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�e online blind source separation (BSS) is seriously disturbed by strong noise when extracting weak signals and has the defects
that it cannot both give consideration to convergence speed and steady-state error. In order to solve the abovementioned
problems, a novel improved threshold adaptive forgetting variable step size blind separation model (ITAFBS) for weak signal
detection is proposed. Firstly, an improved lifting wavelet transform (ILWT) is proposed to reduce the noise of weak signals. In
ILWT, a threshold function containing an adjustment factor is proposed to reduce the constant deviation so as to ensure a high
signal-to-noise ratio and low distortion after denoising. �en, the separation index (SI) is constructed according to the con-
vergence conditions of the BSS model. An adaptive variable step size blind separation model based on the SI is studied. At the
initial stage of separation, the step size is increased to obtain a fast convergence rate, and at the end of separation and the step size is
shortened to obtain a small steady-state error. Finally, the forgetting factor is introduced into the model to reduce the error
accumulation in the early stage of the algorithm, and the Fourier norm is introduced to improve the convergence speed and
separation accuracy of the model. �e simulation and experimental results show that ITAFBS has a good performance in multi-
frequency weak signal detection. Compared with other methods, the ITAFBS has a faster convergence speed and minimum
steady-state error.

1. Introduction

Due to the complex and harsh load environments, the ro-
tating parts (such as bearings and gears) in the rotating
machinery (such as aerospace, wind equipment, automo-
biles, and ships) are very prone to fatigue and damage. In the
early stage of the failure, the target signal is usually interfered
with by strong noise, and the signal-to-noise ratio (SNR) is
very low [1]. In the actual operation of the equipment, the
energy of the target signal is continuously attenuated due to
the complex transmission path and the interference noise. It
becomes more di�cult for fault signals to be detected. If the
early faults of rotating parts are identi�ed timely and ac-
curately, the corresponding treatment will be made in time.
�ere is a great signi�cance to ensure the safe operation of
mechanical equipment and reduce the frequency of pro-
duction accidents [2].

Aiming at the characteristics of early weak fault signals,
such as nonstationary and low SNR, a lot of research work
have been carried out and fruitful results have been achieved
by researchers. In the 1990s, Sweetens and Daubechies
decomposed all wavelet transform into lifting process, and
lifting wavelet threshold denoising method based on lifting
wavelet transform (LWT) was proposed [3]. LWT realizes
the simpli�cation of the wavelet decomposition and re-
construction process and shortens the calculation time [4].
In addition, compared with the �rst generation wavelet, the
lifting wavelet can also construct the wavelet adaptively
according to di�erent signal characteristics. �e biggest
advantages of LWT are simple structure, low distortion,
reduced aliasing e�ects, and high computational e�ciency
[5]. After continuous improvement, LWT has been suc-
cessfully applied in fault diagnosis [6], radar detection [7],
spectral analysis [8], aerospace [9], and other �elds.

Hindawi
Shock and Vibration
Volume 2022, Article ID 7608911, 15 pages
https://doi.org/10.1155/2022/7608911

mailto:lujt@nuaa.edu.cn
https://orcid.org/0000-0001-6300-8059
https://orcid.org/0000-0002-9674-165X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7608911


'e key point of LWTnoise reduction is the selection of
threshold function. Aiming at the problem that hard
threshold function may produce oscillation point and soft
threshold function has constant deviation, the improvement
of threshold function has been studied deeply by scholars
[10]. Li W. and Wang [11] proposed a modular square
processing method of threshold functions. 'e method has
good overall continuity but poor flexibility. 'e closer to the
threshold, the greater the constant deviation. And there is a
risk of loss of high-frequency components in noise reduc-
tion. 'erefore, when the threshold function is improved in
this paper, the problem of constant deviation will be fully
considered so that the noise reduction effect is ideal and the
distortion is low.

Blind source separation (BSS) is a kind of signal pro-
cessing technology rapidly rising in the field of signal
processing in the late 1990s. It cannot only obtain the target
signal but also obtain every interference noise source, which
is convenient for deeper noise source location and feature
extraction. It is widely used in acoustic signal processing
[12], wireless sensor signal transmission [13], biomedical
engineering [14], and fault diagnosis [15]. BSS can be divided
into online methods and offline methods [16]. In general, to
achieve faster convergence, all data are used in offline
methods during each iteration. However, the disadvantage
of offline BSS is that a large storage capacity is required, so
offline BSS is not suitable for time-varying situations. In
contrast, in the online method, only a small amount of data
storage is required. Online BBS can dynamically update the
decomposition matrix in real-time based on current data, so
it has been successfully applied to time-varying situations. At
present, the most common online BSS are natural gradient
algorithm [17] and the equivariant adaptive separation for
independence (EASI) algorithm [18].

'e convergence rate and steady-state error are used to
evaluate the performance of online BSS. 'e faster the
convergence speed, the stronger time-varying tracking
ability. 'e smaller steady-state error, the higher conver-
gence accuracy. In the process of signal separation, the two
indicators are contradictory. But the convergence rate and
steady-state error are related to the learning step size. In-
creasing the step size can improve the convergence speed
and time-varying tracking ability of the separation model.
Decreasing the step size can obtain higher convergence
accuracy. 'erefore, the balance ability of step size to
convergence rate and steady-state error will be fully con-
sidered when designing the online BSS model.

In summary, considering the noise reduction ability of
LWT and the separation ability of BSS for multi-frequency
signals, a novel improved threshold adaptive forgetting
variable step size blind separation model (ITAFBS) for weak
signal detection is proposed. Firstly, the improved lifting
wavelet transform (ILWT) is used to denoise the weak signal
to reduce the interference of strong noise to the separation
model. 'e AFBS is then applied to the preprocessed mixed
signals. Fast and high precision separation can be achieved
by adjusting step size adaptively and introducing the for-
getting factor and Fourier norm. In simulation and exper-
iment, the performance of ITAFBS and its application in

mechanical field and instrument field are verified by com-
paring it with other comparison algorithms.

'e main innovations are as follows:

(1) A novel improved threshold adaptive forgetting
variable step size blind separation model (ITAFBS)
for weak signal detection is proposed. 'e ITAFBS
has the ability of fast and accurate feature extraction
for weak signals.

(2) In the ITAFBS, an improved threshold equation with
adjustment factor and an optimal objective function
with SNR and RMSE as indexes are proposed. 'e
adjustment factor can handle the constant deviation
problem flexibly. 'e objective function of the op-
timal value of adjustment factor can make the
denoise signal with high SNR and low distortion at
the same time.

(3) In the ITAFBS, an adaptively variable step size al-
gorithm is proposed, which adaptively adjusts
according to the separation index. At the initial stage
of separation, the convergence rate of the model is
improved by increasing the step size. When the
separation is about to be completed, the steady-state
error can be reduced to improve the separation
accuracy by shortening the step size.

(4) In the ITAFBS, the forgetting factor and Fourier
norm are introduced to further improve the overall
convergence speed and separation accuracy of the
model.

'e organizational structure of the rest of this paper is as
follows: Section 2 introduces the ILET and the improved
threshold function; Section 3 introduces ITAFBS theory,
formula derivation, and implementation steps in detail;
Section 4, simulation signals are used to verify ITAFBS
performance and compare it with other algorithms; Section
5, acceleration sensor signal and test circuit signal are used to
verify ITAFBS performance; and Section 6 summarizes the
full text.

2. Improved Lifting Wavelet Transform

2.1. Lifting Wavelet Transform. As one of the most popular
frequency domain methods, wavelet transform (WT) has
been widely studied in many aspects of signal processing [3].
Since many data sets have a strong correlation in time and
frequency, wavelet can use the smallest coefficient to quickly
extract the data set. LWT is called the second generation
wavelet, it breaks through this limitation. 'e lifting pro-
cedure is a method for not only scheming wavelets but also
doing wavelet transform.

'e process of LWT includes two parts: forward
transform decomposition and inverse transform recon-
struction. 'e decomposition process of the positive
transformation includes three stages of decomposition,
prediction, and update.'e three stages of inverse transform
reconstruction are opposite to the former, including anti-
update, antiprediction, and merging [19]. 'e decomposi-
tion and reconstruction process of LWTis shown in Figure 1.
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In Figure 1, the original signal sequence x(n) is
decomposed into an even sequence xe(n) and an odd se-
quence xo(n) by the separation operator S. Because even
sequences are related to odd sequences, even sequences are
often used to predict odd sequences. �e di�erence d(n)
between the odd sequence and the predicted value P[xe(n)] is
a measure of approximation. d(n) is the wavelet coe�cient,
which can be regarded as the high-frequency component of
the original signal sequence. Prediction process: d(n)�
xo(n) − P[xe(n)]. Where P is the prediction operator. �e
process of using d(n) to adjust even sequences is called the
updating process, which makes s(n) contain only the low-
frequency components of the original signal sequence.
Update process: s(n)� xe(n) +U[d(n)]. Where U is the up-
date operator. On the other hand, the original signal se-
quence is reconstructed as x’(n) through reverse update,
reverse prediction, and merge [20].

�ere are many kinds of processing methods for the
wavelet coe�cients obtained by decomposition, such as
correlation denoising, wavelet threshold denoising, modulus
maximum denoising, and translation invariant denoising.
Among them, the wavelet threshold denoising method has
the least amount of computation, the highest e�ciency, and
the most extensive application �elds. In the wavelet lifting
scheme proposed in this paper, the high-frequency com-
ponent of the signal to be measured can be decomposed �rst,
and then the low-frequency component can be obtained by
constructing the scaling function. �e speci�c threshold
denoising process is shown in Figure 2.

In Figure 2, “Input” represents the noisy signal, which is
split into odd and even sequences by lazy wavelet transform.
“ca1,” “ca2”, ... “can,” respectively, decompose the low-
frequency coe�cients of the �rst layer, the second layer, and
the nth layer. “cd1,” “cd2”, ... “cdn,” respectively, decompose
the high-frequency coe�cients of the �rst layer, the second
layer, and the nth layer. “cd1′,” “cd2′”, ... “cdn′,” respectively,
represent the high-frequency coe�cients after threshold
processing. “ca1′,” “ca2′”, ... “can-1′,” respectively, represent
the low-frequency coe�cients of the reconstructed second
layer, �rst layer, and nth layer. “Output” represents the
reconstructed signal after threshold noise reduction
processing.

2.2. Improved Lifting Wavelet Transform. Donoho and
Johnstone proposed a wavelet threshold denoising method.

�e basic idea is based on the distribution characteristics of
noise and signal in the wavelet threshold. �e classical
threshold functions include hard and soft threshold func-
tions [21].

2.2.1. Hard �reshold Function. When the absolute value of
wavelet coe�cients is less than the given threshold, it is zero.
If the absolute value is greater than the threshold value, it will
remain unchanged. �e expression is as follows:

ŵj,k �
wj,k, wj,k

∣∣∣∣∣
∣∣∣∣∣≥ λ,

0, wj,k
∣∣∣∣∣

∣∣∣∣∣< λ.


 (1)

In (1), λ represents the threshold value, and Wj,k rep-
resents the wavelet coe�cients of the original signal
decomposed in the �rst layer. According to (1), the conti-
nuity of the hard threshold function is relatively poor, and a
jump phenomenon occurs at the threshold, which may cause
the signal to oscillate during the inverse transformation
process and make the reconstructed signal appear pseudo-
Gibbs phenomenon.

2.2.2. Soft �reshold Function. �e wavelet coe�cients,
whose absolute value is less than the threshold, are replaced
by zero, and the wavelet coe�cients, whose absolute value is
greater than the threshold, are reduced by threshold. �e
expression is as follows:

ŵj,k �
sign wj,k( )• wj,k

∣∣∣∣∣
∣∣∣∣∣ − λ( ), wj,k

∣∣∣∣∣
∣∣∣∣∣≥ λ,

0, wj,k
∣∣∣∣∣

∣∣∣∣∣< λ.




(2)

It can be seen from (2) that the soft threshold function
has no discontinuity and has good continuity. However, for
the wavelet coe�cients, when the absolute value of the value
is greater than the threshold, the signal will be compressed to
a large extent. So that the deviation betweenWj,k andWj,k is
relatively large, and the high-frequency component of the
target signal will be lost to a certain extent.

2.2.3. Improved �reshold Function. Aiming at the problem
that hard threshold function may produce an oscillation
point and the soft threshold function has constant deviation,
the classical threshold function is improved. �e wavelet

U –U–P P

s (n)

d (n)
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x (n)

xe (n)

xo (n)

Odd

Even

x′ (n)

Figure 1: LWT process diagram.
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coefficients obtained by improved threshold processing are
between hard and soft threshold functions, and then
the wavelet coefficients closer to the real value are obtained.
'e expression of the improved threshold function is shown
(3)as

wj,k �
wj,k − sign wj,k •λ(1 − θ)

2
, wj,k



≥ λ,

0, wj,k



< λ.

⎧⎪⎨

⎪⎩
(3)

In (3), the parameter θ is the adjustment factor, and its
value range is [0, 1], and the constant deviation can be
flexibly handled by adjusting its value. When the value of θ is
close to 0, the improved threshold function is close to the
soft threshold function. When the value of θ is close to 1, it is
similar to the hard threshold function. 'e value of θ can be
flexibly adjusted according to the actual signal character-
istics, which has good adaptability.

By constantly adjusting the value of parameter θ, the
improved threshold function can realize both the function of
soft and hard threshold functions. 'e improved threshold
function can better improve the shortcomings of hard and
soft threshold functions, make the reconstructed signal

smoother, retain the high-frequency components of the
target signal, reduce the loss of useful components, and
achieve a better noise reduction effect. By setting the
threshold λ� 5, and θ� 0.5, the comparison diagram be-
tween the improved, the soft, and the hard threshold
functions is obtained, as shown in Figure 3.

'e noise reduction performance of three kinds of
threshold functions is compared and analyzed by simulation
signal. y � sin (2 × π × 20 × t) is used as simulation signal.
Gauss white noise with SNR� − 10 dB is added to the sim-
ulation signal. dbN wavelet has good regularity. In this
paper, considering the smoothness, localization ability,
computation amount, and real-time performance, the db5
wavelet is selected as the basis function. 'e number of
decomposition layers is set to three, and general threshold
estimation is used to obtain the threshold. 'e SNR and
RMSE of the reconstructed signal are used to evaluate the
noise reduction performance of different threshold func-
tions. 'e definitions of SNR and RMSE are shown in (4)
and (5). In (5), S(n) is the original signal and S(n) is the
reconstructed signal after LWT.

SNR � 10 log
Signalpower
Noise power

, (4)

RMSE �

�����������������

1
N



N

n�1
[S(n) − S(n)]

2




. (5)

'e SNR of the reconstructed signal is higher, and the
RMSE is smaller, which indicates that the denoising effect is
better and the distortion of the reconstructed signal is lower.
By this characteristic, the objective function is constructed
and the optimal value of adjustment factor is calculated.
First, the adjustment factor is evaluated at 0.1 intervals
within the range [0, 1]. Calculate SNR and RMSE after
denoising by each adjustment factor threshold. 'e func-
tions S(θ) and R(θ) are obtained by fitting these points. 'e
normalized functions S(θ) and R(θ) are obtained by using
the maximum and minimum values of S(θ) and R(θ) to
normalize. According to the abovementioned characteris-
tics, the adjustment factor is the optimal value when the sum
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of the distances from S(θ) to max S and R(θ) to min R is the
smallest. 'e objective function is expressed as
minmize

θ
[maxS − S(θ)] + [minR − R(θ)] . Table 1 shows

the comparison results of SNR and RMSE after denoising
with different threshold functions.

According to Table 1, it can be seen that the improved
threshold method cannot only obtain the highest SNR but
also its RMSE is smallest. 'erefore, the improved threshold
function has a better denoising effect than soft and hard
threshold functions, and the distortion of reconstructed
signal is the lowest.

3. Improved Threshold Adaptive Forgetting
Variable Step Size Blind Separation Model

3.1. Adaptive Forgetting Variable Step Size Blind Separation.
Assuming that there are n signal sources, s(t)� (s1(t), s2(t),
. . ., sn(t))Tare the source signal vector and x(t)� (x1(t), x2(t),
. . ., xn(t))T are the observation signal vector. It is assumed
that the time delay in the signal transmission process can be
ignored, and the mixing method of each source signal
collected by the sensor is linear. Based on these assumptions,
a linear instantaneous mixture model of signal-to-noise is
constructed. Its mathematical model can be expressed as

xi(t) � 
n

j�1
aijsj(t) + Ki(t), i � 1, 2, 3 . . . n. (6)

In (6), aij represents the mixing coefficient, and Ki(t)
represents Gaussian white noise in a typical case. 'e matrix
method is expressed as follows:

x(t) � As(t) + K(t), (7)

whereA is the full-rank n× nmixing matrix, each element in
the matrix A represents the mixing coefficient aij of signal
and noise. Generally, it is assumed that the source signals are
statistically independent. Without any loss of generality,
they are also assumed to have zero mean, and at most only
one satisfies the Gaussian distribution. When the interfer-
ence noise can be ignored or has been reduced to be neg-
ligible by noise reduction methods, the model can be
simplified as shown in the following formula as follows:

x(t) � As(t). (8)

'erefore, the separation process of BSS is to find the
optimal solution of the separation matrix B that satisfies the
following function as

y(t) � Bx(t). (9)

'e separated signal vector y(t) represents the estimated
signal of the source signal s(t). Figure 4 is the structure of the
feedforward adaptive processor, which is used to solve the
matrix B.

'e purpose of online BSS is to adaptively adjust the
separation matrix B to obtain an estimated signal vector y(t),
that is, similar to the source signal vector s(t) as much as
possible. Because the independent component analysis re-
sults have ranking uncertainties and amplitude

uncertainties, the separation results are not unique. But it
will not adversely affect the identification of the source
signal. 'e whole process is to optimize the separation
matrix B so that it can satisfy

BA � PΛ. (10)

In (10), P represents a generalized permutation matrix,
and Λ represents a diagonal matrix.

In the process of BSS, the independence of separated
signals is often regarded as the objective function of
updating the separation matrix, and mutual information is
often used as a criterion for evaluating the independence of
separated signals. Based on the criterion of mutual infor-
mation minimization, the natural gradient algorithm can be
used as a learning algorithm for the separation matrix. 'e
updated formula of the natural gradient algorithm to obtain
the separation matrix B is shown as follows [17]:

Bt+1 � Bt + μt I − ψ yt( yT
t Bt. (11)

In (11), μt represents the iteration step factor, Bt rep-
resents the tth iteration of the separation matrix, I represents
the identity matrix, ψ(·) is the activation function and the
choice of ψ(·) depends on the probability distribution of the
source signal. In order to remove the second-order corre-
lation between the original channel data and make the
second-order statistical independence between the com-
ponents, it is necessary to spheroidize the observation signal
[22]. 'e online adjustment formula of the weight matrix of
the spherical network can be derived by natural gradient
method, as shown in the following:

Vt+1 � Vt − μt ztz
T
t − I Vt. (12)

In (12), z(t) represents the observation signal after
spheroidization. 'e separation process of blind source
separation can be decomposed into two steps. 'e first step
is adaptive updating of spheroidized matrix V. 'e second
step is the adaptive update of the orthogonal normalization
matrix U. So the separation matrix B can be expressed as the
product of a spheroidized matrix V and an orthogonal
normalized matrixU. 'e update equation of the orthogonal
normalized matrix U is expressed as follows:

U(t + 1) � U(t) − μt ψ yt( yT
t − ytψ

T yt(  U(t)

� I − μt ψ yt( yT
t − ytψ

T yt(   U(t).
(13)

Due to the separation matrix B�UV, combining the
abovementioned two steps into one step, and (14) can get as

Table 1: Comparison of SNR and RMSE after denoising with
different threshold functions.

'reshold functions SNR (dB) RMSE
Original signal − 10 2.256
Hard threshold method − 3.89 1.386
Soft threshold method − 2.192 1.012
Modular squared processing method − 2.851 1.175
Improved threshold method(θ� 0.31) − 0.897 0.784

Shock and Vibration 5



B(t + 1) � U(t + 1)V(t + 1)

� I − μt ψ yt( yT
t − ytψ

T yt(   U(t) I − μt ztz
T
t − I  Vt.

(14)

Ignore the μt2 in the (14), the expression of the equiv-
ariant adaptive separation for independence (EASI) can be
obtained [23, 24], which can be simplified as

Bt+1 � Bt + μt I − yty
T
t + ytψ

T yt(  − ψ yt( yT
t Bt. (15)

When the EASI reaches a steady state, it must be
satisfied.

E I − yty
T
t + ytψ

T yt(  − ψ yt( yT
t  � 0. (16)

E(·) is taking the mean. 'is requirement can be divided
into two parts.

D1 � E I − yty
T
t  � 0, (17)

D2 � E ytψ
T yt(  − ψ yt( yT

t  � 0. (18)

'e first condition (17) is used to ensure that the
components are orthogonal, but they cannot guarantee
mutual independence. 'e second condition (18) is used to
ensure the independence of each component. 'erefore,
when the algorithm reaches convergence, it needs to be
satisfied:

D1
����

���� � 0, (19)

D2
����

���� � 0. (20)

According to the steady-state condition of EASI, the
separation index is defined as

ζ � max E I − yty
T
t 

�����

�����, E ytψ
T yt(  − ψ yt( yT

t 
�����

����� . (21)

E(·) is taking the mean. ζ can be used as an index to
measure the degree of signal separation. In the initial stage of
separation, the value of ζ is relatively large. At this time, the
degree of separation of the mixed signal is relatively low, and
the value of the step size should be increased to improve the
convergence speed. As the separation process continues, the
estimated signal is more and more similar to the original
signal. At this time, the value of ζ is relatively small, which
indicates that a better signal separation effect is obtained at
this time. 'e value of step size should be reduced to reduce
the steady-state error of the algorithm.

In (19)–(21), ||·|| represents Frobenius norm (F-norm) of
the matrix. F-norm refers to the sum of the squares of the

elements in the matrix and then finding the square root.
Compared with 1-norm and 2-norm, from the perspective of
learning theory, F-norm can prevent the occurrence of over-
fitting and improve generalization ability. In addition, from
the perspective of optimization or numerical calculation, as a
convex function, F-norm is convenient for derivative op-
eration, so as to improve the stability and efficiency of so-
lution operation and help to solve the problem of matrix
inversion in some cases.

For online BSS, the step size needs to be updated online
adaptively, so themethod of obtaining the separation index ζ
should be online updated. In order to obtain the online
update of ζ, D1 and D2 should satisfy the online adaptive
update. Let

RL � E yty
T
t ,

RH � E ψ yt( yT
t .

⎧⎪⎨

⎪⎩
(22)

According to (18), only the real-time online update of RL
and RH is needed. In the initial stage of signal separation, the
similarity between the estimated signal and the source signal
is relatively low. With the continuous progress of the sep-
aration process, the estimated signal and the initial signal are
more and more similar, and the steady-state error is also
smaller and smaller. Errors will accumulate gradually during
iteration. In order to reduce the accumulation of errors at the
initial stage of separation, a real-time online update method
with the forgetting factor is designed [25, 26]. According to
(19), each element is updated by calculating the mean value.
'e update method is shown as

RL(t) �
yty

T
t + ηΓη(t − 1)RL(t − 1) 

Γη(t)
,

RH(t) �
ψ yt( yT

t + ηΓη(t − 1)RH(t − 1) 

Γη(t)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

In (23), RL(t) represents the forgotten data of the tth
update of RL, and RH(t) represents the forgotten data of the
tth update of RH. η represents the forgetting factor, and its
value range is (0, 1). When η is close to 1, the forgetting
speed is slow, and more attention is paid to historical data.
When η approaches 0, the forgetting speed is faster, and the
historical data has little influence on iteration. Γη(t)�

1+η+...+ηt− 1. By (17), (18), and (22), D1 and D2 can be
updated as

RL(t) � 1 − (t − 1)RL(t − 1)  + μ(t − 1)RL(t − 1),

RH(t) � 1 − μ(t − 1)RH(t − 1)  + μ(t − 1)RL(t − 1),

D1(t) � I − RL(t),

D2(t) � R
T
H(t) − RH(t).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

In (24), RL(t) update is accomplished by the combination
of the last updated data RL(t− 1) and the forgotten data
RL(t − 1), and RH(t) update is accomplished by the com-
bination of the last updated data RH(t− 1) and the forgotten

A B
s (t) x (t) y (t)

Adaptive
processor

Figure 4: Structure diagram of feedforward adaptive processor.
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data RH(t − 1). From the previous analysis, it can be seen
that the step size plays a very important role in improving
the steady-state error and convergence speed of the algo-
rithm [24]. If the selected step size is relatively large, a faster
convergence rate will be obtained, but at the same time, the
steady-state error will be large, and the separated estimated
signal will not be accurate enough. If the selected step size is
relatively small, the steady-state error obtained will be rel-
atively small but will reduce the convergence speed.
'erefore, the choice of step size will directly determine the
performance of the algorithm. In the early stage of signal
separation, the similarity between the estimated signal and
the source signal is low, so a larger step size should be
selected. In the later stage of signal separation, the
similarity between the estimated signal and the source signal
increases, and the step length should be shortened to obtain
a smaller steady-state error. 'erefore, in order to have both
a faster convergence speed and a smaller steady-state error,
the step size should be adaptively adjusted online
according to the separation index. A nonlinear mapping is
constructed, and the step length can be dynamically adjusted
according to it. 'e nonlinear monotonic increasing func-
tion is shown as

μ(t) �
β tanh α[ζ(t) − ε]{ } + δ, ζ(t)≥ 0.5,

βαζ(t)
3
, 0≤ ζ(t)< 0.5.

 (25)

α and β are constants. Adjust the shape by α and adjust
the scale by β. ε represents the position of the maximum
variance rate of the separation index ζ. 'e ideal value of ε is
half of the maximum value of the separation index ζ. In
order to satisfy μ(t) � 0, while ζ(t)� 0, δ can be calculated as

δ � − β tanh(− α · ε). (26)

Since the selection of the step size will be affected by the
previous step size, the update method of the step size is
shown as [27]

μ(t) � ημ(t − 1) +(1 − η)μ(t). (27)

3.2. +e ITAFBS. 'e separation performance of BSS to
mixed signals is seriously disturbed by strong noise. In order
to solve this problem, a novel improved threshold adaptive
forgetting variable step size blind separation model for weak
signal detection (ITAFBS) is proposed. 'e framework of
ITAFBS is shown in Figure 5. 'e specific steps of weak
signal detection are as follows:

(1) Set the number of wavelet decomposition layers h
and wavelet basis function. 'e wavelet coefficients
Wj,k are obtained by the forward lifting wavelet
transform of mixed signal x with strong noise.

(2) 'e general threshold estimation method is used to
calculate the threshold λ. 'e objective function was
used to calculate the optimal adjustment factor θ.
'e improved threshold function (3) is used to
quantify the wavelet coefficients Wj,k of each layer,
and the new wavelet coefficients wj,k are obtained.

(3) 'e inverse transform of the lifting wavelet is per-
formed on the new wavelet coefficients wj,k to obtain
the mixed signal x′ after denoising.

(4) According to the Gaussian characteristics of each
component in the mixed signal x, the activation
function ψ(·) is set. Set initial step size μ(0), empirical
parameter ε, constant α and β, iteration number m,
forgetting factor η, t= 1, and initial separationmatrix
B1.

(5) Calculation.'e separation signal y(1) was calculated
by (9). 'e separation index ζt was calculated in the
order of (23), (24), and (21).

(6) Update. According to the separation index ζt, (25)
and (27) are used to update the iteration step μ(t).
According to the new iteration step μ(t), (15) is used
to update the separation matrix Bt+1.

(7) Judge whether the preset number of iterationsm has
been reached. If no, t= t+ 1, perform Step 4) and
Step 5). If so, obtain the latest separation matrix B′.

(8) Equation (9) and the separation matrix B′ are used to
calculate the estimated signal y′.

4. Simulation

4.1. Parameter Selection. 'is section is proposed to study
the influence of parameters α and β on the ITAFBS. Four
source signals and four mixtures of them are used. 'e
expression of the source signals are shown in (28), which are
sinusoidal signal, pulse signal, amplitude-modulation signal,
and white-noise signal, respectively.

s1(t) � sin (1300 × π × t),

s2(t) � sign(sin (290) × π × t),

s3(t) � sin (18 × π × t) × sin(600 × π × t),

s4(t) � ran dn[1, N].

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(28)

'e sampling frequency and sampling length are set as
12000Hz and 0.5 s. Furthermore, the mixing matrix A,
randomly generated for each trial, is subject to normal
distribution N(0, 1). And Gaussian white noise
(SNR� − 20 dB) is added to the mixed signal. 'e perfor-
mance index (PI) [28] is set as a function of the global matrix
C�BA, which is mainly used to test the performances of the
proposed method.

P �
1

n(n − 1)


i


j

Cij





maxk Cik



− 1⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

+ 
j


i

Cij





maxk Ckj




− 1⎛⎝ ⎞⎠.

⎫⎪⎬

⎪⎭

(29)

In (29), Cij is the (i, j) element of the global matrix C. 'e
actual BSS results can only make the global matrix C as close
as possible to a generalized sorted matrix. Generally, the
smaller the PI value, the better the separation performance
of the algorithm.
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In the simulation, all the source signals are nonGaussian
signals, so nonlinear function ψ(y)� y3 is choice and ε� 0.7,
μ(0)� 0.005. PI curves of α and β with different values are
shown in Figures 6 and 7.

In Figure 6, α has a great effect on the steady-state error,
and with the decrease of α, the steady-state error decreases.
In Figure 7, β has a great effect on the initial convergence
rate, mainly because β controls the initial step size.'e larger
the parameter β is, the larger the initial step size is and the
faster the initial convergence speed is. Considering the fast
convergence speed and small steady-state error, set the
parameter α� 3 and β� 0.005.

4.2. Contrast of Different Norm. Aiming at the norm selec-
tion problem in (21), compare the separation performance of
different norm corresponding algorithms according to the PI.
Add the 1-norm, 2-norm, and F-norm of the matrix to the
ITAFBS, and compare the PI, which is shown in Figure 8.

In Figure 8, norm has a great effect on the steady-state
error and the initial convergence rate. Compared to 1-norm
and 2-norm, the convergence speed of F-norm is close to 1.7
times that of 1-norm and 2-norm, indicating that its con-
vergence speed is the fastest. In addition, the F-norm has the
smallest final value of PI, indicating that its steady-state error
is the smallest. It can be seen that the introduction of F-norm

Figure 5: Framework of ITAFBS.
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not only speeds up the convergence speed but also improves
the stability of the learning algorithm.

4.3. Compare withOtherMethods. 'e settings of the source
signal are as described above. 'e proposed method is
compared with the EASI method with fixed step size (FS-
EASI) [24], the exponential-decay-step size method (EDS)
[29], the adaptive step size method with weighted orthog-
onalization (AS-WO) [28] and variable step size algorithm
with separation indicator (VS-SI) [15].

'e initial parameters are set as follows: the step size of
FS-EASI μ� 0.005. 'e parameters of EDS are set as μ(0)�

0.005, K0 �1000, L0 � 0.0012, which are widely used in
[19, 23]. 'e parameters of AS-WO are set as μ(0)� 0.005,
β� 00.997, ρ� 0.003. dbN wavelet has good regularity. In the
ITAFBS, considering the smoothness, localization ability,
computation amount, and real-time performance, db5
wavelet is selected as the wavelet basis function, and the
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Figure 9: Simulation analysis of the ITAFBS. (a) Source signals, (b) mixed signals, (c) noise-reduced signals, and (d) separated signals.
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Figure 10: 'e step size of the ITAFBS.
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number of decomposition layers h� 3, α� 3, β� 0.005, ε� 0.7,
η� 0.98.

Source signals and mixed signals of simulation analysis
are shown in Figures 9(a) and 9(b). 'e noise-reduced
signals and separated signals recovered by the ITAFBS are
presented in Figures 9(c) and 9(d).

Compare Figures 9(b)–9(d), the ILWTcan eliminate part
of the noise, but cannot make the signal characteristics
appear. 'erefore, it is necessary to use a separation algo-
rithm to further process the signal. Compare Figures 9(a)
and 9(d), the recovery effect of the source signal is ideal
except that the amplitude and sequence of the signal are

inconsistent, indicating the effectiveness of the ITAFBS.
Figure 10 shows the trend diagram of the step size of the
ITAFBS with the number of iterations.

It can be seen from Figure 10, that in the early stage of the
separation process since the correlation between the signals
is relatively strong, the degree of signal separation is rela-
tively low. At this time, a larger step value should be selected
to accelerate the algorithm convergence, the step size
increases rapidly to near the maximum value of 0.0091.
With the continuous separation process, the step size is
reduced to about 0.00023. When the number of iterations
reaches about 1500, the signal has been basically separated.
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Figure 12: 'e performance comparison of the different BSS methods.

Table 2: Rolling bearing parameters.

Inner ring diameter
(D1/mm)

Outer ring diameter (d1/
mm)

Pressure
angle (α/°)

Diameter of rolling
element (d/mm)

Pitch diameter
(D/mm)

Number of rolling
elements (Z)

52 25 0 7.49004 39.0398 9
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Figure 13: Time-domain waveform. (a) Original vibration signal and (b) vibration signal with noise.
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At this time, in order to obtain a smaller steady-state error
ratio, the step size is smaller. Finally, in order to improve the
accuracy and further improve the degree of signal separa-
tion, the step length keeps a slow speed and continues to
decrease until its value fluctuates near a very small value.'e
changing trend of step size shows the correctness of the
ITAFBS.

In order to illustrate the effect of wavelet denoising
preprocessing, the comparison between wavelet denoising
preprocessing and nonwavelet denoising preprocessing is
performed, and the result is shown in Figure 11.

It can be seen from Figure 11, the two algorithms nearly
converge after about 1000 iterations, which indicates
that the convergence rates of the two algorithms are
nearly the same. However, it can be seen that the
algorithm with wavelet denoising preprocessing can obtain
a smaller final value of the PI, which indicates that the
algorithm has a smaller steady-state error. 'erefore, the
LWT can further improve the separation performance of
the algorithm.

Figure 12 shows the performance comparison of the
different BSS methods. It shows the PI obtained from EDS,
FS-EASI, AS-WO, VS-SI, and the ITAFBS.

From Figure 12, the convergence speed of AS-WO is the
fastest, and the steady-state error is the largest. 'e con-
vergence speed of ITAFBS, VS-SI, and FS-EASI is faster than
EDS.'e steady-state error of FS-EASI is relatively large and
has a large fluctuation due to the limitation of fixed step size.
'e ITAFBS has the smallest steady-state error compared
with other methods. In conclusion, the ITAFBS has the best
separation performance.

5. Experimentation

5.1. +e Weak Signal of Acceleration Sensor. 'e experi-
mental data used in this section are the open experimental
data of Case Western Reserve University (CWRU). 'e
faulty bearing is at the shaft of the motor.'e rolling bearing
model is SKF6205-2RS JEM deep groove ball bearing. 'e
bearing fault is the pitting fault of the inner ring. 'e test
speed is 1750 r/min, and the rotation frequency of the vi-
bration signal is fr � 29.16Hz. 'e parameters of the rolling
bearing at the drive end are shown in Table 2. In the process
of collecting vibration signal data, a vibration acceleration
sensor was placed on the drive end (DE), fan end (FE), and
base of the motor (BA), and a 16-channel data logger was
selected to save the data.'e fault frequency of the outer ring
can be calculated by (30).

fi �
Z

2
1 +

d

D
cos α fr. (30)

'e frequency of failure of the inner ring of the bearing is
157.94Hz. 'e sampling frequency and sampling length are
set as 12000Hz and 1 s. 'e time-domain waveforms col-
lected by sensors at three positions are shown in
Figure 13(a). Observing the time-domain waveform dia-
gram, it can be seen that the time-domain waveform in the
drive end is ideal, and the impact characteristics are more
prominent. Gaussian white noise (SNR� − 10 dB) is added to
the vibration signal of the rolling bearing. 'e time-domain
waveform of the noise-added vibration signal is shown in
Figure 13(b). It can be seen that the fault characteristics at
this time have been completely overwhelmed by strong
noise.
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Figure 14: 'e change of the step size of the ITAFBS.
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Figure 15: Time-domain waveform after the ITAFBS.
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'e parameter settings are consistent with Section 4.3.
'e change in the step size of the ITAFBS is shown in
Figure 14.

It can be seen from Figure 14 that at the initial stage of
separation (the number of iterations is 0 to 623), the signal
separation degree is low, and the separation model needs to
accelerate convergence by rapidly increasing the step size.
When the number of iterations t� 623, the iteration step size
reaches the maximum value (μ� 0.0082), and the model
reaches the maximum convergence speed. When the
number of iterations is 623 to 2000, the separation index is
close to the steady-state value, and the step size gradually
decreases in order to obtain a small steady-state error. 'e
number of iterations after 2000, iteration step size
(μ� 0.0002) is close to convergence, and the step size
changes slowly, which indicates that the separation of mixed
signals is basically completed. 'e change mode of step size
conforms to the theory of Section 3.2.

'e time-domain waveform of the signal after noise
reduction processing and separated by the ITAFBS is shown
in Figure 15.

It can be seen from Figure 15 that the noise is suppressed
to a certain extent, but the shock characteristics of the vi-
bration signal are still unable to be obtained from the time-
domain waveform diagram. 'e Hilbert envelope spectrum
is used to demodulate the three separated signals. 'e en-
velope spectrum is shown in Figure 16.

In Figure 16, the fault characteristic frequency 157Hz
and the second harmonic 314Hz of the inner ring can be
clearly found from the envelope spectrum of the first sep-
arated signal. It indicates that the bearing in drive end has
the pitting fault of the inner ring.

Figure 17 shows the performance comparison of the
different BSS methods. It shows the PI obtained from EDS,
FS-EASI, AS-WO, VS-SI, and the ITAFBS.

From Figure 17, the convergence speed of ITAFBS is the
fastest, and the steady-state error is the smallest.'e ITAFBS
has the best separation performance. To sum up, the ITAFBS
can accurately detect the fault characteristics of bearing
inner ring.

5.2.+eWeak Signal of Test Circuit. 'is experiment aims to
test the application effect of the ITAFBS in the field of in-
strument. 'e equipment of the test system includes signal
generator, weak signal analog amplifier circuit board, signal
acquisition instrument, shielding box, and computer. Target
signal with a frequency of 79Hz and a peak-to-peak value of
50mVpp is generated by signal generator. At the same time,
a clock signal with a frequency of 30 kHz and a duty cycle of
10% is generated. 'e target signal is attenuated by a large
capacitor, and the amplification results are output by weak
signal analog amplifier circuit board. Signal acquisition
instrument is used to collect the output signal of the am-
plifying chip. Shielding box is used to shield outside in-
terference.'e test system and analog amplifier circuit board
are shown in Figure 18.
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Figure 17: 'e performance comparison of the different BSS methods (CWRU data).

Figure 18: 'e test system and analog amplifier circuit board.
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'e observation signal can be obtained by mixing the
chip output signal and the two-channel output signal of the
signal generator. 'e time-domain waveform is shown in
Figure 19. 'e ITAFBS method is used to separate the
observed signals, and the time-domain waveform of the
separated signal is obtained as shown in Figure 20. 'e
periodicity of the signal can be seen in the first figure in
Figure 20. 'e signal is analyzed in the frequency domain

and the result is shown in Figure 21. 'e peak frequency of
79Hz (the target frequency) can be clearly seen in Figure 21.
'erefore, the ITAFBS can accurately detect the weak target
signal generated by the test circuit.

6. Conclusion

A novel improved threshold adaptive forgetting variable step
size blind separation model (ITAFBS) for weak signal de-
tection is proposed. 'e ITAFBS has the ability of fast and
accurate feature extraction for weak signals, which benefits
from the ILWT to reduce the noise of weak signals, and the
fast and accurate decomposition of AFBS to preprocessed
mixed signals.

After simulation and experimental analysis, the fol-
lowing conclusions can be drawn:

(1) 'e proposed improved threshold function achieves
better noise reduction results than other threshold
functions

(2) 'e PI evaluation index analysis of five different
algorithms shows that the ITAFBS has the fastest
convergence speed, the smallest steady-state error,
and the best separation performance

(3) 'e verification results of two experimental cases
show that ITAFBS can be applied to mechanical and
instrument fields, which is feasible and practical

In future work, we will further study the order inde-
terminacy and amplitude indeterminacy in the ITAFBS.
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