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(e precise detection of building vibration signals is a crucial problem for the identification of building vibration sources and
characteristics. However, the building vibration signal is usually accompanied by complex high-frequency noise. (e present
study proposed a novel building vibration signal denoising method based on improved empirical modal decomposition coupled
with interwoven Fourier decomposition (IEMD-IWFD). (e noise-embed building vibration signal is first decomposed by the
IEMD-IWFD. (en, the intrinsic mode function (IMF) components with useful information are extracted from the original
building vibration signal using the energy criterion of the autocorrelation function. After that, the building vibration signal is
formed by reconstructing the IMF component using the Hilbert transform. Based on the comparison of similarity coefficient and
mean square error between the reconstructed signal from IEMD-IWFDM and EMD and target signal, it is indicated that the
IEMD-IWFDM exhibits a better denoising performance for the simulated building vibration signal induced by trains.

1. Introduction

Building vibration signal processing is an indispensable part
of vibration source identification and feature extraction.
Poston et al. [1] reported on measurements from an
instrumented, public building and examined the viability of
conventional localization algorithms for locating persons
moving within a building. Field measurements of vibration
and noise on the ground and inside a nearby 3-story building
subjected to moving subway trains were conducted by Zou
et al. [2]. A general synthesis of identification and vibration
control of building structures under unknown excitations
was proposed by Lei et al. [3], which has been proven to be
cost-effective and beneficial for developing smart building
structures.

(e key role of signal processing is to extract the desired
section of the signal and remove the high-frequency noise.
Some time, frequency and time-frequency domain-based

methods have been proposed to suppress interference
during vibration signal collection [4]. Traditional averaging
approaches in the time domain are more suited to periodic
signals [5]. (eir denoising performance is limited to vi-
bration signals with varying frequency and amplitude.
Frequency domain methods such as Butterworth filtering
and homomorphic filtering provide a better insight into the
stability of a system, which can remove noise within the
frequency band of interest [6]. (e model frequency and its
changing range caused by the variation of working condi-
tions and surroundings are required when using frequency
domain methods. (erefore, their application is limited [7].
Since characteristics such as time and frequency are taken
into account, wavelet transform and other time-frequency
domain techniques can be used on both static and nonstatic
signals [8]. Nonetheless, some proper thresholds and opti-
mal parameters should be manually selected and adjusted to
avoid the elimination of useful information [9]. Other
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denoising methods based on global projection [10], artificial
neural network [11], and singular value decomposition [12]
have also been proposed to carry out the denoising tasks.
Among the methods mentioned above for denoising vi-
bration signals, the denoising performance depends on the
selection and optimization of key parameters, which heavily
rely on the researchers’ empirical experiences.

Empirical mode decomposition (EMD) is an interesting
and paramount direction in the field of signal processing.
Lots of the works in the existing literature focus on nonlinear
unsmooth signal analysis. For instance, a novel data-driven
technique for the detection and isolation of faults was built
upon pseudo-fault signal (PFS)-assisted EMD [13]. Ahn
et al. [14] investigated fault detection of a roller bearing
system using a wavelet denoising scheme and proper or-
thogonal values of an intrinsic mode function covariance
matrix. Liu et al. [15] applied EMD-entropy to extract
characteristic parameters from vibration signals of high
voltage circuit breakers. EMD has been widely used in the
engineering field owing to its adaptability. As the key point
of the EMD, the screening process has a major influence on
signal decomposition. (e upper and lower envelopes, on
the other hand, generated from cubic spline interpolation
(CSI) in the EMD always lead to undershoots [16], over-
shoots [17], and edge effects [18], hence yielding unsatis-
factory results. Li et al. [19] proposed an improved empirical
modal decomposition (IEMD) algorithm. (e latter is based
on the modification of the envelope algorithm by repacking
the CSI with C2 piecewise rational cubic spline interpolation
(PRCSI) and C2 monotonic piecewise rational cubic spline
interpolation (MPRCSI), which presented the superiority,
especially for those nonlinear and unstable signals. However,
the IEMD algorithm is not good when decomposing those
signals with the overlapped spectra [20]. As an auxiliary
measure to the IEMD, interwoven Fourier decomposition
(IWFD) can extract signals by optimizing bandwidths in the
frequency domain. (e IWFD is a digital information time-
frequency analytical technique that is adaptable. Quasi-
bandpass filters with zero phase are used to decompose the
signal into a few Fourier intrinsic band functions guaran-
teeing the signal’s complete rebuilding in the IWFD [21].

As mentioned above, although extensive investigations
have been conducted in the field of building vibration

signals, research report in the denoising of building vibra-
tion signals, which remains a challenging task, is limited.
Moreover, it becomes more difficult when signals disturbed
by noise have nonlinear and nonsteady characteristics.
(erefore, the authors of this study evaluated the denoising
performance for the building vibration signal using the
IEMD coupled with the IWFD (referred to as IEMD-IWFD).

2. Strategy for Building Vibration
Signal Denoising

Figure 1 shows the procedure flowchart for building vi-
bration signal denoising. (e IEMD-IWFD is employed to
decompose the real building vibration signal into intrinsic
mode functions (IMFs). After that, the IMFs are extracted
using the energy criterion of the autocorrelation function
(ACF). After the determination of IMFs, the target building
vibration signal is formed by IMFs reconstruction by the
Hilbert transform. (e details of the algorithms used in the
current denoising method are described as follows.

2.1. Description of IEMD-IWFD

2.1.1. IEMD Algorithm. Many researchers have employed
the EMDmethod, which is an adaptive algorithm to perform
the reconstruction [22], classification [23], and denoising
[24] of a signal. However, the use of CSI to generate peak and
lowest envelopes has some disadvantages such as overtones
and subtones. EMD encountered difficulties in fitting signals
with the local extremum of CSI. Some methods have been
proposed to improve the adaptability of cubic spline [25].
One of these methods is the Hermite cubic spline with a
shape controlling parameter developed by Li et al. [19]. (e
shape controlling parameter is more flexible than the CSI,
but it still cannot satisfy the flexibility and smoothness si-
multaneously. (ere has been lots of research on the C2
cubic spline, which can interpolate the monotone, positive,
and convex data [25].

For a given dataset ((xi, fi), i� 0, 1, . . ., n) with
x0< x1< . . .< xn, let hi� xi+ 1 – xi, Δi� (fi+ 1 – fi)/hi and
θ� (x − xi)/hi (0< θ< 1). A well-advised cubic spline for
interpolating Ii� [xi, xi+ 1] is defined as follows:

Si(x) �
Mi(x)

Ni(x)
�

Pi0(1 − θ)
3

+ Pi1θ(1 − θ)
2

+ Pi2θ
2
(1 − θ) + Pi3θ

3

(1 − θ)
2αi + θ(1 − θ) 2αiβi + ci( 􏼁 + θ2βi

. (1)

An unknown Pik (k� 0, 1, . . ., n) has the following form:

Pi0 � αifi,

Pi1 � 2αiβi + αi + ci( 􏼁fi + αihidi,

Pi2 � 2αiβi + βi + ci( 􏼁fi+1 − βihidi,

Pi3 � βifi+1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where the parameters αi> 0, βi> 0, and ci≥ 0 are used to
adjust the interpolation curve shape. For instance, the data
range, monotonicity, positivity, and convexity over the
complete gap can be controlled. Based on the C2 continuity,
the following linear system can be described:

aidi− 1 + bidi + cidi+1 � ei, i � 1, 2, . . . , n − 1, (3)

2 Shock and Vibration



where

ai � hiαi− 1αi,

bi � hiαi ci− 1 + 2αi− 1βi− 1( 􏼁 + hi− 1βi− 1 ci + 2αiβi( 􏼁,

ci � hi− 1βi− 1βi,

ei � hiαi ci− 1 + αi− 1 + 2αi− 1βi− 1( 􏼁Δi− 1 + hi− 1βi− 1 ci + βi + 2αiβi( 􏼁Δi,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Clearly, the first derivative variable di can be calculated
with good approximation based on the aforementioned
linear system and coupled with two more equations such as
s(t) (x0)� d0 and s(t) (xn)� dn, and the first derivative
parameter di can be calculated through a unique solution

from this linear system. Two options for end-point deriv-
atives were explored by Karim and Pang [25], d0 and dn.
(ere is only one option in this case, which takes into ac-
count the equation.

d0 � Δ0 + Δ0 − Δ1( 􏼁
h0

h0 + h1
􏼠 􏼡 anddn � Δn− 1 + Δn− 1 − Δn− 2( 􏼁

hn− 1

hn− 1 + hn− 2
􏼠 􏼡. (5)

For the choice of the parameters, they have tested some
cases to guarantee the smoothness of curves with different
interpolation shapes, and the C2 PRCSI has been extensively
validated. In the comparison between the simulated results
from [25, 26], it is proved that the performance of the C2 cubic
spline performed well. Nevertheless, there is no useful infor-
mationmentioned for themonotonicity, and thus, a monotone
version for the C2 PRCSI will be further introduced.

Abbas et al. [26] investigated the shape-preserving C2
PRCSI for monotone data. It can be seen that it appears
with the original form of C2 PRCSI at every span Ii � [xi,
xi + 1].

Si(x) �
Pi(θ)

Qi(θ)
, (6)

where
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Signal
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Figure 1: Procedure flowchart of building vibration signal denoising.
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Pi(θ) � αifi(1 − θ)
3

+ fi 2αi + βi + ci( 􏼁 + αihidi( 􏼁θ(1 − θ)
2

+ fi+1 αi + 2βi + ci( 􏼁 − βihidi+1( 􏼁θ2(1 − θ) + βifi+1θ
3
,

Qi(θ) � (1 − θ)
2αi + θ(1 − θ) ci + αi + βi( 􏼁 + θ2βi .

(7)

At the same boundary conditions as mentioned above,
such as the variables that keep the shape of αi> 0, βi> 0,
ci≥ 0 and the dataset ((xi, fi), i� 0,1, . . ., n) with xi< xi+ 1
and fi< fi+ 1, etc., two cases for the monotonical series are
presented as follows.

Case 1. Δi � 0, di � di+1 � 0 and Si(x) � fi,∀x ∈ Ii,

i � 0, 1, . . . , n − 1;

Case 2. Δi > 0, S
(1)
i (x) � 􏽐

4
k�0 (1 − θ)4− kθkMki/(qi(θ))2,

where

M0i � α2i di,

M1i � 2αi αi + 2βi + ci( 􏼁Δi − βidi+1( 􏼁,

M2i � M1i + M3i − M0i + M4i( 􏼁 + ci αi + βi + ci( 􏼁Δi − 2αiβi di + di+1( 􏼁,

M3i � 2βi 2αi + βi + ci( 􏼁Δi − αidi( 􏼁,

M4i � β2i di+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

(e C2 curve for monotone data is preserved by the
rational cubic function when the shape parameters meet the
following requirements:

αi > 0,

βi > 0,

ci � mi + max 0,
di+1βi − Δi αi + 2βi( 􏼁( 􏼁

Δi

,
diαi − Δi 2αi + βi( 􏼁( 􏼁

Δi

􏼨 􏼩,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where mi is a constant larger than 0,
(e interpolation error was investigated in [18], whereby

the minimum interpolation error is lower than 0.064.
Compared to other alternative approaches, it is very di-
minutive, and this implies that the C2 MPRCSI with the
parameter choice schemes presented in [26] is computa-
tionally economical and pictorially appealing in comparison
with the local and global schemes [27] and the scheme
developed in Ref. [28].

2.1.2. IWFD Algorithm. (e Fourier decomposition algo-
rithm with adaptability characteristics is an adaptive data-
driven signal decomposition technique that generates the
signal’s analytic illustration and Hilbert transform [29].
Compared to the EMD algorithm, the main advantage of the
Fourier decomposition algorithm is that it has more detailed
mathematical expressions. As a result, there is no need to
predefine the parameters such as iterations, window lengths,

and termination criteria. When using the Fourier decom-
position algorithm, a signal can be considered as a series of
zero-mean orthosecting functions known as analytical
Fourier intrinsic band functions.

In the Fourier decomposition algorithm, a real-valued
N-point signal x[n] is represented by the weighted sum of
Fourier bases based on the discrete Fourier transform
(DFT):

x[n] � 􏽘
N− 1

k�0
X[k]W

− kn
N , (10)

where WN � e − j(2π/N) and x[k] denotes the N-point DFT
coefficients of the signal x[n]. (ese coefficients can be
achieved in a numerically effective way using fast Fourier
transform (FFT) techniques.

(eN-point signal x[n] can be rewritten by the following
two forms:
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x[n] � X[0] + 􏽘
N/2− 1

k�1
X[k]W

− kn
N + X

N

2
􏼔 􏼕W

− Nn/2
N + 􏽘

N− 1

k�N/2+1
X[k]W

− kn
N , (11)

x[n] � X[0] + 􏽘

(N− 1)/2

k�1
X[k]W

− kn
N + 􏽘

N− 1

k�(N− 1)/2+1
X[k]W

− kn
N . (12)

Due to x(n) being a real-valued signal, 􏽐
N/2− 1
k�1 X[k]W− kn

N

and 􏽐
N− 1
k�N/2+1X[k]W− kn

N are a pair of complex conjugates.
(e same holds true for 􏽐

(N− 1)/2
k�1 X[k]W− kv

N and
􏽐

N− 1
k�(N− 1)/2+1 X[k]W− k

N in equation (12). Two definitions are
made as follows:

z[n]≜ 2 􏽘
N/2− 1

k�1
X[k]W

− kn
N , (13)

v[n]≜ 2 􏽘

(N− 1)/2

k�1
X[k]W

− kn
N . (14)

(e N-point signal x[n] can be expressed in a simpler
form as

x[n] �
X[0] + Re z[n]{ } +(− 1)

n
X[N/2], N: even ,

X[0] + Re v[n]{ }, N: odd ,
􏼨

(15)

where the real parts of z[n] and v[n] signals are stated by
Re(z[n]) and Re(v[n]), respectively. To reduce the com-
plexity in Fourier decomposition equations, signals with
even values of N are only considered. (e z[n] signal is
factorizable as in

2 􏽘
N/2− 1

k�1
X[k]W

− kv
N � 􏽘

M

i�1
ai[n]e

jϕi[n]
, (16)

where φi[n] and ai[n] are the real-time scenario and in-
stantaneous frequency, respectively, and M is the total
number.

Equation (16) expressed the decomposition process
which can be performed under the following conditions for
each analytic Fourier intrinsic band function:

fi[n] �
1
2π

ϕi[n + 1] − ϕi[n]( 􏼁≥ 0, (17)

ai[n]≥ 0, n � 0, 1, 2, . . . . . . N − 1, (18)

where fi[n] is the instantaneous frequency of the analytic
Fourier intrinsic band function.

In a forward search, i.e., the scanning from low to high
frequency, the decomposition process in equation (17) is
carried out by [29]

ai[n]e
jϕi[n]

� 2 􏽘

Ni

k�Ni − 1+1
X[k]W

− kn
N , (19)

where N0 � 0 and NM�N/2–1. In a backward search, i.e., the
scanning from high to low frequency, the decomposition
process in equation (17) is carried out by

ai[n]e
jϕ[n]

� 2 􏽘

Ni− 1− 1

k�Ni

X[k]W
− kn
N . (20)

(e key points of (19) and (20) aim to confirm the
frequency N1, N2, . . ., NM− 1. When the Ni is used, the right-
hand side of equation (15) and its corresponding instan-
taneous phase and instantaneous frequencies are calculated
for n� 0, 1, . . ., N − 1. (e minimum amount of possible Ni
for all n is determined by the frequency index Ni.

2.1.3. IEMD Coupled with IWFD. (e envelope algorithm
based on C2 piecewise rational cubic spline interpolation
(PRCSI) and C2 monotone piecewise rational cubic spline
interpolation (MPRCSI) was employed to decompose the
building vibration signal corrupted by noise. (e zero-phase
nonrectangular bandpass filters contained in the IWFDwere
coupled into the IEMD to analyze signals with multiple
components and intersecting instantaneous frequencies. We
first structured the upper envelope and lower envelope using
the C2-PRCSI method. Considering the presence of un-
dershoots, we further iteratively modified the original en-
velope using C2 MPRCSI technology to eliminate
undershoots as accurately as possible. With the assistance of
IWFD, filter parameters were evaluated in order to ensure
that the sum of all Fourier intrinsic band functions can
reconstruct the entire signal, which effectively improves the
compatibility of multicomponent building vibration signal
processing. Figure 2 presents the construction flowchart of
the IEMD-IWFDmethod. As it can be noticed and based on
the traditional EMD method, modified cubic spline inter-
polations are inserted to optimize the envelopes of the
original building vibration signal. (is is done so that a
relatively high accuracy and efficiency decomposition for the
extremely nonlinear and nonstationary building vibration
signals is achieved. (e determination of the IFM signal
refers to the decomposition process of the original signals in
IWFD. In a bid to analyze the signals of intersecting in-
stantaneous frequencies, the zero-phase nonrectangular
bandpass filters referred from IWFDwere employed to assist
the IEMD method. (e features of these filters are deter-
minate, and as a result, the sum of all FIBFs ensures a full
rebuilding of the signal. When compared with EMD, the
IEMD-IWFD is expected to be more competitive for the
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denoising of nonlinear and nonstationary building vibration
signals and more compatible for analyzing the intersecting
instantaneous frequencies of building vibration signals.

2.2. Description of Energy Criterion of ACF. (e correlation
function is an average measure of signal time-domain
characteristics, which describes the similarity degree be-
tween signals at different times.(e time average-based ACF
is calculated as follows:

Rx(m) �
1

N − |m|
􏽘

N− 1− |τ|

n�0
xN(n)xN(n + m), (21)

where m represents the time delay. In order to ensure the
consistency between the sequence length of ACF and the
length of signal xN(n), the time delay m should satisfy (–N/
2) − 1<m<N/2.(is sequence energy is expressed as follows:

E(n) � 􏽘
N− 1

n�0
x
2
(n). (22)

(e ACF of each component of the decomposed signal
can be calculated, and the distribution characteristics of the
ACF can be obtained. Due to weak correlation and strong
randomness at each moment of the random noise, the ACF
reaches its maximum value at the zero point, while the value
of the ACF rapidly decreases to a small value at other points.
Since there is a correlation between general signals at dif-
ferent times, the autocorrelation function value outside of
zero cannot quickly decay to very small values, but changes
with the varying time difference, especially for the periodic
signal. (e ACF is still a periodic signal and its change law is
different from the changing rule of the noise ACF obviously.
(e dominant IMFs can be determined according to the
ACF characteristics of each component.

2.3. Description of Signal Reconstruction Based on Hilbert
Transform. (e IMFs of the original signal can be regarded
as a set of multidimensional components closely related to
the information of the source signal. By calculating the
correlation between time-frequency characteristics, the
original signal can be recovered from these components.
Based on the signal decomposition, the basic flowchart of
target signal recovery is shown in Figure 3. (e Hilbert
transformation is used in multichannel IMFs to solve the
instantaneous frequency of signal components and obtain
the time-frequency characteristics of the signal. (e noise
and/or invalid signals can be filtered out based on the time-
frequency distribution of signal components. Based on
IMF’[n] and coefficient matrix A, the source signal S in the
mixed signal is separated, which can be expressed as

A · IMF’[n] � S. (23)

To explore the time-frequency behavior of each IMF
component, the Hilbert spectrum analysis was used in this
study to process the signals. Unlike FFT time-frequency
analysis, the Hilbert spectrum analysis is performed without
using the basic variable frequency to represent the behavior
of the signal. It analyzes the signal from the perspective of
instantaneous frequency and expands the signal into a time-
frequency plane. (e Hilbert spectrum analysis is derived by
applying Hilbert transform to any signal x(t), t ∈ (–∞,+∞),
stated as

y(t) � H[x(t)] � 􏽚
+∞

− ∞

x(τ)

π(t − τ)
dτ. (24)

Due to the integral singularity τ � t, the formula
expressed by Cauchy principal value integrals is given as

y(t) � H[x(t)] �
1
π
P.V􏽚

+∞

− ∞

x(τ)

t − τ
dτ, (25)

Construct the upper and
lower envelopes employing
C2 PRCSI

Subtract IMF

Zero-phase
non-rectangular
bandpass filters

Analysis of intersecting
instantaneous
frequencies signals

Updated signal Extract the local
extremum points

Form the upper and
lower envelops

Calculate the mean
value of envelopes

Extract the data that
satisfy the

conditions of IMF

IMF determined

Original signal

Constraint condition
of IMF determined

Modify the original envelopes
iteratively with C2 MPRCSI

IEMD
method

IWFDM
method

Figure 2: Procedure of IEMD-IWFD construction.
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where P.V represents the generalized Cauchy principal
valued integral.

Considering y(t) is the convolution of signal x(t) and 1/
πt, the above relationship also exists as

y(t) � x(t) ·
1
tπ

. (26)

It is known by the property of Fourier transform that

F(y) � F[1/tπ]F[x(t)], (27)

F[1/tπ] � − jsgn(f) �
− j, f> 0
j, f< 0

�
e

− j
π
2 , f> 0.

e
j
π
2 , f< 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

To understand the meaning of the Hilbert transform,
expressed as type

z(t) � x(t) + jy(t) � a(t)e
jθ(t)

, (29)

where a(t)�(x2 + y2)1/2 is the amplitude of the signal and
θ(t)� tan− 1(y/x) is the instantaneous response signal.

(e frequency at any instance is expressed as

ω(t) �
dθ(t)

dt
. (30)

(e instantaneous frequency of the signal represents the
aggregation degree of signal energy in a certain frequency
band. Based on the Hilbert transform on IMF components,
the original signal is given as

x(ω, t) � 􏽘
n

j�1
aj(t)exp i 􏽚ωjdt􏼒 􏼓. (31)

After the transformation in the above steps, the am-
plitude and frequency of the original signal are given as a
function of time. If the signal is represented on the time-
frequency-energy three-dimensional distribution, the Hil-
bert spectrum H(ω, t) of the signal can be obtained as

H(ω, t) � 􏽘 Hi(ω, t). (32)

3. Results and Discussion

A model was proposed by Rossi and Nicolini [30] to predict
the building vibration induced by trains, as shown in
equation (3), in which the train’s quality and velocity, the

rail’s displacement, the soil’s characteristics, and the
sleeper’s spacing were considered as

Pmax � 􏽚
T/2

− T/2

MgsvtKe
− α

����
x2+d2

√

T2πi
������
x
2

+ d
2

􏽰 dx, (33)

Lv � 20 log
��������
Pmax/ρscR

􏽰

vref

􏼠 􏼡, (34)

where Pmax is the largest time-average power, M the total
train mass, s the longest vertical rail displacement, vt the
velocity of train, K the constant depended on model cali-
bration, α the dissipation constant of soil, d the distance
between power and train, T the length of train, i the spacing
between adjoining sleepers, Lv the level of vibration, ρs the
surface density of soil, and cR the velocity of wave’s prop-
agation, and vref equals 2.54×10–8m/s.

Developing a reliable prediction model for noise is
necessary to prevent the interference of environmental
noise. Some noise prediction models have been developed
and codified into industrial standards based on test con-
ditions and industrial circumstances. A model was proposed
by Nassiri et al. [31] to assess the noise induced by the train,
which is related to the velocity of the train, vt, and the
distance between power and train d, as shown in equation
(35). However, the impact of the curve, joint, and turnout of
the train were not considered, and thus, this model can only
be used to predict the noise caused in the testing line.

Ln � L0 − Kllg
d

d0
􏼠 􏼡 + Kslg

v

v0
􏼠 􏼡, (35)

where Ln is the equivalent sound level, Kl and Ks are the
correction factors of length and speed, and L0, d0, and v0 are
the reference values of sound level, distance, and speed,
respectively.

(e simulated building vibration signal without and with
the noise are given in Figures 4(a) and 4(b), respectively.

(e denoising of building vibration signals requires
signal decomposition first. Figure 5 shows the decomposed
IMF components based on the method of IEMD-IWFD.(e
synthetic building vibration signal is decomposed into 7
IMFs, which are ordered according to frequency. IMF1 and
IMF2 are obviously high-frequency components, while
IMF5–IMF7 are relatively low-frequency components.

(e decomposed results of synthetic building vibration
using the EMD are presented in Figure 6. As can be seen, two
fewer IMF components are obtained from the EMD

A·IMF’ [n] = S

Time frequency characteristic analysis

Time-frequency
distribution

Extract signal
information

Solving
coefficient matrix

Hilbert transform
IMFs

S

Figure 3: Procedure of target signal recovery.
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compared to the IEMD-IWFD. And the frequency change in
IMFs is distinct: high-frequency IMF components are
mainly concentrated in IMF1, while IMF2 and IMF3 show
relatively high-frequency signals.

Many experimental studies revealed many statistical
characteristics of noise after decomposition. In fact, each
IMF component complies with the normal distribution.
After the signal mixed with noise is decomposed, the IMF
component with a small ordinal number mainly contains the
highest frequency part of the noise, while the IMF com-
ponent with a large ordinal number mainly contains the
lowest frequency part of the noise. (e frequency-domain
characteristic of noise is destroyed. (e noise in each IMF
component is no longer the real noise, but still has the

statistical features of noise. With the similar distribution of
the general noise autocorrelation function, the autocorre-
lation function of the noise in each IMF component reaches
its maximum value at zero and rapidly decays to zero at
other points.

Figure 7 shows the autocorrelation function calculated
for the decomposed IMFs by IEMD-IWFD. According to the
distribution characteristics of the signal autocorrelation
function, the high frequency part of the noise, useful in-
formation components, and low frequency part of the noise
are mainly contained in IMF1-3, IMF4-5, and IMF6-7, re-
spectively. (e energy variation curve of the autocorrelation
function calculated by IMFs obtained by EMD decompo-
sition is shown in Figure 8. It can be seen that the

0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.0

0.2

0.4

0.6

-0.2

-0.4

-0.6

A
cc

el
er

at
io

n 
(m

/s
2 )

(a)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
t (s)

0.0

0.2

0.4

0.6

-0.2

-0.4

-0.6

A
cc

el
er

at
io

n 
(m

/s
2 )

(b)

Figure 4: Simulated building vibration signal without and with noise.
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Figure 5: IMFs decomposed from building vibration signal using IEMD-IWFD.

8 Shock and Vibration



autocorrelation function of IMF1-2 has low energy, while
the autocorrelation function of IMF3-4 has high energy.
(us, it is indicated that the decomposed IMFs dominated
by useful information by IEMD-IWFD and EMD are IMF4-
5 and IMF3-4 components, respectively.

After obtaining the IMF components dominated by
useful information, their weight coefficients were obtained
by solving the coefficient matrix based on the Hilbert
transform, and the target signal was reconstructed as follows.
(e transformation process of signal extraction time-fre-
quency characteristics is represented by F[·], and the rela-
tionship between the mixed signal and an IMF part is
represented as

A · F[IMF] � F[􏽢S],

F[IMF] � A− 1
· F[􏽢S],

(36)

where A is the coefficient matrix related to the time change
and 􏽢S represents the time domain estimate of the source
signal. By applying the Hilbert transform to both sides of the
equation, the time-frequency relationship of the signal can
be transformed into the relationship between time and
energy, which can be expressed as

H
− 1

[F[IMF]] � H
− 1

A
− 1

· F[􏽢S]􏽨 􏽩. (37)

In the process of using the time-frequency behavior of
each IMF component to reconstruct the time-frequency
characteristics of the source signal, the coefficient matrix A
essentially represents the weight value of each component at
each time node, i.e., the component with the larger A
corresponds to the larger correlation with the reference
value.

(e reconstructed building vibration signal based on
IEMD-IWFDM and EMD is shown in Figure 9. It is clear

from Figure 9(a) that the reconstructed building vibration
signal recovers well which benefits from the good separation
of the synthetic building vibration signal. And the signal
amplitude slightly changes after the reconstruction because
the building vibration signal mainly uses frequency mod-
ulation, which leads to the amplitude changes having a
relatively small impact on the separation performance.
However, it is observable in Figure 9(b) that the noise in-
terference was not exhaustively eliminated in the recon-
structed building vibration signal, which indicates that the
signal decomposition method of EMD has poorer perfor-
mance on building vibration signal denoising compared
with IEMD-IWFDM.

Figure 10 shows an experimental building vibration
signal collected from the high-speed rail station of
Changsha, in which the abscissa and ordinate represent
frequency and sound level, respectively. (e setup was built
to maintain the working of train and staff. (e vibration of
buildings mainly comes from the running of trains. (e
noise from rails, aerodynamic, and machinery are the major
noise sources.

Figure 11 shows the denoised building vibration signal
by EMD and the IEMD-IWFD methods. (e signal is
reconstructed after removing the recognized high-fre-
quency IMF component, which is regarded as a noise
signal. As seen, the denoised signal by the conventional
EMD method has a serious distortion. Especially at the
distance from 0 to 1 km, the signal cannot be effectively
recovered. (e denoised data from 1 to 6 km is similar to
the original echo signal, but still has large fluctuations.(e
denoised result obtained by the IEMD-IWFD method is
much better than the EMD method since the noise can be
effectively separated and eliminated and the signal details
can be kept to a certain extent.
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Figure 6: IMFs decomposed from building vibration signals using EMD.

Shock and Vibration 9



(e similarity coefficient and the mean square error have
been used to assess the degree of denoising performance of
the mixed signal based on IEMD-IWFD and EMD.

(e similarity coefficient is defined as

εi �
􏽐

N
n�1 si(n)yi(n)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

������������������

􏽐
N
n�1 s

2
i (n) 􏽐

N
n�1 y

2
i (n)

􏽱 , (38)

where s(n) represents the target signal, i.e., the reference
value, and y(n) represents the restricted signal, i.e., the
comparison value.

(e mean square error of signal is defined as

σi �

�����������������

1
N

􏽘

N

n�1
zi(n) − si(n)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽶
􏽴

. (39)

(e similarity coefficient, mean square error, and time-
consuming between the reconstructed signal based on
IEMD-IWFDM and EMD and the target signal are enu-
merated in Table 1. (e similarity coefficient and mean
square error for the IEMD-IWFDM are higher and lower
compared to those for the EMD, respectively, which reveals
that the target signal can be effectively separated from the
building vibration signal corrupted by noise based on the
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Figure 8: ACF of each IMF by EMD.
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IEMD-IWFD. (e time-consuming performances of EMD
and IEMD-IWFDM methods are compared for computa-
tional complexity assessment. Obviously, the total CPU time

of those methods depends on “the number of extrema
points, the length of the signal, the number of IMFs
decomposed, and other system setup expenses,” which are
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Figure 9: Reconstructed building vibration signal based on decomposed IMFs by IEMD-IWFD and EMD.
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Figure 11: Denoised building vibration signal by EMD and IEMD-IWFD methods.
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set as the same value to keep the comparability in the
simulation. It can be seen from Table 1 that the IEMD-
IWFDM is slightly slower than the EMD, but it can achieve a
more complete decomposition than the EMD.

4. Conclusion

In this study, a novel signal decomposition method was
proposed by coupling the algorithms of IEMD and IWFD,
which can be used in the denoising of building vibration
signals. A synthetic building vibration was simulated by the
combination of a target building vibration signal and a noise
signal. It was first decomposed into some IMF components
using the novel IEMD-IWFD and traditional EMDmethods.
(e energy criterion of ACF was then employed to deter-
mine the IMFs dominated by useful information. Subse-
quently, the weight coefficient of each useful IMF was
obtained by solving the coefficient matrix through the
Hilbert transform. And the building vibration signal
denoising was finally carried out by reconstructing the useful
IMFs. (e denoising effects for the IEMD-IWFD and EMD
methods were compared by calculating the mean square
error and similarity coefficient. (e findings portrayed that
the new method (IEMD-IWFD) can effectively extract the
target signal from the signal corrupted by noise and achieve a
better building vibration signal denoising performance.
Next, we can make use of these clean signals to carry out
statistical classification of feature information extracted
from different types and scales and to realize multisource
and multiparameter diagnoses of building vibration signals.
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