposed into several segments, and orthogonal coordinate systems (x, β , and z) are introduced into the middle surfaces of the segments.

From the assumption that each segment of FGOS is made of a mixture of ceramic and metal, the effective material properties are proportional to the volume fraction V_c [1].

$$E = (E_c - E_m)V_c + E_m, \mu = (\mu_c - \mu_m)V_c + \mu_m, \rho = (\rho_c - \rho_m)V_c + \rho_m,$$
(1)

where E, μ , and ρ are Young's modulus, Poisson's ratios, and mass density of the functionally graded material, respectively. The indices *c* and *m* describe the ceramic and metallic constituents.

In this study, the volume fraction is expressed as follows:

$$V_{c} = \begin{cases} \left[1 - a\left(0.5 + \frac{z}{h}\right) + b\left(0.5 + \frac{z}{h}\right)^{c}\right]^{p} : \text{FGM}_{\text{I}}, \\ \left[1 - a\left(0.5 - \frac{z}{h}\right) + b\left(0.5 - \frac{z}{h}\right)^{c}\right]^{p} : \text{FGM}_{\text{II}}, \end{cases}$$
(2)

where p is the power law index. The symbols a, b, and c denote the parameters of the material composition in the thickness direction.

2.2. Governing Equations and Boundary Conditions for Each Segment. Based on the assumption of FSDT, the displacement components of moderately thick FGOS are expressed as follows [25]:

$$\begin{cases} \overline{u}(x,\beta,z,t) = u(x,\beta,t) + z\psi_x(x,\beta,t), \\ \overline{v}(x,\beta,z,t) = v(x,\beta,t) + z\psi_\beta(x,\beta,t), \\ \overline{w}(x,\beta,z,t) = w(x,\beta,t), \end{cases}$$
(3)

where t is time variable, and \overline{u} , \overline{v} , and \overline{w} are the generalized displacements in the x, β , and z directions, respectively. The symbols u, v, and w represent the translating displacements along x, β , and z directions on the middle surface, respectively. Besides, ψ_x and ψ_β are the rotations of transverse normal with respect to β and x-axes.

Meanwhile, the matrix form of the displacement-strain relationship of a moderately thick FGOS can be expressed as follows:

$$\varepsilon = \mathbf{B}\mathbf{u},$$
 (4)

where ε is a strain vector, which is composed of the middle surface strains and the curvature changes.

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_x^0 & \varepsilon_\beta^0 & \gamma_{x\beta}^0 & \chi_x & \chi_\beta & \chi_{x\beta} & \gamma_{\beta z}^0 & \gamma_{xz}^0 \end{bmatrix}^T,$$
(5)

where ε_i^0 and γ_{ij}^0 denote the normal and shear strains; χ_i and χ_{ij} are the curvature and twist changes. In equation (4), *u* and *B* represent the displacement vector in the middle surface and the partial differential operator matrix, respectively.

FIGURE 1: The geometry of bulkhead-stiffened functionally graded open conical shell (a) axial bulkhead (b) circumferential bulkhead.

$$\mathbf{u} = \begin{bmatrix} u & v & w & \psi_x & \psi_\beta \end{bmatrix}^T,$$

$$\mathbf{B} = \begin{bmatrix} \frac{\partial}{\partial x} & P & Q \frac{\partial}{\partial \beta} & 0 & 0 & 0 & 0 & 0 \\ 0 & Q \frac{\partial}{\partial \beta} & \frac{\partial}{\partial x} - P & 0 & 0 & 0 & -S & 0 \\ 0 & S & 0 & 0 & 0 & Q \frac{\partial}{\partial \beta} & \frac{\partial}{\partial x} \\ 0 & 0 & 0 & \frac{\partial}{\partial x} & P & Q \frac{\partial}{\partial \beta} & 0 & 1 \\ 0 & 0 & 0 & Q \frac{\partial}{\partial \beta} & \frac{\partial}{\partial x} - P & 1 & 0 \end{bmatrix}^T.$$
(6)

In the abovementioned equation, the symbols *P*, *Q*, and *S* are as follows:

$$\begin{cases} P = \frac{\sin \alpha}{R}, Q = \frac{1}{R}, S = \frac{\cos \alpha}{R}: \quad \text{Conical shell,} \\ P = S = 0, Q = 1: \quad \text{Rectangular plate.} \end{cases}$$
(7)

The matrix form of the internal force-strain relationship of a moderately thick FGOS can be expressed as follows:

$$\mathbf{N} = \mathbf{D}\boldsymbol{\varepsilon},\tag{8}$$

where the internal force vector N is as follows:

$$\mathbf{N} = \begin{bmatrix} N_x & N_\beta & N_{x\beta} & M_x & M_\beta & M_{x\beta} & Q_\beta & Q_x \end{bmatrix}^T, \qquad (9)$$

where N_i and N_{ij} indicate the normal and shear internal forces; M_i and M_{ij} are the bending and twisting moments, respectively. In addition, Q_i is the transverse shear force. In (8), the symbol *D* represents the material property matrix of the FGOS.

$$\mathbf{D} = \begin{bmatrix} A_{11} & A_{12} & 0 & B_{11} & B_{12} & 0 & 0 & 0 \\ A_{12} & A_{11} & 0 & B_{12} & B_{11} & 0 & 0 & 0 \\ 0 & 0 & A_{66} & 0 & 0 & B_{66} & 0 & 0 \\ B_{11} & B_{12} & 0 & D_{11} & D_{12} & 0 & 0 & 0 \\ B_{12} & B_{11} & 0 & D_{12} & D_{11} & 0 & 0 & 0 \\ 0 & 0 & B_{66} & 0 & 0 & D_{66} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & A_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A_{55} \end{bmatrix},$$
(10)

where stiffness coefficients A_{ij} , B_{ij} , and D_{ij} are as follows:

$$\begin{aligned} A_{ij} &= \int_{-h/2}^{h/2} \overline{Q}_{ij} dzi, j = 1, 2, 6, \quad B_{ij} = \int_{-h/2}^{h/2} \overline{Q}_{ij} z dzi, j = 1, 2, 6, \\ A_{ii} &= k_s \int_{-h/2}^{h/2} \overline{Q}_{ii} dzi = 4, 5, \qquad D_{ij} = \int_{-h/2}^{h/2} \overline{Q}_{ij} z^2 dzi, j = 1, 2, 6, \end{aligned}$$

$$(11)$$

where k_s is the shear correction factor, which is selected as 5/ 6 in this paper. The symbol \overline{Q}_{ij} is the elastic stiffness coefficients.

$$\overline{Q}_{11} = \frac{E}{1 - \mu^2},$$

$$\overline{Q}_{12} = \frac{E\mu}{1 - \mu^2},$$

$$\overline{Q}_{44} = \overline{Q}_{55}$$

$$= \overline{Q}_{66}$$

$$= \frac{E}{2(1 + \mu)}.$$
(12)

Meanwhile, according to Hamilton's principle, the matrix form of governing equations of a moderately thick FGOS is expressed as follows:

$$\mathbf{LN} + \mathbf{m}\ddot{\boldsymbol{u}} = \mathbf{0},\tag{13}$$

where \ddot{u} and **m** are acceleration vector and mass matrix, respectively.

$$\vec{u} = \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} & \vec{\psi}_x & \vec{\psi}_\beta \end{bmatrix}^T,$$

$$\mathbf{m} = \begin{bmatrix} -I_0 & 0 & 0 & -I_1 & 0 \\ 0 & -I_0 & 0 & 0 & -I_1 \\ 0 & 0 & -I_0 & 0 & 0 \\ -I_1 & 0 & 0 & -I_2 & 0 \\ 0 & -I_1 & 0 & 0 & -I_2 \end{bmatrix},$$
(14)

where the inertia terms are as follows:

$$[I_0, I_1, I_2] = \int_{-h/2}^{h/2} \rho[1, z, z^2] dz.$$
(15)

In (13), the partial differential operator matrix L is as follows:

$$\mathbf{L} = \begin{bmatrix} \frac{\partial}{\partial x} + P & -P & Q \frac{\partial}{\partial \beta} & 0 & 0 & 0 & 0 & 0 \\ 0 & Q \frac{\partial}{\partial \beta} & \frac{\partial}{\partial x} + 2P & 0 & 0 & 0 & S & 0 \\ 0 & -S & 0 & 0 & 0 & Q \frac{\partial}{\partial \beta} & \frac{\partial}{\partial x} + P \\ 0 & 0 & 0 & \frac{\partial}{\partial x} + P & -P & Q \frac{\partial}{\partial \beta} & 0 & -1 \\ 0 & 0 & 0 & Q \frac{\partial}{\partial \beta} & \frac{\partial}{\partial x} + 2P & -1 & 0 \end{bmatrix}$$
(16)

Substituting (4) and (8) into (13)

$$\mathbf{k}\mathbf{u} + \mathbf{m}\ddot{\boldsymbol{u}} = \mathbf{0},\tag{17}$$

where stiffness matrix **k** is

$$\mathbf{k} = \mathbf{L}\mathbf{D}\mathbf{B}.\tag{18}$$

The elements L_{ij} of stiffness matrix k are shown in Appendix A. By assuming harmonic motion, a standard characteristic equation can be achieved from (17).

$$\left(\mathbf{k} - \boldsymbol{\omega}^2 \mathbf{m}\right) \mathbf{u} = 0, \tag{19}$$

where ω is natural frequency of the system.

The matrix form of boundary conditions can be expressed as follows:

$$\begin{cases} \mathbf{c}_{\mathbf{x}} \mathbf{N} - \mathbf{k}^{\mathbf{x}0} \mathbf{u} = \mathbf{0}: & \text{Left,} \\ \mathbf{c}_{\mathbf{x}} \mathbf{N} + \mathbf{k}^{\mathbf{x}1} \mathbf{u} = \mathbf{0}: & \text{Right,} \end{cases} \begin{cases} \mathbf{c}_{\beta} \mathbf{N} - \mathbf{k}^{\beta 0} \mathbf{u} = \mathbf{0}: & \text{Bottom,} \\ \mathbf{c}_{\beta} \mathbf{N} + \mathbf{k}^{\beta 1} \mathbf{u} = \mathbf{0}: & \text{Top,} \end{cases}$$

$$(20)$$

where the mapping matrices c_x and c_β are as follows:

The spring stiffness matrices k_{ij} ($i = x, \beta; j = 0, 1$) are as follows:

$$\mathbf{k}^{ij} = \begin{bmatrix} k_u^{ij} & 0 & 0 & 0 & 0\\ 0 & k_v^{ij} & 0 & 0 & 0\\ 0 & 0 & k_w^{ij} & 0 & 0\\ 0 & 0 & 0 & k_x^{ij} & 0\\ 0 & 0 & 0 & 0 & k_\beta^{ij} \end{bmatrix},$$
(22)

where k_u^{ij} , k_v^{ij} , k_w^{ij} , k_x^{ij} , and k_β^{ij} denote stiffness values of boundary spring.

Substituting (4) and (8) into (20),

$$\mathbf{C}_{\mathbf{i}}\mathbf{u} = \mathbf{0},\tag{23}$$

where the matrix C_i ($i = x, \beta$) is as follows:

$$\mathbf{C}_{\mathbf{i}} = \mathbf{c}_{\mathbf{i}} \mathbf{D} \mathbf{B} \pm \mathbf{k}^{\mathbf{i}\mathbf{j}},\tag{24}$$

where the elements of matrix C_i are shown in Appendix B.

2.3. Meshless Discretization

2.3.1. Legendre-RPIM Shape Function. The Legendre-RPIM shape function uses a combined basis of the MQ radial functions and the Legendre polynomials [47]. The displacement u(x) of a point x in problem domain is approximated by the Legendre-RPIM shape function as follows:

$$u(\mathbf{x}) = \sum_{i=1}^{n} R_i(\mathbf{x})a_i + \sum_{j=1}^{m} L_j(\mathbf{x})b_j$$

= $\mathbf{R}^{\mathrm{T}}(\mathbf{x})\mathbf{a} + \mathbf{L}^{\mathrm{T}}(\mathbf{x})\mathbf{b},$ (25)

where $R_i(x)$ and n are the MQ radial basis function and its number, $L_j(x)$ and m are the Legendre polynomials and its number, respectively. The unknown coefficient vectors a and b are as follows:

$$\mathbf{a} = \{ a_1 \ a_2 \ \dots \ a_n \}^T,$$

$$\mathbf{b} = \{ b_1 \ b_2 \ \dots \ b_m \}^T.$$
 (26)

In the two-dimensional domain, Legendre polynomial basis function is expressed as Kronecker product of onedimensional basis functions.

$$\mathbf{L}(x, y) = \left\{ L_0(x) \cdots L_j(x) \cdots \right\}^T \otimes \left\{ L_0(y) \cdots L_j(y) \cdots \right\}^T,$$
(27)

where $L_j(x)$ is a one-dimensional Legendre polynomial.

$$L_{j}(x) = \frac{1}{2^{j} j!} \frac{d^{j}}{dx^{j}} (x^{2} - 1)^{j}, j = 0, 1, 2....$$
(28)

The abovementioned equation can be applied in the interval of $x \in (-1, 1)$. Therefore, in general, in order to approximate the displacements using the Legendre polynomial, the two-dimensional domain must be transformed into a square domain through coordinate mapping technique [28].

In (25), the MQ radial function R_i can be written as follows:

$$R_{i}(x, y) = \left(r_{i}^{2} + \kappa^{2} d_{a}^{2}\right)^{\eta},$$
(29)

where κ and η are the shape parameters of MQ radial basis function. d_a and r_i are the average nodal spacing and the distance between the point of interest and a node, respectively.

The unknown vectors a and b can be determined by applying equation (27) to be satisfied at n nodes included in the support domain. The matrix form of the n linear equations is expressed as follows:

$$\mathbf{u}_{s} = \mathbf{R}_{0}\mathbf{a} + \mathbf{L}_{m}\mathbf{b},\tag{30}$$

where the symbol \mathbf{u}_s describes a vector composed of *n* displacement components. The moment matrix of radial basis functions R_0 and the polynomial moment matrix L_m are as follows:

$$\mathbf{R}_{0} = \begin{bmatrix} R_{1}(r_{1}) & R_{2}(r_{1}) & \cdots & R_{n}(r_{1}) \\ R_{1}(r_{2}) & R_{2}(r_{2}) & \cdots & R_{n}(r_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ R_{1}(r_{n}) & R_{2}(r_{n}) & \cdots & R_{n}(r_{n}) \end{bmatrix},$$
(31)
$$\mathbf{L}_{m} = \begin{bmatrix} \mathbf{L}(x_{1}, y_{1}) & \mathbf{L}(x_{2}, y_{2}) & \cdots & \mathbf{L}(x_{n}, y_{n}) \end{bmatrix}^{T}.$$

In equation (33), r_k in R_i (r_k) is the distance between the *i*-th and *k*-th nodes.

Since there are n+m variables in equation (32), m equations are added using the following constraint conditions:

$$\sum_{i=1}^{n} L_j(\mathbf{x}_i) a_i = \mathbf{L}_m^T \mathbf{a} = 0, \quad j = 1, 2, \dots, m.$$
(32)

Combining (30) and (32) yields the following set of equations:

$$\overline{u}_{s} = \begin{cases} \mathbf{u}_{s} \\ \mathbf{0} \end{cases}$$
$$= \begin{bmatrix} \mathbf{R}_{0} & \mathbf{L}_{m} \\ \mathbf{L}_{m}^{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$$
$$= \mathbf{G} \mathbf{a}_{0}.$$
 (33)

From the abovementioned equation,

$$\mathbf{a}_0 = \left\{ \mathbf{a} \ \mathbf{b} \right\}^T = \mathbf{G}^{-1} \overline{\boldsymbol{u}}_s. \tag{34}$$

Substituting (34) into (25),

$$u(x, y) = \left\{ \mathbf{R}^{T}(x, y) \ \mathbf{L}^{T}(x, y) \right\} \mathbf{G}^{-1} \overline{u}_{s} = \overline{\Phi}^{T}(\mathbf{x}) \overline{u}_{s}, \quad (35)$$

where the original Legendre-RPIM shape function is expressed as follows:

$$\overline{\Phi}^{T}(x) = \left\{ \Phi^{T}(x, y) \quad \Phi^{T}_{m}(x, y) \right\}^{T}$$
$$= \left\{ \phi_{1} \quad \phi_{2} \quad \dots \quad \phi_{n} \quad \phi_{n+1} \quad \dots \quad \phi_{n+m} \right\},$$
(36)

where the Legendre-RPIM shape function for the nodal displacements $\Phi(x, y)$ can be written as follows:

$$\boldsymbol{\Phi}^{T}(\boldsymbol{x},\boldsymbol{y}) = \{ \phi_1 \ \phi_2 \ \dots \ \phi_n \}. \tag{37}$$

By the Legendre-RPIM shape function, the node displacements are approximated as follows:

$$u(\mathbf{x}) = \mathbf{\Phi}^{T}(\mathbf{x})\mathbf{u}_{\mathbf{s}}$$
$$= \sum_{i=1}^{n} \phi_{i} u_{i}.$$
(38)

2.3.2. Discretization of Governing Equation and Boundary Condition. Assuming that the two-dimensional domain is discretized by N nodes, the displacements at node I are approximated by the proposed Legendre-RPIM shape function as follows:

$$\mathbf{u}(x_I,\beta_I) = \left\{ u^I \quad v^I \quad w^I \quad \psi^I_x \quad \psi^I_\beta \right\}^I$$

= $\mathbf{\Phi}^T(x_I,\beta_I)\mathbf{u}_s.$ (39)

Considering (38), the Legendre-RPIM shape function matrix $\Phi(x_I, \beta_I)$ for five displacement components at node *I* can be written as follows:

$$\boldsymbol{\Phi}^{T}\left(\boldsymbol{x}_{I},\boldsymbol{\beta}_{I}\right) = \begin{bmatrix} \phi_{1} & 0 & 0 & 0 & 0 & \cdots & \phi_{N} & 0 & 0 & 0 & 0 \\ 0 & \phi_{1} & 0 & 0 & 0 & \cdots & 0 & \phi_{N} & 0 & 0 \\ 0 & 0 & \phi_{1} & 0 & 0 & \cdots & 0 & 0 & \phi_{N} & 0 & 0 \\ 0 & 0 & 0 & \phi_{1} & 0 & \cdots & 0 & 0 & 0 & \phi_{N} & 0 \\ 0 & 0 & 0 & \phi_{1} & \cdots & 0 & 0 & 0 & \phi_{N} & 0 \end{bmatrix}.$$

$$(40)$$

Similarly, displacement vector u_s is as

$$\mathbf{u}_{s} = \begin{bmatrix} u_{1} & v_{1} & w_{1} & \psi_{x1} & \psi_{\beta1} & \dots & u_{n} & v_{n} & \psi_{xN} & \psi_{\beta N} \end{bmatrix}^{T}.$$
(41)

Substituting (39) into (19), the nodal discrete equation corresponding to node I is obtained.

$$\left(\mathbf{k}_{I}-\omega^{2}\mathbf{m}_{I}\right)\mathbf{u}_{s}=\mathbf{0},$$
(42)

where the nodal stiffness matrix k_I and the nodal mass matrix m_I are as follows:

Similarly, the nodal discrete equations established for all nodes in the problem domain are grouped according to the node number to obtain the stiffness matrix and mass matrix of a segment.

$$\mathbf{K}_{\mathbf{j}} = \begin{bmatrix} \mathbf{k}_1 & \mathbf{k}_2 & \dots & \mathbf{k}_N \end{bmatrix}^T,$$

$$\mathbf{M}_{\mathbf{j}} = \begin{bmatrix} \mathbf{m}_1 & \mathbf{m}_2 & \dots & \mathbf{m}_N \end{bmatrix}^T,$$

(44)

where index *j* denotes the number of segment. Similarly, substituting equations (42) into (25),

$$\mathbf{C}_i \boldsymbol{\Phi}_k^T \mathbf{u}_s = \mathbf{0}. \tag{45}$$

The above equation means the discretized boundary condition for a node k on the boundary of the j-th segment.

2.4. Continuous Conditions. If the *j*-th segment is axially connected to the left or right side of the *i*-th segment, the continuation condition can be written as

$$\mathbf{C}_{x}\mathbf{D}\mathbf{B}\mathbf{u}_{i} \pm \mathbf{k}_{c}(\mathbf{u}_{i} - \mathbf{u}_{j}) = \mathbf{0}, \tag{46}$$

where u_i and u_j are the displacement vectors in the interface between the *i*-th and *j*-th segments, respectively. The combination stiffness matrix k_c is as follows:

$$\mathbf{k}_{c} = \begin{bmatrix} k_{c} & 0 & 0 & 0 & 0 \\ 0 & k_{c} & 0 & 0 & 0 \\ 0 & 0 & k_{c} & 0 & 0 \\ 0 & 0 & 0 & k_{c} & 0 \\ 0 & 0 & 0 & 0 & k_{c} \end{bmatrix},$$
(47)

where k_c is the combination stiffness value between the segments, which must be large enough to represent the rigid connection of the shells.

Similarly, when the *i*-th segment and the *j*-th segment are connected in the circumferential direction, the continuity condition is as follows:

$$\mathbf{C}_{\beta}\mathbf{D}\mathbf{B}\mathbf{u}_{i} \pm \mathbf{k}_{c}(\mathbf{u}_{i} - \mathbf{u}_{j}) = \mathbf{0}.$$
(48)

3. Numerical Results and Discussion

Based on the abovementioned derivations, some numerical examples for the free vibration of FGOS with axial and circumferential bulkheads are presented in this section. Firstly, the convergence study of the present method is performed in order to determine proper number of nodes and spring stiffness values. Secondly, the comparisons of numerical results with those of published pieces of literature and finite element software ABAQUS are performed to validate the accuracy and reliability of the present method. Finally, several numerical examples of the free vibration analysis of FGOS with various bulkheads and boundary conditions are provided. Numerical results by the proposed method are provided through self-compiled MATLAB code. Unless otherwise stated, the bottom boundary of the bulkhead is clamped and the material properties of the FGOS are given as: $E_m = 70$ GPa, $\mu_m = 0.3$, $\rho_m = 2707$ kg/m³, $E_c = 168$ GPa, $\mu_c = 0.3$, and $\rho_c = 5700$ kg/m³.

3.1. Verification and Convergence Study. In order to solve the free vibration problem of the FGOS with various bulkheads using the meshless strong form method, the shell is divided into several segments and each segment domain is discretized by $N=N_x \times N_\beta$ nodes. In this paper, the segmented domain is converted to a square shape through coordinate mapping technology, so $N_x = N_\beta$ is set. In numerical methods, the number of elements or nodes directly affects the accuracy and efficiency of the results. Figure 2 shows the change in frequency parameters $\Omega = (\omega L^2/h \sqrt{\rho_c/E_c})$ according to the number of nodes N_x in FGM_I (a = 1/b = 0/p = 1) open shells with axial and circumferential bulkheads.

The geometries of the shells are as follows:

FGOS with a axial bulkhead: R = 1 m, L/R = 2, d/R = 0.5, h/R = 0.1, $\theta_1 = \theta_2 = \pi/4$, and $\alpha = 0$.

FGOS with a circumferential bulkhead: R = 1 m, d/R = 0.5, h/R = 0.1, $L_1 = L_2 = 1$ m, $\theta_1 = \pi/2$, and $\alpha = \pi/6$.

From Figure 2, it can be seen that the variations of all numerical results after $N_x = 10$ are very small. Based on these results, $N_x = 11$ is used in all the following examples.

Next, one boundary of the shell is selected as the elastic boundary and the other boundaries are fixed to study the convergence of stiffness value of boundary spring. The geometries of FGM_I (a = 1/b = 0/p = 1) open shells considered in this study are same as those in Figure 2. Figure 3 shows the variation of frequency parameters according to the spring stiffness values of elastic boundaries in FGOS with axial and circumferential bulkheads.

As can be seen in Figure 3, the variation of the frequency parameters according to k_w is relatively quick in the interval of $10^6 \sim 10^{11}$. Thereafter, when the spring stiffness value exceeds 10^{13} , the frequency parameters tend to be stable, which shows that the clamped boundary can be simulated.

Based on the abovementioned study, the spring stiffness value of clamped boundary is selected as 10^{14} in the following numerical examples. In this paper, clamped boundary, free boundary, elastic supported boundary, and simply supported boundary are considered, and the spring stiffness values of the ground according to the type of boundary conditions are shown in Table 1.

The accuracy of the proposed method for the free vibration analysis of FGOS with axial and circumferential bulkheads is verified through the comparison with the results of pieces of literature and finite element software ABAQUS. The FGOS without bulkhead is a special case of FGOS with bulkheads. Therefore, in Table 2, the fundamental frequency parameters Ω of FGM_{II} (a = 1/b = 0) open cylindrical shells with various sizes of thickness and radius obtained by the proposed method are compared with the results of literatures [1, 49]. The material properties of the shell are as follows: $E_m = 70$ GPa, $\mu_m = 0.3$, $\rho_m = 2707$ kg/m³, $E_c = 151$ GPa, $\mu_c = 0.3$ and $\rho_c = 3000$ kg/m³. Table 3 shows the fundamental frequencies of functionally graded open conical

shells with various power-law indices and semi vertex angles obtained by the proposed method compared with the results of literature [1]. From Tables 2 and 3, it can be seen that the numerical results obtained by the proposed method agree well with those of the published pieces of literature.

In order to further confirm the accuracy and reliability of proposed method, the natural frequency comparisons of the FGOS with axial and circumferential bulkheads are conducted. Due to the lack of literature on the FGOS with bulkheads, these results are compared with those of the finite element software ABAQUS. In Table 4, the natural frequencies of functionally graded open cylindrical shells with a circumferential bulkhead obtained by the proposed method are compared with the results by ABAQUS. The all boundaries of bulkhead are clamped. In addition, Table 5 shows the comparison of natural frequencies of functionally graded open conical shells with two axial bulkheads obtained by the proposed method with those of ABAQUS. In the bulkheads, the bottom boundaries are free and the other boundaries are clamped. As shown in Tables 4 and 5, the natural frequency results of FGOS with bulkheads by the proposed method agree well with those of ABAQUS. Figures 4-7 show the comparison of first four mode shapes of FGOS with bulkheads with those of ABAQUS.

3.2. Numerical Examples. Based on the verification of the convergence and accuracy of the proposed method, in this subsection, the vibration characteristics of bulkhead-stiffened FGOS with different geometries and boundary conditions are studied. First, the effect of the geometric size and position of the bulkhead on the frequency parameters of the FGOS is investigated. Figure 8 shows the change of frequency parameters Ω according to the circumferential position of bulkhead φ_1 in FGM₁ (a=1/b=0/p=1) open cylindrical shell with one axial bulkhead. As can be seen in Figure 8, under CCCC, CSCS, and CFCF boundary conditions, the frequency curves are symmetric in the line $\theta_1 = 45^\circ$, but lose symmetry under other boundary conditions. In particular, the frequency curve with CSCC (CFCC) boundary condition and the frequency curve with CCCS (CCCF) boundary condition are symmetric in the line $\theta_1 = 45^\circ$, with each other. In addition, in the curves of the CSCC and CFCC boundary conditions, the maximum frequency occurs when the axial bulkhead is deflected from the center to the S or F boundary.

The change of fundamental frequency parameters Ω according to axial position of bulkhead L_1 in FGM_{II} (a = 1/b = 0/p = 1) open conical shell with one circumferential bulkhead is illustrated in Figure 9. As can be seen from Figure 9, as the semi vertex angle α increases, the fundamental frequency parameter decreases, and the fundamental frequency parameter of the shell with $\alpha = 0$ (cylindrical) is greatest when the bulkhead is at the center. However, the fundamental frequency parameter of the conical shell with $\alpha > 0$ is greatest when the bulkhead is deflected toward a large radius side from the center of the shell.

Figure 10 shows the change of frequency parameters according to the height of bulkhead d in FGM (a=0/

FIGURE 2: Variation of frequency parameters with various numbers of nodes; (a) axial bulkhead, (b) circumferential bulkhead.

9

FIGURE 3: Continued.

FIGURE 3: Variation of frequency parameters with various stiffness values of boundary springs: (a) axial bulkhead and (b) circumferential bulkhead.

TABLE 1: Stiffness value of boundary spring is according to the boundary condition.

BCs	k u	k_{v}	k_w	k x	k _β
F (free)	0	0	0	0	0
S (simply supported)	0	10^{14}	10^{14}	0	10^{14}
<i>E</i> (elastic supported)	10^{8}	10^{14}	10^{14}	10^{14}	10^{14}
C (clamped)	10^{14}	10^{14}	10^{14}	10^{14}	10^{14}

TABLE 2: Comparison of fundamental frequency parameters for functionally graded open cylindrical shells with SSSS boundary condition $(L = 1 \text{ m}, \theta_1 R = L)$.

h/L	R/L		p = 0	<i>p</i> = 0.5	<i>p</i> = 1	<i>p</i> = 2	<i>p</i> = 5	<i>p</i> = 10	$p = \infty$
		Reference [1]	6.1674	5.5622	5.2964	5.0895	4.9117	4.7787	4.4206
	2	Reference [49]	6.1552	5.5522	5.2876	5.0812	4.9032	4.7700	4.4119
		Present	6.1666	5.5615	5.2957	5.0889	4.9111	4.7781	4.4200
		Reference [1]	5.9517	5.3602	5.1058	4.9155	4.7568	4.6293	4.2660
	3	Reference [49]	5.9456	5.3548	5.1012	4.9111	4.7524	4.6249	4.2616
0.1		Present	5.9509	5.3595	5.1052	4.9149	4.7562	4.6288	4.2655
0.1		Reference [1]	5.8364	5.2532	5.0052	4.8241	4.6755	4.5506	4.1833
	5	Reference [49]	5.8337	5.2504	5.0031	4.8220	4.6734	4.5486	4.1814
		Present	5.8357	5.2525	5.0046	4.8235	4.6749	4.5501	4.1828
		Reference [1]	5.7867	5.2079	4.9632	4.7861	4.6416	4.5175	4.1477
	10	Reference [49]	5.7855	5.2065	4.9622	4.7852	4.6407	4.5166	4.1469
		Present	5.7860	5.2073	4.9625	4.7855	4.6411	4.5170	4.1472
		Reference [1]	13.7006	12.5648	11.9635	11.3494	10.6986	10.3552	9.8201
	2	Reference [49]	13.6904	12.5575	11.9578	11.3440	10.6928	10.3488	9.8128
		Present	13.6956	12.5602	11.9592	11.3451	10.6947	10.3515	9.8167
		Reference [1]	10.1949	9.3158	8.8722	8.4446	8.0073	7.7589	7.3076
	3	Reference [49]	10.1854	9.3077	8.8651	8.4379	8.0006	7.7522	7.3006
0.02		Present	10.1886	9.3100	8.8666	8.4393	8.0023	7.7542	7.3029
0.02		Reference [1]	7.7722	7.0583	6.7257	6.4355	6.1600	5.9794	5.5694
	5	Reference [49]	7.7616	7.0497	6.7171	6.4280	6.1525	5.9721	5.5633
		Present	7.7631	7.0512	6.7180	6.4289	6.1535	5.9732	5.5644
		Reference [1]	6.4720	5.8413	5.5673	5.3596	5.1790	5.0357	4.6388
	10	Reference [49]	6.4620	5.8314	5.5586	5.3502	5.1711	5.0285	4.6317
		Present	6.4624	5.8322	5.5589	5.3505	5.1714	5.0289	4.6321

TABLE 3: Comparison of fundamental frequencies (Hz) for functionally graded open conical shells with various boundary conditions (R = 1 m, L/R = 2, h/R = 0.1, $\theta_1 = 60^\circ$).

			CCCC			SCSC		EEEE		
α	Р	Reference [1]	Present	Diff, %	Reference [1]	Present	Diff, %	Reference [1]	Present	Diff, %
FGM	a = 1/a	b = 0.5/c = 2)								
	0.5	509.46	510.54	-0.212	464.13	466.39	-0.487	337.57	336.80	0.228
30°	1	507.09	508.18	-0.215	461.94	464.18	-0.485	336.52	335.69	0.247
	20	489.95	491.00	-0.214	445.93	448.04	-0.473	329.72	328.46	0.382
	0.5	307.55	308.61	-0.345	259.31	261.28	-0.760	260.82	261.05	-0.088
60°	1	306.28	307.34	-0.346	258.22	260.16	-0.751	259.96	260.16	-0.077
	20	298.16	299.16	-0.335	251.01	252.80	-0.713	255.12	255.09	0.012
FGM	III $(a=1)$	b = 0.5/c = 2								
	0.5	509.23	510.32	-0.214	463.91	466.17	-0.487	337.27	336.50	0.228
30°	1	506.68	507.76	-0.213	461.55	463.79	-0.485	335.96	335.14	0.244
	20	489.51	490.55	-0.212	445.50	447.61	-0.474	329.14	327.88	0.383
	0.5	307.46	308.53	-0.348	259.23	261.20	-0.760	260.72	260.95	-0.088
60°	1	306.12	307.18	-0.346	258.06	260.01	-0.756	259.76	259.96	-0.077
	20	297.99	298.99	-0.336	250.85	252.64	-0.714	254.91	254.88	0.012

TABLE 4: Comparison of first five natural frequencies (Hz) for FGM₁ (a = 0/b = -0.5/c = 2/p = 2) open cylindrical shell with a circumferential bulkhead (R = 1 m, $L_1 = L_2 = 1$ m, d/R = 0.5, $\theta_1 = 90^\circ$).

DC	0	h = 0.02 m				<i>h</i> = 0.05 m			h = 0.1 m		
BCs	12	FEM	Present	Diff, %	FEM	Present	Diff, %	FEM	Present	Diff, %	
	1	388.63	387.97	0.170	615.17	616.90	-0.281	898.85	899.58	-0.081	
	2	400.69	399.89	0.200	632.40	631.86	0.085	915.18	922.85	-0.838	
CCCC	3	418.07	417.82	0.060	680.83	680.60	0.034	936.60	936.52	0.009	
	4	420.33	419.34	0.236	700.73	700.56	0.024	938.06	940.16	-0.224	
	5	436.19	433.42	0.635	885.98	885.89	0.010	1347.3	1351.2	-0.289	
	1	323.30	321.83	0.455	497.17	497.13	0.008	743.80	743.92	-0.016	
	2	348.93	347.50	0.410	524.98	525.31	-0.063	757.10	754.30	0.370	
CSCS	3	371.81	370.94	0.234	621.40	618.22	0.512	760.62	763.44	-0.371	
	4	382.05	381.12	0.243	625.40	624.95	0.072	792.11	798.75	-0.838	
	5	404.78	405.96	-0.292	635.43	634.71	0.113	1113.9	1119.6	-0.512	
	1	221.59	221.41	0.081	370.53	372.07	-0.416	606.35	611.27	-0.811	
	2	235.37	236.25	-0.374	375.53	375.67	-0.037	617.56	618.18	-0.100	
FCFC	3	236.81	236.41	0.169	502.02	502.28	-0.052	686.63	688.25	-0.236	
	4	252.59	252.26	0.131	524.64	524.26	0.072	709.12	710.18	-0.149	
	5	418.62	421.16	-0.607	723.07	726.56	-0.483	926.62	931.06	-0.479	

TABLE 5: Comparison of first five natural frequencies (Hz) for FGM₁ (a = 0/b = -0.5/c = 2/p = 2) opens conical shell with two axial bulkheads (R = 1 m, L/R = 2, h/R = 0.05, d/R = 0.5, $\theta_1 = \theta_2 = \theta_3 = 30^\circ$).

DC	0	$\alpha = 30^{\circ}$				$\alpha = 45^{\circ}$			$\alpha = 60^{\circ}$		
BCs	\$2	FEM	Present	Diff, %	FEM	Present	Diff, %	FEM	Present	Diff, %	
	1	165.01	165.64	-0.382	160.98	161.71	-0.453	156.33	156.98	-0.416	
	2	178.36	178.80	-0.247	175.43	175.94	-0.291	172.62	173.18	-0.324	
CCCC	3	289.58	290.47	-0.307	286.22	287.15	-0.325	267.06	267.55	-0.183	
	4	296.33	296.89	-0.189	294.59	295.19	-0.204	289.66	290.28	-0.214	
	5	367.51	368.56	-0.286	311.55	312.26	-0.228	290.06	290.88	-0.283	
	1	160.34	160.58	-0.150	152.30	152.22	0.053	138.64	138.16	0.346	
	2	176.44	176.62	-0.102	172.30	172.46	-0.093	165.37	165.32	0.030	
FCFC	3	273.03	271.00	0.744	220.83	218.83	0.906	182.62	181.62	0.548	
	4	293.65	293.58	0.024	252.85	250.91	0.767	196.83	195.71	0.569	
	5	314.04	311.28	0.879	292.89	293.32	-0.147	212.52	213.99	-0.692	
	1	116.02	117.02	-0.862	107.16	108.13	-0.905	98.106	98.794	-0.701	
	2	122.68	123.68	-0.815	111.33	112.30	-0.871	100.99	101.69	-0.693	
CFCF	3	174.34	174.76	-0.241	167.07	167.62	-0.329	161.37	161.89	-0.322	
	4	182.04	182.32	-0.154	177.44	177.82	-0.214	174.56	174.99	-0.246	
	5	257.49	258.40	-0.353	243.34	244.08	-0.304	229.02	229.50	-0.210	

FIGURE 4: Mode shapes of functionally graded open cylindrical shell with a circumferential bulkhead and CSCS boundary condition (h = 0.05 m): (a) present and (b) ABAQUS.

FIGURE 5: Mode shapes of functionally graded open cylindrical shell with a circumferential bulkhead and FCFC boundary condition (h = 0.05 m): (a) present and (b) ABAQUS.

FIGURE 6: Mode shapes of functionally graded open conical shells with two axial bulkheads and CCCC boundary conditions ($\alpha = 30^{\circ}$): (a) present and (b) ABAQUS.

FIGURE 7: Mode shapes of functionally graded open conical shells with two axial bulkheads and CFCF boundary condition ($\alpha = 30^{\circ}$): (a) present and (b) ABAQUS.

FIGURE 8: Variation of frequency parameters of functionally graded open cylindrical shell with an axial bulkhead according to circumferential position of bulkhead (R = 1 m, L/R = 2, h/R = 0.05, d/R = 0.5, $\theta_1 + \theta_2 = 90^\circ$): (a) 1st mode; (b) 2nd mode; (c) 3rd mode; (d) 4th mode.

FIGURE 9: Continued.

FIGURE 9: Variation of fundamental frequency parameters for functionally graded open conical shell with a circumferential bulkhead according to axial position of bulkhead (R = 1 m, $L_1 + L_2 = 2 \text{ m}$, h/R = 0.05, d/R = 0.5, $\theta 1 = 60^\circ$): (a) CCCC; (b) SCSC; (c) FCFC; (d) CECE.

FIGURE 10: Variation of frequency parameters for FGOS with various heights of bulkheads: (a) FGM_I open shell with two axial bulkheads and (b) FGM_{II} open shell with two circumferential bulkheads.

TABLE 6: Frequency parameters for FGM_I (a = 1/b = 0) open conical shell with one axial bulkhead and CCCC boundary condition according to power law index p (R = 1 m, $\alpha = \pi/6$, d/R = 0.5, h/R = 0.1 m, $\theta_1 = \theta_2$).

T /D	θ.	0	Р								
L_{1}/K	$\boldsymbol{\theta}_1$	22	0	0.5	1	2	5	10	20	∞	
		1	14.008	13.583	13.477	13.565	13.807	13.788	13.617	13.121	
	$\pi/6$	2	15.986	15.581	15.456	15.482	15.614	15.562	15.402	14.974	
		3	21.309	20.769	20.618	20.694	20.920	20.848	20.609	19.960	
		1	10.245	9.937	9.854	9.902	10.060	10.047	9.930	9.596	
	$\pi/4$	2	11.581	11.269	11.177	11.208	11.335	11.307	11.184	10.848	
1		3	17.261	16.741	16.608	16.718	17.022	17.006	16.796	16.168	
1		1	9.226	8.966	8.891	8.918	9.031	9.013	8.916	8.642	
	$\pi/3$	2	10.087	9.823	9.742	9.759	9.855	9.828	9.725	9.448	
		3	12.597	12.201	12.102	12.187	12.421	12.411	12.255	11.799	
		1	8.807	8.570	8.498	8.515	8.602	8.581	8.492	8.250	
	$\pi/2$	2	9.252	9.018	8.943	8.949	9.021	8.993	8.903	8.666	
		3	9.529	9.252	9.175	9.215	9.352	9.337	9.230	8.926	
		1	32.965	31.879	31.615	31.860	32.531	32.522	32.109	30.878	
	$\pi/6$	2	40.475	39.369	39.052	39.181	39.652	39.554	39.118	37.913	
		3	45.224	43.790	43.432	43.734	44.579	44.545	43.991	42.360	
		1	21.352	20.714	20.539	20.633	20.953	20.927	20.687	20.000	
	$\pi/4$	2	27.848	27.171	26.951	26.967	27.166	27.074	26.799	26.086	
2		3	32.790	31.804	31.536	31.684	32.184	32.144	31.775	30.714	
Ζ		1	18.372	17.917	17.766	17.770	17.897	17.840	17.666	17.209	
	$\pi/3$	2	23.681	23.185	22.997	22.939	22.972	22.865	22.662	22.182	
		3	27.672	26.757	26.538	26.752	27.332	27.328	26.974	25.919	
		1	16.739	16.285	16.150	16.187	16.355	16.312	16.143	15.679	
	$\pi/2$	2	19.188	18.653	18.505	18.577	18.744	18.672	18.493	17.973	
		3	19.268	18.834	18.682	18.661	18.834	18.794	18.576	18.049	

TABLE 7: Frequency parameters for FGM_{II} (a = 1/b = 0) open conical shell with one circumferential bulkhead and CCCC boundary condition according to power law index p (R = 1 m, $\alpha = \pi/6$, d/R = 0.5, h/R = 0.1, $L_1 = L_2$).

θ_{1}	L_1/R	/₽ 0	Р								
θ_1	L_1/R	12	0	0.5	1	2	5	10	20	∞	
		1	19.514	18.798	18.566	18.581	18.832	18.857	18.727	18.279	
	0.5	2	20.824	20.395	20.251	20.254	20.350	20.251	20.036	19.506	
		3	24.025	23.384	23.187	23.231	23.451	23.383	23.147	22.504	
		1	34.147	33.085	32.772	32.868	33.329	33.306	32.972	31.985	
	1	2	44.671	43.461	43.103	43.221	43.719	43.614	43.142	41.844	
-/4		3	49.402	47.658	47.199	47.501	48.476	48.513	47.970	46.274	
$\pi/4$		1	48.641	47.326	46.904	46.939	47.371	47.268	46.811	45.562	
	1.5	2	70.269	67.712	67.073	67.597	69.159	69.243	68.417	65.819	
		3	74.884	72.874	72.252	72.370	73.102	72.927	72.181	70.144	
		1	64.090	62.552	62.008	61.925	62.227	62.018	61.461	60.033	
	2	2	87.781	84.554	83.765	84.470	86.515	86.634	85.570	82.223	
		3	96.001	93.038	92.194	92.541	93.944	93.872	92.866	89.923	
		1	17.098	16.440	16.226	16.234	16.461	16.497	16.396	16.015	
	0.5	2	18.125	17.818	17.698	17.661	17.658	17.547	17.369	16.979	
		3	18.557	18.038	17.826	17.787	17.870	17.821	17.698	17.383	
		1	29.451	28.607	28.338	28.365	28.653	28.607	28.340	27.586	
	1	2	30.534	29.536	29.248	29.356	29.823	29.821	29.518	28.601	
-12		3	34.757	33.950	33.683	33.700	33.913	33.778	33.433	32.557	
11/2		1	40.088	38.894	38.536	38.630	39.128	39.084	38.689	37.550	
	1.5	2	41.046	39.967	39.608	39.610	39.893	39.781	39.419	38.447	
		3	49.474	47.942	47.504	47.675	48.415	48.391	47.870	46.341	
		1	49.438	48.087	47.656	47.698	48.154	48.053	47.588	46.308	
	2	2	51.951	50.469	50.014	50.114	50.641	50.533	50.043	48.662	
		3	63.899	62.314	61.771	61.721	62.138	61.971	61.385	59.853	

TABLE 8: Fundamental frequency parameters for FGOS with two axial bulkheads and various boundary conditions (R = 1 m, $L_1/R = 2$, d/R = 0.5, $2\theta_1 = \theta_2 = 2\theta_3 = \pi/4$).

h/R	~	5	Boundary conditions								
n/K	α	Р	CCCC	CSCS	CFCF	FCFC	CECE	ECEC	ESES	EEEE	
FGM _I (a=1/b=0.	.5/c = 2)									
		0.5	32.474	28.651	14.631	17.548	29.315	31.868	27.905	28.628	
	$\pi/6$	1	32.327	28.523	14.580	17.462	29.187	31.724	27.783	28.507	
0.05		10	31.596	27.924	14.511	17.081	28.576	31.028	27.234	27.947	
0.05		0.5	19.869	18.863	11.618	8.743	19.083	19.535	18.693	18.934	
	$\pi/3$	1	19.782	18.782	11.578	8.705	19.002	19.451	18.614	18.855	
		10	19.424	18.473	11.535	8.591	18.689	19.114	18.319	18.552	
		0.5	22.967	21.159	13.575	12.674	21.366	22.721	20.881	21.095	
	$\pi/6$	1	22.873	21.076	13.524	12.613	21.283	22.629	20.799	21.014	
0.1		10	22.493	20.779	13.446	12.357	20.982	22.262	20.516	20.728	
		0.5	15.583	15.207	10.966	7.301	15.300	15.457	15.163	15.258	
	$\pi/3$	1	15.522	15.149	10.925	7.270	15.241	15.397	15.105	15.200	
		10	15.353	15.001	10.873	7.192	15.092	15.235	14.960	15.053	
FGM _{II}	(a = 1/b = 0)	0.5/c = 2)									
		0.5	32.469	28.648	14.633	17.546	29.310	31.863	27.903	28.623	
	$\pi/6$	1	32.317	28.518	14.584	17.460	29.178	31.715	27.779	28.498	
0.05		10	31.578	27.912	14.519	17.076	28.558	31.010	27.225	27.931	
0.05		0.5	19.871	18.866	11.622	8.745	19.085	19.537	18.697	18.936	
	$\pi/3$	1	19.786	18.788	11.585	8.708	19.006	19.455	18.620	18.859	
		10	19.430	18.482	11.547	8.597	18.693	19.119	18.328	18.557	
		0.5	22.961	21.155	13.582	12.673	21.359	22.715	20.877	21.088	
	$\pi/6$	1	22.862	21.067	13.537	12.610	21.270	22.618	20.792	21.002	
0.1		10	22.471	20.761	13.468	12.353	20.956	22.240	20.500	20.704	
0.1		0.5	15.587	15.213	10.975	7.305	15.304	15.461	15.168	15.262	
	$\pi/3$	1	15.529	15.158	10.941	7.278	15.248	15.404	15.114	15.207	
		10	15.363	15.015	10.900	7.205	15.101	15.245	14.975	15.063	

TABLE 9: Fundamental frequency parameters for FGOS with two circumferential bulkheads and various boundary conditions (R = 1 m, $L_1 = L_2 = L_3 = 1$ m, d/R = 0.5, $\theta_1 = \pi/2$).

1 (D						Boundary	conditions			
h/R	α	Р	CCCC	SCSC	CFCF	FCFC	CECE	ECEC	SESE	EEEE
FGM _I ((a = 1/b = 0.	5/c = 2)								
		0.5	79.218	68.455	53.402	30.933	76.759	78.935	66.379	76.704
	$\pi/6$	1	78.899	68.167	53.194	30.818	76.437	78.619	66.095	76.382
0.05		10	77.512	66.777	52.723	30.371	74.998	77.255	64.658	74.942
0.05		0.5	56.969	44.835	47.938	18.335	56.604	56.835	42.124	56.321
	$\pi/3$	1	56.738	44.665	47.756	18.264	56.372	56.608	41.990	56.096
		10	55.959	44.031	47.461	17.880	55.582	55.850	41.434	55.340
		0.5	58.299	47.463	45.867	21.764	56.685	57.846	43.033	54.433
	$\pi/6$	1	58.058	47.282	45.668	21.680	56.430	57.620	42.852	54.180
0.1		10	57.041	46.391	45.166	21.277	55.358	56.607	41.769	52.880
0.1		0.5	46.856	36.926	43.045	13.259	46.534	46.761	27.154	45.758
	$\pi/3$	1	46.662	36.815	42.860	13.202	46.340	46.568	27.075	45.569
		10	46.172	36.509	42.486	12.912	45.856	46.070	26.611	44.851
FGM _{II}	(a=1/b=0	0.5/c = 2)								
		0.5	79.168	68.407	53.434	30.907	76.728	78.884	66.335	76.676
	$\pi/6$	1	78.807	68.083	53.253	30.770	76.381	78.526	66.015	76.330
0.05		10	77.366	66.639	52.821	30.294	74.909	77.108	64.526	74.860
0.05		0.5	56.976	44.806	47.980	18.325	56.616	56.836	42.090	56.326
	$\pi/3$	1	56.751	44.611	47.831	18.245	56.394	56.611	41.929	56.106
		10	55.983	43.942	47.583	17.854	55.621	55.861	41.332	55.362
		0.5	58.277	47.393	45.932	21.736	56.707	57.793	42.984	54.453
	$\pi/6$	1	58.019	47.154	45.786	21.629	56.469	57.524	42.764	54.217
0.1		10	56.983	46.177	45.360	21.194	55.422	56.449	41.623	52.941
0.1		0.5	46.899	36.865	43.116	13.249	46.582	46.801	27.122	45.780
	$\pi/3$	1	46.740	36.703	42.991	13.185	46.427	46.641	27.015	45.608
		10	46.299	36.324	42.698	12.885	45.996	46.189	26.514	44.885

b = -0.5/c = p = 2) open shell with two bulkheads. All boundaries of the shell are clamped and the geometrical dimensions are as follows:

FGOS with two axial bulkheads: R = 1 m, L/R = 2, h/R = 0.05, $\theta_1 = \theta_2 = \theta_3 = \pi/6$.

FGOS with two circumferential bulkheads: R = 1 m, h/R = 0.05, $2L_1 = L_2 = 2L_3 = 1$ m, $\theta_1 = \pi/2$.

From Figure 10, it can be seen that the frequency parameters decrease as the height of the bulkhead increases. It means that the overall stiffness of the structure decreases as the height of the plate increases.

Next, research on the vibration characteristics of bulkhead-stiffened FGOS with different geometries and boundary conditions is conducted. Tables 6 and 7 show the frequency parameters of FGOS with one axial and circumferential bulkheads according to the power law index. In Tables 6 and 7, the frequency parameters of FGOS decrease as the power law index increase. In addition, when the circumferential size θ_1 of the shell increase, the frequency parameters decrease because the stiffness of the structure decreases as the geometric dimensions increase. Tables 8 and 9 show the frequency parameters of FGOS with two bulkheads and different boundary conditions. The results in Tables 6–9 can be used as benchmark data for researchers in this field.

4. Conclusions

In this paper, the free vibration analysis of bulkheadstiffened FGOS with various geometry and boundary conditions is performed by a meshless Legendre-RPIM shape function that uses a combined basis of Legendre polynomials and MQ radial functions. A bulkheadstiffened FGOS is decomposed into several shells and bulkheads, and the governing equations and boundary conditions of each segment are derived from Hamilton's principle and FSDT. Continuous conditions of displacement are applied at the interfaces between the segments. In order to solve these equations, the meshless strong form method is adopted. In the equations discretized by the meshless strong form method, the displacement components are approximated by the Legendre-RPIM shape function, and the boundary and continuous conditions are applied using artificial spring technology. The accuracy and reliability of the proposed method for free vibration analysis of bulkhead-stiffened FGOS are confirmed through the convergence study and comparison with the results of pieces of literature and ABAQUS. The effects of the geometry of bulkhead, parameters of material composition, and boundary conditions on the frequency parameters of bulkheadstiffened FGOS are investigated through some numerical examples, and these results can be used as benchmark data for research in this field.

Appendix

A. Detailed Expressions of the Constants L_{ij}

$$\begin{split} L_{11} \\ L_{12} &= Q(A_{12} + A_{66}) \frac{\partial^2}{\partial x \partial \beta} + (PQA_{12} - PQA_{11} - PQA_{66}) \frac{\partial}{\partial \beta}, \\ L_{13} &= SA_{12} \frac{\partial}{\partial x} + PS(A_{12} - A_{11}), \\ L_{15} &= L_{42} = Q(B_{12} + B_{66}) \frac{\partial^2}{\partial x \partial \beta} + (PQB_{12} - PQB_{11} - PQB_{66}) \frac{\partial}{\partial \beta}, \\ L_{21} &= Q(A_{12} + A_{66}) \frac{\partial^2}{\partial x \partial \beta} + (PQA_{11} + 2PQA_{66}) \frac{\partial}{\partial \beta}, \\ L_{22} &= A_{66} \frac{\partial^2}{\partial x^2} + Q^2 A_{11} \frac{\partial^2}{\partial \beta^2} + PA_{66} \frac{\partial}{\partial x} - 2P^2 A_{66} - S^2 A_{44}, \\ L_{23} &= QS(A_{11} + A_{44}) \frac{\partial}{\partial \beta}, \\ L_{24} &= L_{51} = Q(B_{12} + B_{66}) \frac{\partial^2}{\partial x \partial \beta} + (PQB_{11} + 2PQB_{66}) \frac{\partial}{\partial \beta}, \\ L_{25} &= L_{52} = B_{66} \frac{\partial^2}{\partial x^2} + Q^2 B_{11} \frac{\partial^2}{\partial \beta^2} + PB_{66} \frac{\partial}{\partial x} - 2P^2 B_{66} + SA_{44}, \\ L_{31} &= -SA_{12} \frac{\partial}{\partial x} - PSA_{11}, \\ L_{32} &= -SQ(A_{11} + A_{44}) \frac{\partial}{\partial \beta}, \\ L_{33} &= A_{55} \frac{\partial^2}{\partial x^2} + Q^2 A_{44} \frac{\partial^2}{\partial \beta^2} + PA_{55} \frac{\partial}{\partial x} - S^2 A_{11}, \\ L_{34} &= (A_{55} - SB_{12}) \frac{\partial}{\partial x} + P(A_{55} - SB_{11}), \\ L_{55} &= Q(A_{44} - SB_{11}) \frac{\partial}{\partial \beta}, \\ L_{44} &= D_{11} \frac{\partial^2}{\partial x^2} + Q^2 D_{66} \frac{\partial^2}{\partial x^2} + PD_{11} \frac{\partial}{\partial x} + P^2 D_{12} - P^2 D_{11} - A_{55}, \\ L_{45} &= Q(D_{12} + D_{66}) \frac{\partial^2}{\partial x \partial \beta} + (PQD_{11} - PQD_{66}) \frac{\partial}{\partial \beta}, \\ L_{54} &= Q(D_{12} + D_{66}) \frac{\partial^2}{\partial x \partial \beta} + (PQD_{11} + 2PQD_{66}) \frac{\partial}{\partial \beta}, \\ L_{55} &= D_{66} \frac{\partial^2}{\partial x^2} + Q^2 D_{11} \frac{\partial^2}{\partial \beta^2} + PD_{66} \frac{\partial}{\partial x} - 2P^2 D_{66} - A_{44}. \end{split}$$

Shock and Vibration

B. Detailed Expressions of the Constants C_{xij}

$$C_{x11}$$

$$C_{x12} = QA_{12}\frac{\partial}{\partial \beta}, \quad C_{x33} = A_{55}\frac{\partial}{\partial x} \pm k_{w}^{x},$$

$$C_{x13} = SA_{12}, \quad C_{x34} = A_{55},$$

$$C_{x14} = C_{x41} = B_{11}\frac{\partial}{\partial x} + PB_{12}, \quad C_{x43} = SB_{12},$$

$$C_{x15} = C_{x42} = QB_{12}\frac{\partial}{\partial \beta}, \quad C_{x44} = D_{11}\frac{\partial}{\partial x} + PD_{12} \pm k_{x}^{x},$$

$$C_{x21} = QA_{66}\frac{\partial}{\partial \beta}, \quad C_{x45} = QD_{12}\frac{\partial}{\partial \beta},$$

$$C_{x22} = A_{60}\frac{\partial}{\partial x} - PA_{66} \pm k_{y}^{x}, \quad C_{x54} = QD_{66}\frac{\partial}{\partial \beta},$$

$$C_{x23} = C_{x31} = C_{x32} = C_{x35} = C_{x53} = 0, \quad C_{x55} = D_{66}\frac{\partial}{\partial x} - PD_{66} \pm k_{\beta}^{x},$$

$$C_{x24} = C_{x51} = QB_{66}\frac{\partial}{\partial \beta},$$

$$C_{\beta11} = QA_{66}\frac{\partial}{\partial \beta} \pm k_{w}^{\beta}, \quad C_{\beta25} = C_{\beta52} = QB_{11}\frac{\partial}{\partial \beta},$$

$$C_{\beta11} = QA_{66}\frac{\partial}{\partial x} - PA_{66}, \quad C_{\beta32} = -SA_{44},$$

$$C_{\beta13} = C_{x31} = C_{\beta34} = C_{\beta33} = 0, \quad C_{\beta33} = QA_{46}\frac{\partial}{\partial \beta} \pm k_{w}^{\beta},$$

$$C_{\beta14} = C_{\beta41} = QB_{66}\frac{\partial}{\partial \beta}, \quad C_{\beta44} = QD_{66}\frac{\partial}{\partial \beta} \pm k_{w}^{\beta},$$

$$C_{\beta22} = A_{61}\frac{\partial}{\partial x} - PB_{66}, \quad C_{\beta44} = QD_{66}\frac{\partial}{\partial \beta} \pm k_{w}^{\beta},$$

$$C_{\beta12} = A_{12}\frac{\partial}{\partial x} + PA_{11}, \quad C_{\beta45} = D_{66}\frac{\partial}{\partial x} - PD_{66},$$

$$C_{\beta22} = QA_{11}\frac{\partial}{\partial \beta} \pm k_{w}^{\beta}, \quad C_{\beta53} = SB_{11},$$

$$C_{\beta24} = C_{\beta51} = B_{12}\frac{\partial}{\partial x} + PB_{11}, \quad C_{\beta55} = QD_{11}\frac{\partial}{\partial \beta} \pm k_{\beta}^{\beta},$$

Data Availability

The data that support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The authors would like to take the opportunity to express their hearted gratitude to all those who make a contribution to the completion of this article.

References

- S. Zhu, G. Jin, and T. Ye, "Free vibration analysis of moderately thick functionally graded open shells with general boundary conditions," *Composite Structures*, vol. 117, pp. 169–186, 2014.
- [2] A. R. Saidi, A. H. Baferani, and E. Jomehzadeh, "Benchmark solution for free vibration of functionally graded moderately thick annular sector plates," *Acta Mechanica*, vol. 219, no. 3-4, pp. 309–335, 2011.
- [3] J. Rouzegar and F. Abad, "Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory," *Thin-Walled Structures*, vol. 89, pp. 76–83, 2015.
- [4] S. Chakraverty and K. K. Pradhan, "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions," *Aerospace Science and Technology*, vol. 36, pp. 132–156, 2014.
- [5] S. Natarajan, P. M. Baiz, M. Ganapathi, P. Kerfriden, and S. Bordas, "Linear free flexural vibration of cracked functionally graded plates in thermal environment," *Computers & Structures*, vol. 89, no. 15-16, pp. 1535–1546, 2011.
- [6] H. Bagheri, Y. Kiani, and M. R. Eslami, "Free vibration of joined conical-conical shells," *Thin-Walled Structures*, vol. 120, pp. 446–457, 2017.
- [7] H. Bagheri, Y. Kiani, and M. R. Eslami, "Free vibration of joined conical-cylindrical-conical shells," *Acta Mechanica*, vol. 229, no. 7, pp. 2751–2764, 2018.
- [8] H. Bagheri, Y. Kiani, N. Bagheri, and M. R. Eslami, "Free vibrations of functionally graded material cylindrical shell closed with two spherical caps," *Ships and Offshore Structures*, vol. 17, no. 4, pp. 939–951, 2022.
- [9] H. Bagheri, Y. Kiani, and M. R. Eslami, "Free vibration of FGM conical-spherical shells," *Thin-Walled Structures*, vol. 160, Article ID 107387, 2021.
- [10] Q. Wang, F. Xie, B. Qin, R. Zhong, and H. Yu, "Dynamics and power flow control of irregular elastic coupled plate systems: precise modeling and experimental validation," *International Journal of Mechanical Sciences*, vol. 185, Article ID 105760, 2020.
- [11] Z. Su, G. Jin, and T. Ye, "Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints," *Composite Structures*, vol. 118, pp. 432–447, 2014.
- [12] G. Jin, Z. Su, T. Ye, and S. Gao, "Three-dimensional free vibration analysis of functionally graded annular sector plates with general boundary conditions," *Composites Part B: Engineering*, vol. 83, pp. 352–366, 2015.

- [13] S. Khare and N. D. Mittal, "Free vibration of thick laminated circular and annular plates using three-dimensional finite element analysis," *Alexandria Engineering Journal*, vol. 57, no. 3, pp. 1217–1228, 2018.
- [14] T. Xiang, S. Natarajan, H. Man, C. Song, and W. Gao, "Free vibration and mechanical buckling of plates with in-plane material inhomogeneity - a three dimensional consistent approach," *Composite Structures*, vol. 118, pp. 634–642, 2014.
- [15] T. Liu, G. Hu, A. Wang, and Q. Wang, "A unified formulation for free in-plane vibrations of arbitrarily-shaped straightsided quadrilateral and triangular thin plates," *Applied Acoustics*, vol. 155, pp. 407–422, 2019.
- [16] F. Ebrahimi and A. Rastgo, "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory," *Thin-Walled Structures*, vol. 46, no. 12, pp. 1402–1408, 2008.
- [17] D. Shao, Q. Wang, C. Shuai, and J. Gu, "Investigation on dynamic performances of a set of composite laminated plate system under the influences of boundary and coupling conditions," *Mechanical Systems and Signal Processing*, vol. 132, pp. 721–747, 2019.
- [18] H. Bagheri, Y. Kiani, and M. R. Eslami, "Free vibration of conical shells with intermediate ring support," *Aerospace Science and Technology*, vol. 69, pp. 321–332, 2017.
- [19] S. Natarajan, G. Manickam, and S. Bordas, "Supersonic flutter analysis of functionally graded material plates with cracks," *Frontiers of Aerospace Engineering*, vol. 2, no. 2, pp. 91–97, 2013.
- [20] J. L. Mantari, A. S. Oktem, and C. Guedes Soares, "A new higher order shear deformation theory for sandwich and composite laminated plates," *Composites Part B: Engineering*, vol. 43, no. 3, pp. 1489–1499, 2012.
- [21] M. Mohammadi, E. Mohseni, and M. Moeinfar, "Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory," *Applied Mathematical Modelling*, vol. 69, pp. 47–62, 2019.
- [22] S. Merdaci and H. Belghoul, "High-order shear theory for static analysis of functionally graded plates with porosities," *Comptes Rendus Mecanique*, vol. 347, no. 3, pp. 207–217, 2019.
- [23] J. L. Mantari, A. S. Oktem, and C. Guedes Soares, "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory," *Composite Structures*, vol. 94, no. 1, pp. 37–49, 2011.
- [24] J. H. Kang and A. W. Leissa, "Three-dimensional vibration analysis of thick hyperboloidal shells of revolution," *Journal of Sound and Vibration*, vol. 282, no. 1-2, pp. 277–296, 2005.
- [25] Y. Qu, X. Long, G. Yuan, and G. Meng, "A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions," *Composites Part B: Engineering*, vol. 50, pp. 381–402, 2013.
- [26] X. Xie, H. Zheng, and G. Jin, "Free vibration of four-parameter functionally graded spherical and parabolic shells of revolution with arbitrary boundary conditions," *Composites Part B: Engineering*, vol. 77, pp. 59–73, 2015.
- [27] F. Pang, H. Li, X. Wang, X. Miao, and S. Li, "A semi analytical method for the free vibration of doubly-curved shells of revolution," *Computers & Mathematics with Applications*, vol. 75, no. 9, pp. 3249–3268, 2018.
- [28] B. Bediz, "A spectral-Tchebychev solution technique for determining vibrational behavior of thick plates having arbitrary geometry," *Journal of Sound and Vibration*, vol. 432, pp. 272–289, 2018.

- [29] T. Ye, G. Jin, Z. Su, and X. Jia, "A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions," *Archive* of *Applied Mechanics*, vol. 84, no. 4, pp. 441–471, 2014.
- [30] B. Qin, R. Zhong, T. Wang, Q. Wang, Y. Xu, and Z. Hu, "A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions," *Composite Structures*, vol. 232, Article ID 111549, 2020.
- [31] N. Nguyen-Thanh, T. Rabczuk, H. Nguyen-Xuan, and S. P. A. Bordas, "A smoothed finite element method for shell analysis," *Computer Methods in Applied Mechanics and En*gineering, vol. 198, no. 2, pp. 165–177, 2008.
- [32] M. Barik and M. Mukhopadhyay, "Finite element free flexural vibration analysis of arbitrary plates," *Finite Elements in Analysis and Design*, vol. 29, no. 2, pp. 137–151, 1998.
- [33] S. Natarajan, A. J. M. Ferreira, S. Bordas, E. Carrera, M. Cinefra, and A. M. Zenkour, "Analysis of functionally graded material plates using triangular elements with cellbased smoothed discrete shear gap method," *Mathematical Problems in Engineering*, pp. 1–13, Article ID 247932, 2014.
- [34] N. Fantuzzi, F. Tornabene, and E. Viola, "Four-parameter functionally graded cracked plates of arbitrary shape: a GDQFEM solution for free vibrations," *Mechanics of Advanced Materials and Structures*, vol. 23, no. 1, pp. 89–107, 2016.
- [35] T. Ye, G. Jin, Y. Chen, and S. Shi, "A unified formulation for vibration analysis of open shells with arbitrary boundary conditions," *International Journal of Mechanical Sciences*, vol. 81, pp. 42–59, 2014.
- [36] Y. Xue, G. Jin, X. Ma et al., "Free vibration analysis of porous plates with porosity distributions in the thickness and inplane directions using isogeometric approach," *International Journal of Mechanical Sciences*, vol. 152, pp. 346–362, 2019.
- [37] S. Kumar, V. Ranjan, and P. Jana, "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method," *Composite Structures*, vol. 197, pp. 39–53, 2018.
- [38] R. Talebitooti and V. S. Anbardan, "Haar wavelet discretization approach for frequency analysis of the functionally graded generally doubly-curved shells of revolution," *Applied Mathematical Modelling*, vol. 67, pp. 645–675, 2019.
- [39] G. R. Liu and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming, Springer, Dordrecht, 2005.
- [40] A. Zarei and A. Khosravifard, "Meshfree investigation of the vibrational behavior of pre-stressed laminated composite plates based on a variationally consistent plate model," *Engineering Analysis with Boundary Elements*, vol. 111, pp. 118–133, 2020.
- [41] N. Fallah and M. Delzendeh, "Free vibration analysis of laminated composite plates using meshless finite volume method," *Engineering Analysis with Boundary Elements*, vol. 88, pp. 132–144, 2018.
- [42] T. V. Vu, A. Khosravifard, M. R. Hematiyan, and T. Q. Bui, "A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates," *Applied Mathematical Modelling*, vol. 57, pp. 514–534, 2018.
- [43] L. W. Zhang, Z. X. Lei, and K. M. Liew, "Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method," *Composite Structures*, vol. 120, pp. 189– 199, 2015.

- [44] A. Stanley and N. Ganesan, "Frequency response of shell-plate combinations," *Computers & Structures*, vol. 59, no. 6, pp. 1083–1094, 1996.
- [45] Y. Qu, H. Hua, and G. Meng, "Vibro-acoustic analysis of coupled spherical-cylindrical-spherical shells stiffened by ring and stringer reinforcements," *Journal of Sound and Vibration*, vol. 355, pp. 345–359, 2015.
- [46] M. Chen, J. Wei, K. Xie, N. Deng, and G. Hou, "Wave based method for free vibration analysis of ring stiffened cylindrical shell with intermediate large frame ribs," *Shock and Vibration*, vol. 20, no. 3, pp. 459–479, 2013.
- [47] S. Kwak, K. Kim, J. Kim, Y. Kim, Y. Kim, and K. Pang, "A meshfree approach for free vibration analysis of laminated sectorial and rectangular plates with varying fiber angle," *Thin-Walled Structures*, vol. 174, Article ID 109070, 2022.
- [48] Y. F. Xing, Y. Wu, Bo Liu, A. J. M. Ferreira, and A. M. A. Neves, "Static and dynamic analyses of laminated plates using a layerwise theory and a radial basis function finite element method," *Composite Structures*, vol. 170, pp. 158–168, 2017.
- [49] Y. Kiani, M. Shakeri, and M. R. Eslami, "Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation," *Acta Mechanica*, vol. 223, no. 6, pp. 1199–1218, 2012.