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Rail corrugation in heavy-haul railway increases the contact forces between the wheel and the rail and deteriorates the rail
condition. Severe corrugation affects railway operational safety. Fast diagnosis techniques allow technical personnel to perform
timely maintenance and repair, preventing the quick deterioration of rail corrugation. +is paper presents a heavy-haul railway
corrugation diagnosis method incorporating the time-frequency analysis with machine learning methods. First, the signal is
decomposed into several subsignals by wavelet packet decomposition (WPD). +e paper proposes an adaptive short-time Fourier
transform (ASTFT) and performs the ASTFTon the subsignals to obtain the optimal resolution time-frequency distribution and
compute the corresponding entropy. +e dimensionality reduction based on mean entropy is then performed for the high-
dimensional data. +e training and testing samples are classified using Support Vector Machine (SVM). +e adaptive short-time
Fourier transform (ASTFT) is incorporated with the Renyi entropy and the particle swarm optimization algorithm, which
achieves a better aggregation of the time-frequency distribution and reduces the computation cost. Finally, to assist the repair
work and estimate the severity of the corrugation section, the corrugation index is proposed. +e corrugation indices for the
determined corrugation sections are calculated to measure the severity of the corrugation. Experimental studies performed on the
axle-box vertical acceleration data collected from the heavy-haul comprehensive inspection train show that the method presented
by this paper achieves higher accuracy when compared with conventional feature classification methods for time-frequency
analysis. +e accuracy of corrugation recognition for the presented method is 93%.

1. Introduction

Rail corrugation is an irregular wave-type wear of rail
surface. It is a common type of rail wear in the heavy-haul
railway. Rail corrugation increases the contact forces be-
tween wheel and rail. Since the heavy-haul railway has a
higher axle load, abnormal wheel-rail force can damage the
rail and vehicle components and cause contact fatigue.
Severe corrugation can affect operational safety. Currently,
there are no techniques to eliminate rail corrugation.
Compared with techniques such as rail lubrication for
mitigating friction coefficient and rail vibration absorber,
rail grinding is considered as an effective maintenance
technique to inhibit quick deterioration of corrugation [1].
Using the rail grinder and manually identifying the

corrugation is the most direct maintenance method.
However, due to the limitations of maintenance windows
and the differences in the operating personnel’s proficiency
leading to different assessments, manual identification re-
sults in low working efficiency. Identifying and assessing rail
corrugation both effectively and in a timely manner becomes
a key research topic for researchers and scholars.

In 1999, Niu adopted the unsprung-mass acceleration
signals of the Polish State Railway network to analyse the
power spectrum for different corrugation areas [2]. In 2009,
Hory et al. proposed a rail corrugation diagnosis method
based on time-frequency analysis [3]. +ey used the ARCAP
method to estimate the frequency of the corrugation and the
amplitude of depth of the corrugation. In 2001, C.Mandriota
et al. proposed a method to detect and identify corrugation
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based on the surface texture analysis [4]. In 2015, Li et al.
proposed an automatic detection algorithm for corrugation
based on the axle-box acceleration measurement for iden-
tifying the signature tunes of the wheel-track system [5]. In
2017, Kang et al. proposed a corrugation detection method
based on laser imaging techniques [6]. +ey used multiple
sensors in parallel at high sampling frequency to capture the
rail profile. +e region of interest in the captured image data
is sent to the host computer to extract the rail profile data for
detecting the rail corrugation. In 2018, Dong et al. proposed
a method for rail corrugation detection based on wavelet
packet energy entropy [7]. +e method performed the four-
layer wavelet packet decomposition of the axle-box vibration
signal and computed the wavelet pocket energy entropy and
wavelet energy of each node. +en, the rail corrugation
condition is determined by comparative analysis. Li et al.
used 3D structured light and wavelet analysis to detect the
rail corrugation [8]. +ey used 3D structured light scanner
scanning a rail segment and analysed the flatness of the rail
surface; then, they analysed the corrugation using the time-
frequency analysis. Zhu et al. proposed a detection method
based on Hilbert-Huang transformation [9]. +ey estab-
lished a vehicle-rail vertically coupled system and performed
numerical simulation. +ey then performed the empirical
mode decomposition and the Hilbert spectrum time-fre-
quency analysis on the dynamic response data. In 2020,
Zhang et al. proposed a corrugation detection method using
the parameter optimization variational mode decomposition
(VMD) method and combined it with the smooth pseudo-
Wigner-Ville distribution (SPWVD) [10]. +e decomposed
signal is analysed using the SPWVD signal time-frequency
analysis method to determine the wavelength and the lo-
cation of the corrugation.

+e corrugation detection methods based on the image
detection are susceptible to external environment factors,
thus tending to cause missed detection. Also, using the time-
frequency analysis to extract features from the data is fea-
sible; however, due to the issue of the distribution resolution,
this method often results in low detection accuracy.
+erefore, we proposed a corrugation diagnosis method for
heavy-haul railway based on the adaptive time-frequency
analysis combined with machine learning methods. +e
proposed method uses the vertical axle-box acceleration for
the corrugation diagnosis. +e axle-box acceleration can
reflect the surface condition of the rail because it is similar to
the wheelset acceleration under the hypothesis of neglecting
the stiffness of roller bearings. +e method first uses wavelet
packet decomposition (WPD) to decompose the accelera-
tion signal into subsignals. +en, the method performs the
adaptive short-time Fourier transform (ASTFT) on the
subsignals to acquire a high-resolution time-frequency
distribution and compute the entropy of each time-fre-
quency distribution as the index for rail corrugation iden-
tification. Finally, after the dimensionality reduction to the
feature data, the data is classified using a Support Vector
Machine (SVM). +e rail corrugation diagnosis method
based on WPD-ASTFTand SVM improves the resolution of
the time-frequency distribution via adaptive time-frequency

analysis. +erefore, the method can achieve higher diag-
nostic accuracy.

2. Theoretical Background

2.1. Wavelet Packet Decomposition. Wavelet packet de-
composition (WPD) resolves the problems in the wavelet
decomposition that the resolution cannot be fine for both
high and low-frequency bands [11]. +e wavelet packet
decomposition can perform more precise decomposition on
the original signal for the entire frequency band; that is, it
performs continuous decomposition for both high-fre-
quency band and low-frequency band. +ereby, the wavelet
packet decomposition can achieve a better frequency res-
olution for the original signal f(t).

Assume that the conjugate filter h(n) satisfies

􏽘 h(n − 2k)h(n − 2l) � δkl, 􏽘 h(n) �
�
2

√
, k, l ∈ R. (1)

Let g(k) � (−1)kh(1 − k), and the coefficient equations
of the wavelet packet decomposition are

W2p(t) �
�
2

√
􏽘
k

h(k)Wp(2t − k),

W2p+1(t) �
�
2

√
􏽘
k

g(k)Wp(2t − k).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

+e reconstructed coefficient for the wavelet packet
decomposition is

Wp(t) � 2􏽘
k

h(t − 2k)W2p(k) + 2􏽘
k

g(t − 2k)W2p+1(k).

(3)

+e signal f(t) after p layer wavelet packet decompo-
sition acquires N � 2p subsignals and satisfies
fk(t), 0≤ k≤ 2p+1 − 1. +e original signal after p layers
wavelet packet decomposition can be expressed as

f(t) � 􏽘

3·2p−1

k�2p−1
fk(t). (4)

+rough the wavelet packet decomposition, the vertical
axle-box acceleration signal can be decomposed into dif-
ferent frequency bands, which can help extract the features
of corrugation.

2.2. Support Vector Machine. Support Vector Machine
classification is illustrated in Figure 1. +e two classes are
separated by a red line in the figure, which is defined as the
maximum margin separating the hyperplane. +e equation
for the hyperplane is expressed as

ωT
x + b � 0, (5)

where ω is the normal vector and x is the sample point. +e
distance from the sample points to the hyperplane is
maximized. +e distance from a sample point in the space
x � (x1, x2, . . . , xn) to the hyperplane is
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ωT
x + b

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

‖ω‖
, (6)

where

‖ω‖ �

�����������

ω2
1 + · · · + ω2

n

􏽱

. (7)

For classification of two-class data,

ωT
x + b

‖ω‖
≥ d, y � 1,

ωT
x + b

‖ω‖
≤ − d, y � −1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

Rearranging in a compact form,

y ωT
x + b􏼐 􏼑≥ 1. (9)

+erefore,

d �
y ωT

x + b􏼐 􏼑

‖ω‖
. (10)

+e Support Vector Machine satisfies y(ωTx + b) � 1.
Tomaximize the distance d, ‖ω‖ is minimized.+erefore, the
optimization problem is formed as

minf(ω) �
1
2
‖ω‖

2
,

s.t. gi(ω) � 1 − yi ωT
xi + b􏼐 􏼑≤ 0, i � 1, 2 . . . , n.

(11)

After solving the optimization problem, the classification
result for each sample can be found by substituting the
sample vector into the decision function. +e decision
function is

f(x) � sign ωT
x + b􏼐 􏼑, (12)

where the sign(·) is the signum function.+e SVM is used to
classify the samples into two classes, that is, the corrugation
sections and the normal sections.

3. WPD-ASTFT and SVM Diagnosis Method

We proposed theWPD-ASTFTand SVM diagnosis method
to determine the rail corrugation. +e diagnosis flow is
presented in Figure 2. For the short-time Fourier trans-
form, only a fixed window length can be selected for the
signal with multifrequency components at a one-time in-
terval, which causes the insufficiency of the time-frequency
distribution resolution of the signal. We first used WPD to
decompose the components with large frequency differ-
ences into different subsignals so that for different sub-
signals we can choose different window lengths for STFTat
the same time interval. We then performed the ASTFT for
each subsignal. +e optimal window length is obtained by
calculating the window length that achieves the best ag-
gregation of the time-frequency distribution. We used
Renyi entropy to measure the aggregation of time-fre-
quency distribution; the smaller the entropy, the better
aggregation of the time-frequency distribution. +e Renyi
entropy is also used as the fitness function in the particle
swarm optimization (PSO) algorithm. +e PSO algorithm
is computationally faster than other optimization algo-
rithms, such as the genetic algorithm, when solving the
optimization problem, so the PSO algorithm is used when
solving the optimal window length. Each subsignal is
transformed through ASTFT to obtain the time-frequency
distribution corresponding to its lowest Renyi entropy, and
this Renyi entropy value is used as the classification feature.
+e mean feature dimension reduction method is proposed
to reduce the high-dimensional Renyi entropy value ob-
tained by each segment of the signal after theWPD-ASTFT.
Finally, the inspection data are classified into normal and
corrugation classes using the SVM classifier. For the cor-
rugation sections, we further calculated the corrugation
index to determine the degree of corrugation.

3.1. Adaptive Short-Time Fourier Transform. +e short-time
Fourier transform (STFT) is a conventional time-fre-
quency analysis method, and its window length has a
significant impact on the resolution of the time-frequency
distribution. To avoid manual adjustment of the window
length and ensure that the signal has a better resolution
time-frequency distribution after STFT, we proposed an
adaptive short-time Fourier transform (ASTFT) com-
bined with the Renyi entropy and particle swarm opti-
mization. We transformed each subsignal using ASTFT
and calculated the Renyi entropy of the time-frequency
distribution under the corresponding optimal window
length.

For a series of signals containing n information,
y1, y2, y3 · · · yn, the probability for each information is
p(y1), p(y2), p(y3) · · · p(yn). +ey form a system S:

S �
Y

P
􏼠 􏼡 �

y1 y2 · · · yn

p y1( 􏼁 p y2( 􏼁 · · · p yn( 􏼁
􏼠 􏼡. (13)

+e Renyi entropy for this system is

Margin
b

Figure 1: An illustration of the SVM for two classes.
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H(Y) �
1

1 − q
ln 􏽘

n

i�1
p yi( 􏼁

q⎡⎣ ⎤⎦, (14)

where q> 0 and q≠ 1. Usually, q � 2.
In this paper, the Renyi entropy is adopted as the cri-

terion to evaluate the concentration of the time-frequency
representation. To get the best time-frequency resolution
after STFT, the optimal window length for STFT is needed
for the subsignal. +erefore, the Renyi entropy of the time-
frequency distribution STFT(t, f) obtained by STFT with
different window lengths is calculated using the following
equation:

Eς �
1

1 − q
ln

􏽒
T

0 􏽒
∞
0 |STFT(b, ξ)|

2q
dξdb

􏽒
T

0 􏽒
∞
0 |STFT(b, ξ)|2dξdb􏼒 􏼓

q, (15)

where b and ξ are the dummy variables representing the time
and frequency, respectively, in the STFT.

Particle swarm optimization (PSO) is a computational
optimization method and is a population iteration process in
which particles search for the optimal particles in the search
space. Compared with the genetic algorithm, PSO is simple to
implement and easy to adjust parameters and has fast con-
vergence. In D-dimensional space, the position for a particle i

is xi � (xi1, xi2, . . . , xiD), substituting the position xi into the
fitness functionf(x) for solving the fitness value.+e velocity
for a particle i is vi � (vi1, vi2, . . . , viD). +us, the velocity
update equation for the particle i in the d th dimension is

v
k
id � wvk−1

id + c1r1 pbestid − x
k−1
id􏼐 􏼑 + c2r2 gbstd − x

k−1
id􏼐 􏼑.

(16)

+e position update equation for the particle i in the d th
dimension is

x
k
id � x

k−1
id + v

k−1
id , (17)

where vk
id is the velocity vector component in the d th di-

mension for particle i in the k th iteration, xk
id is the position

vector component in the d th dimension for particle i in the k

th iteration, c1 and c2 are the acceleration coefficients for
cognitive and social components, respectively, to adjust the
learning step, r1 and r2 are random numbers between 0
and 1, and w is the nonnegative inertia weight to adjust the
search space. +e particle i obtains the optimal position
pbesti � (pi1, pi2, . . . , piD), and the population obtains the
optimal position gbest � (g1, g2, . . . , gD).

+e PSO algorithm flow is shown in Figure 3.
+e different window lengths for the subsignals are set as

the particles for optimization, and the Renyi entropy for the

time-frequency distribution after the STFT is set as the
fitness function. +e Renyi entropy is computed at the
minimal fitness value.

+e signal after wavelet packet decomposition obtains N

subsignals. +e frequency for each subsignal has certain
differences. +e optimal window length for the STFT is
found using the PSO. For the signal x(t) and Gaussian
window g, the STFT is

Gj(t, f) � 􏽚 xj(ξ)g
∗
(ξ − t)􏽨 􏽩e

−i2πft
dξ, (18)

where j � 1, 2, . . . , N, g(t) is the optimal window length,
and f is the frequency.

After the adaptive short-time Fourier transform, the
time-frequency distribution for the minimal Renyi entropy
is obtained for the N subsignals under the corresponding
optimal window length. Also, the Renyi entropy value in the
transform can be used as the resolution criterion and the
feature of the data in the classification.

Axle box
acceleration data WPD & ASTFT

Feature selection
&

SVM

Normal
sections

Corrugation
sections

Corrugation
index

Corrugation
severity

Figure 2: Flowchart of the corrugation detection method.

Initialize the population

Evaluate the fitness value
of each particle based 

Update the position and
velocity for each particle.

Search the global optimal
position 

Stopping
condition

Begin

YES

END

NO

Figure 3: +e particle swarm optimization for finding the best
window length for STFT.
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3.2. Feature Extraction and Dimensionality Reduction.
We propose a dimensionality reduction method to extract
the features of the N-column entropy values and to reduce
the dimension of the entropy data. Dimensionality reduction
of data is based on the mean difference of columnwise
entropy values between the two classes of data. +e data
columns with the entropy values that differ greatly between
the two classes are selected as the data features. +e com-
putation procedure is as follows:

(1) Computing the mean value
Computing the columnwise means of the entropy
values for the acceleration data of the normal rail
segments,

mi �
􏽐

J
j�1Nji

J
, (19)

where i � 1, 2, . . . , N is the index of columns, J is the
number of normal segments, and Nj×i is the entropy
matrix.
Computing the columnwise means of the entropy
values for the acceleration of the corrugation rail
segments,

mi
′ �

􏽐
K
k�1Cki

K
, (20)

where i � 1, 2, . . . , N is the index of columns, K is
the number of corrugation segments, and Ck×i is the
entropy matrix.

(2) Computing the entropy value difference si

Subtracting by elements of the columnwise means
between the normal and corrugation segment and
taking the absolute difference,

si � mi − mi
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (21)

(3) Computing the average value s of si as the charac-
teristic entropy,

s �
􏽐

N
i�1si

N
. (22)

(4) Finding the location where si > s, i � 1, 2, . . . , N and
assuming the indices as (x, y, . . . , z), 1≤ x, y, z≤N,
all the data columns with indices (x, y, . . . , z) are
kept.

3.3. WPD-ASTFTand SVMDiagnosis Method. +e steps for
the heavy-haul railway corrugation diagnosis method based
on WPD-ASTFT and SVM are described as follows:

(1) Dividing the axle-box vertical acceleration signal of
the heavy-haul railway into units by 50meters

(2) Performing the wavelet packet decomposition
(WPD) for each unit signal to get several subsignals

(3) Performing the adaptive short-time Fourier trans-
form (ASTFT) for every subsignal in each unit and

computing the Renyi entropy corresponding to each
time-frequency distribution

(4) Performing the dimensionality reduction for the
entropy values

(5) Using the data to train the SVM classifier and
making the predictions

+e schematic for the diagnosis procedure is shown in
Figure 4.

3.4. Corrugation Index. After the corrugation sections are
determined using the SVM classifier, the severity of the
corrugation sections is further determined using the cor-
rugation index. Based on the simulation, the amplitude of
the acceleration vibration is related to both the corrugation
depth and the wavelength. When the wavelength is fixed, the
amplitude of the vibration increases with the increased
depth. With the increase of the corrugation wavelength, the
vibration amplitude reaches a maximum value and then
decreases with the increase of the wavelength.+erefore, in a
real situation, it is difficult to determine the corrugation
depth only from the acceleration amplitude. Since the
change of speed in the heavy-duty railway is small and the
wavelength of corrugation is concentrated in a small range of
wavelength from 200mm to 300mm, the severity of the
corrugation could be determined from the aspect of the
vibration energy.

For the determined corrugation sections, the moving
RMS of the axle-box vertical acceleration is calculated.+en,
the corrugation index is calculated (i.e., the mean over time
of the RMS for each section) to measure the severity of
corrugation.

+e moving RMS is calculated using

R(t) �

���������

􏽐
r+K
t�r f

2
(t)

K

􏽳

, (23)

where K is the forward window length.
+e corrugation index is calculated using

C �
􏽐

T
t�0R(t)

T
, (24)

where T is the duration of the corrugation section.

4. Results and Experimental Verification

+e experimental signal is the axle-box vertical acceleration
signal collected by the Chinese heavy-haul railway com-
prehensive inspection train. +e heavy-haul railway in-
spection train is shown in Figure 5(a), and the axle-box
acceleration sensor is shown in Figure 5(b). +e sensor is a
biaxial accelerometer and can measure the acceleration in
the vertical direction and the axial direction. +e sampling
rate for the acceleration signal is 2000Hz. +e axle-box
acceleration signal is divided into 50-meter units. One unit
axle-box acceleration signal is decomposed into several
subsignals with different frequency bands after the wavelet
packet decomposition, and the original signal can be

Shock and Vibration 5



reconstructed using the subsignals x(t) � x1(t)

+ · · · + xN(t), where N is the number of subsignals. In this
paper, 8 subsignals are obtained using the three-layer
wavelet packet decomposition, and the 6th, 7th, and 8th
subsignals are superimposed as the final 6th subsignal. +is
processing can reduce the computation time and fully de-
compose the axle-box acceleration signal.

4.1. Adaptive Time-Frequency Feature Analysis and Feature
Extraction for the Acceleration Signal. +e examples in
Figure 6 show the acceleration signal of axle-box in normal
heavy-haul railway section and in corrugation section.
Figure 6(a) shows the acceleration signal in the normal rail
section for the mileage from K401 + 050 to K401 + 100.

Figure 6(b) shows the acceleration signal in the corrugation
rail section for the mileage from K387 + 150 to K387 + 200.
After three-layer wavelet packet decomposition and su-
perposition, the original signal for each section is decom-
posed into 6 subsignals. +e subsignals for the two sections
are presented in Figure 7.

Adaptive short-time Fourier transform is applied to the
subsignals of the normal rail section and the corrugation
section. +e results for one normal section and one cor-
rugation section are presented as an example in Figure 8 for
illustration. Comparing the time-frequency distribution of
the 1st subsignal between the corrugation section and
normal section, it can be found that the aggregation of the
frequency for the time-frequency distribution of the axle-
box acceleration is significantly higher in the corrugation

Record mileage of
corrugation section of heavy-

haul railway 

Group M normal section,
group N corrugation section

Adaptive short-time Fourier
transform

Wavelet packet
decomposition

Feature dimension reduction
method 

Group m normal section,
group n corrugation section

Support vector machine

Tr
ai

ni
ng

 g
ro

up Test group

Figure 4: +e schematic for the WPD-ASTFT diagnosis method.

(a) (b)

Figure 5: Photo of the inspection train and the sensor location. (a)+e heavy-haul railway comprehensive inspection train. (b)+e installed
location of the axle-box acceleration sensor.
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section than in the normal section.+e Renyi entropy values
corresponding to the time-frequency distribution for the
example are calculated according to equation (15), and the
values are presented in Table 1.

+e Renyi entropy corresponding to the 6 subsignals is
obtained by performing theWPD-ASTFTto the acceleration
signals for all the sections. In Table 2, column 1 to column 75
show the Renyi entropy for the acceleration signal in the
normal section, and column 76 to column 100 show the
Renyi entropy for the corrugation section. +e mean of the
Renyi entropy value and the characteristic entropy are
calculated according to equations (19) to (22). +e mean of

the entropy values for the normal section and corrugation
section are tabulated in Table 3, and the characteristic en-
tropy is calculated as s � 0.47.

+emeans of the entropy values for each subsignal of the
normal section and corrugation section are plotted in
Figure 9(a). +e differences in the mean values between the
normal section and corrugation section are plotted in
Figure 9(b). We used a threshold on the difference of the
mean entropy to select the features of the entropy. Using the
average of the differences 0.47 as the threshold, the entropies
of the 1st subsignal and the 3rd subsignal are kept as the first
feature entropy and the second feature entropy, respectively.
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Figure 7: +e plots of the decomposed subsignals of the acceleration signal for (a) the normal rail sections and (b) the corrugation rail
section.
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Figure 6: +e plots of the axle-box acceleration signal for (a) the normal rail sections and (b) the corrugation rail section.
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Figure 8: +e plots of the time-frequency distribution for the six subsignals for (a) the normal rail sections and (b) the corrugation rail
section.

Table 1: +e Renyi entropy values for a normal section and a corrugation section.

Sample sections Subsignal 1 Subsignal 2 Subsignal 3 Subsignal 4 Subsignal 5 Subsignal 6
Normal section 13.43 17.18 19.31 18.64 17.73 19.77
Corrugation section 15.74 16.85 18.58 18.33 17.74 19.25

Table 2: +e Renyi entropy values for the experimental data.

Samples Subsignal 1 Subsignal 2 Subsignal 3 Subsignal 4 Subsignal 5 Subsignal 6
Sample 1 13.79 16.34 18.55 18.03 17.75 19.10
Sample 2 13.70 16.18 19.20 18.48 17.41 19.40
Sample 3 13.89 16.70 16.61 15.97 17.32 18.24

. . .. . .

Sample 74 13.89 15.74 15.48 16.90 17.85 18.70
Sample 75 13.66 18.04 18.90 19.37 18.16 19.56
Sample 76 15.57 16.50 18.52 18.06 17.76 19.49
Sample 77 15.74 16.85 18.58 18.33 17.74 19.25
Sample 78 15.05 16.24 18.32 17.89 16.74 19.06

. . .. . .

Sample 99 15.39 16.47 18.33 17.86 17.70 19.00
Sample 100 15.91 17.21 18.47 18.13 17.42 19.14
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4.2. Classification Results. +e first feature entropy and the
second feature entropy obtained after the dimensionality
reduction are used to train the SVM classifier. +e sample 1
to sample 75 in Table 2 represent the normal section and are
labelled as “1,” whereas sample 76 to sample 100 in Table 2
represent the corrugation section and are labelled as “−1.”
+e training samples are numbered from 1 to 100 and are

used to train the SVM classifier. +e two classes are sepa-
rated by the hyperplane as shown in Figure 10. +e testing
results of the classification of the normal section and cor-
rugation section using the SVM classifier are plotted in
Figure 11. +e actual labels and prediction labels of the test
data are shown in Table 4. For the 15 sections, 14 sections are
predicted accurately, with a test accuracy as high as 93.33%.

Table 3: +e columnwise means of the Renyi entropy and the difference of the means for the normal section and corrugation section.

Subsignal 1 Subsignal 2 Subsignal 3 Subsignal 4 Subsignal 5 Subsignal 6
Mean for normal section mi 15.48 16.71 18.31 18.10 17.37 19.02
Mean for corrugation section mi

′ 13.61 16.70 18.82 18.35 17.47 19.11
Difference of the means 1.87 0.01 0.51 0.25 0.10 0.08
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Figure 9: (a)+e plot of the columnwise mean values of the entropy for each subsignal. (b)+e difference of the means between the normal
section and the corrugation section.

Normal section
Corrugation section
Support vector

17

17.5

18

18.5

19

19.5

20

Se
co

nd
 fe

at
ur

e e
nt

ro
py

13.5 14 14.5 15 15.5 16 16.513
First feature entropy

Figure 10: +e training results for the Support Vector Machine classier.

Shock and Vibration 9



4.3. On-Site Review. +e rail section K199 + 350 to
K199 + 400 is diagnosed as having corrugation using the
WPD-ASTFT and SVM-based corrugation diagnostic
method. +is conclusion is consistent with the actual situ-
ation. Also, the time-frequency distribution with the min-
imum entropy of the subsignal is concentrated at 61Hz, with
a train speed of 65 kilometres per hour, which corresponds
to a corrugation wavelength of 296 millimetres. +e rail
surface condition during the on-site review in this section is
shown in Figure 12. +e surface roughness of the rail
measured by the digital roughness gauge is plotted as
Figure 13(a). Using the measured data to compute the power

spectrum shown in Figure 13(b), the calculated corrugation
wavelength is 297 millimetres.

4.4. Corrugation Index. After the corrugation sections are
filtered out by the SVM classifier, the corrugation index for
each detected section is calculated to determine the severity
of the corrugation problem. +e corrugation indices for the
testing sections are tabulated in Table 4.+emaximum value
of the corrugation index is 1.75 corresponding to Section 1
and Section 2. +e actual corrugation situation for Section 1
and Section 2 is shown in Figures 14(a) and 14(b),

Predicted normal section
Predicted corrugation section
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Figure 11: +e prediction results using the trained Support Vector Machine classifier.

Table 4: +e corrugation index for the detected corrugation section in the testing samples.

Section 1 2 3 4 5
Corrugation index 1.75 1.75 1.4 1.59 1.43

Figure 12: +e surface condition of the rail for the mileage section K199 + 357.
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Figure 14: Continued.
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Figure 13: (a) +e surface roughness of the rail surface. (b) +e power spectrum.

Shock and Vibration 11



respectively. It can be seen from the pictures that the cor-
rugation problem is serious for those two sections, and the
depth for the two sections all has exceeded 1mm.

4.5. Method Comparison. We compared our method with
another method using a CEEMD-STFT time-frequency
analysis [12] to compute the classification features and re-
peated the analysis using the same data. +e accuracy for the
CEEMD-STFTmethod is 86.67%, whereas the accuracy for

the proposed WPD-ASTFTmethod is 93.33%. +e results
using the CEEMD-STFT method are shown in Figure 15,
and the prediction results’ comparison is tabulated in
Table 5.+is illustrates the advantage of the adaptive time-
frequency analysis algorithms when computing the
classification features.

When using the WPD-ASTFT method to calculate the
entropy of the time-frequency distribution, the time-fre-
quency distribution is obtained by an adaptive process under
the corresponding optimal window length instead of

(e)

Figure 14: +e actual corrugation situation for the corrugation sections in the testing samples. +e pictures (a)–(e) show the corrugation
situation for the testing Section 1 to Section 5.
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Figure 15: +e prediction result of the SVM classifier using CEEMD-STFT method.
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selecting a fixed window length. Also, the optimal window
length corresponding to different frequency components is
different, which makes the time-frequency distribution of
each signal more aggregated than the result of the CEEMD-
STFT methods. +erefore, when calculating the entropy
value, the advantage of the WPD-ASTFT method can im-
prove the differentiation in the feature extraction for the
normal rail section and the corrugation rail section.

5. Conclusions

Combined with the time-frequency analysis method and
machine learning techniques, the paper proposes a diagnosis
method of rail corrugation based onWPD-ASTFTand SVM.
+emethod is applied to diagnose the rail corrugation in the
heavy-haul railway, and the reliability of the method is
verified by comparing the predicted results with the actual
situation. By comparing the results from the methods of
extracting classification features by the CEEMD-STFT time-
frequency analysis, the accuracy of the prediction results
presented by this paper is up to 93.33%, which is better than
the CEEMD-STFT methods. +e severity level of the de-
tected corrugation sections can be further measured by the
corrugation indices. +e results can effectively guide the
maintenance and repair work to inhibit the deterioration of
rail corrugation [13–18].
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