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�is paper investigates the scattering behavior of guided shear horizontal (SH) waves in a two-dimensional, isotropic, and linear
elastic layered plate with partially debonded interface by analyzing the re�ection and transmission coe�cients of scattered waves.
�e partial wave technique is established to form the displacement and stress of guided wave functions, and the boundary element
method (BEM) is utilized to handle the numerical calculation with elastodynamic fundamental solutions in the frequency domain.
After applying proper boundary conditions including continuity condition on the interface with traction-free debonding, the
scattering coe�cients can be obtained in terms of boundary element solutions. Two di�erent materials (steel and aluminum) with
various debonding lengths and locations in a 1mm double-layered plate are considered. With several modes of the incident wave
over a frequency range up to 4.5MHz, the variations of scattering coe�cients and scattering phenomena are numerically in-
vestigated as several parameters such as mode of the incident wave, materials, locations, and length of debonding are changed.�e
numerical results also suggest the potential of the suitable wave mode for the debonding detection, which can be useful for non-
destructive inspection.

1. Introduction

Multi-layered or laminated structures are now widely used in
many disciplines of engineering due to their improved
mechanical qualities over traditional structures [1, 2]. Carbon
�ber sheets or plates, for example, are often employed in
infrastructure maintenance to reinforce or repair damaged
structures in the civil engineering �eld [3]. But withmore and
more complicated layered materials, it is important to de-
velop a non-destructive testing (NDT) method to handle the
complexity.

When any structures become aged, a �aw may appear
such as a crack, surface damage, and/or debonding along the
interface of a layered plate [4, 5]. So, inspection is becoming
more necessary to ensure the safety of existing structures as
well as new ones. Ultrasonic guided waves have been widely
used as NDT for large structures, e.g., plates, pipes, and rail
trucks [6–8]. Compared to conventional ultrasonic testing

(UT), which can inspect one location at a time, guided wave
NDT makes it possible to inspect a large area at the same
time due to the waves propagating along the structure ge-
ometry. Interaction between incident guided waves and
some �aws inside the structure generates scattered waves in
all directions, and the scattered waves are used to detect a
defect in the hidden zone of the structure before it causes
further damage resulting in the failure of the structure. �e
scattering analysis of guided waves plays an important role
for not only the �aw detection but also the �aw evaluation
such as the �aw shape reconstruction. Hirose et al. [9–11]
proposed an inverse reconstruction method for plate-
thinning and inner cavities in plate problems using the
numerical simulation of both guide Lamb and SH waves.

In order to calculate the scattering coe�cients, many
researchers prefer to use numerical techniques due to the
complex nature of scattering problems which are too
complicated to �nd the analytical solutions for layered
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structures. +e finite element method (FEM) is the most
popular numerical method to this day. Koshiba et al. [12]
used the FEM to obtain the solutions of guided Lamb waves
for elastic plate problems with internal and surface cracks.
Al-Nassar et al. [13] computed the reflection and trans-
mission coefficients by using FEM and Lamb wave modal
expression method for a plate with a normal rectangular
strip weldment. Hayashi and Rose [14] used a semi-ana-
lytical FEM to reduce the computational time and computer
resources to simulate the propagation of a guided wave in a
plate and pipe. On the other hand, BEM has shown many
advantages over the FEM for guided wave scattering analysis
since we only need to discretize the boundaries of the do-
main of interest. +e BEM also uses less computational time,
memory, and storage than FEM [15]. Rose et al. [16, 17]
developed a hybrid BEM with the combination of normal
mode expansion technique to calculate the reflection and
transmission coefficients of guided Lamb waves for edge
reflection and surface breaking problems. Rose et al. [18, 19]
further applied the hybrid BEM to both guided Lamb and SH
waves for the internal inclusion in a plate and also did the 3-
dimensional analysis of guided wave scattering. In these
literature reviews, they are mostly concerned about a surface
or inner flaw in a single plate. +ere was little research on
debonding problems in a layered plate except for our pre-
vious paper on the BEM to analyze the scattering behavior of
guided Lamb waves by layered plate debonding [20].

In this paper, the BEM is applied to the scattering
analysis of guided SH waves in a layered plate with
partially debonded interface. +e technical approach is
almost the same as in the previous research on the
scattering analysis of guided Lamb waves [20]. In Section
2, wave functions of displacement and stress for guided
SH waves are formulated using the partial wave technique
including the calculation of dispersion curves. Next, in
Section 3, the BEM is implemented to formulate the
boundary integral equation. After discretization into
constant elements and application of proper boundary
conditions, scattering coefficients can be obtained in
terms of reflection and transmission coefficients defined
by ratios between the amplitudes of calculated reflection/
transmission waves and given incident waves. In Section
4, numerical results of reflection and transmission coef-
ficients are demonstrated with various configurations
such as material constants, mode of the incident wave, and
location of the debonding over a frequency range up to
4.5MHz. +is research will provide useful information for
guided waves NDTand also serve as fundamental research
for more complex waveguide structures such as aniso-
tropic layered plates and pipes.

2. Guided SH Waves in Layered Plate

Consider SH waves in a 2-dimensional, isotropic, and linear
elastic double-layered plate with a partially debonding part
along the interface, as shown in Figure 1.+e thickness of the
plate is d(1) + d(2), and the lateral length is infinite. Material
properties are given in terms of the shear modulus μ(i) and
the density ρ(i), where i is the number of layers, i.e., 1 or 2.

+e top and bottom surfaces of the plate are traction-free,
and the interface is perfectly bonded except for the traction-
free debonded part with the length l. +e BEM analysis is
carried out for the finite region with the length L, which is
long enough so that near-field evanescent modes can be
neglected on the both ends of the BEM analysis zone. +e
Cartesian coordinate system is applied with the origin lo-
cated at the bottom left of the BEM zone.

Guided SH waves have anti-plane displacements in x3
direction. +e equations to descript the displacement and
stress of guided SHwaves can be formulated using the partial
wave technique which is derived from Christoffel equations
[21, 22]. +e modal functions for the displacement u

± (i)
3 of

guided SH waves, propagating in the ± x1 direction in the i-
th layer, can be expressed as
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+emodal functions of the stresses σ±(i)
13 and σ±(i)

23 can be
obtained by applying Hooke’s law for an isotropic elastic
solid [23]. +us, we can get
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One important characteristic of guided waves in a plate is
a dispersive property, meaning that the phase velocity Cp is
dependent on the frequency f and the mode of propagation.
+e exact solution of the phase velocity for the double-
layered plate cannot be obtained analytically due to the
complexity of the multi-layered plate with different mate-
rials. +us, in order to find the pairs of (Cp, f) for each
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Figure 1: Schematic of the double-layered plate with debonding.
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mode, the numerical approach is applied by using the global
matrix method combined with a partial wave technique [22].
Applying the following boundary conditions:

σ±(1)
23 � 0, at x2 � 0, (6)

u
±(1)
3 � u

±(2),
3 at x2 � d

(1)
, (7)

σ±(1)
23 � σ±(2),

23 at x2 � d
(1)

, (8)

σ±(2)
23 � 0, at x2 � d

(1)
+ d

(2)
, (9)

and solving the eigenvalue problem derived from the system
of linear equations (6)–(9), the dispersion curves can be
obtained. Note that (6)–(9) are valid for all values of x1 and
the exponential term of e±ikx1 is extracted as a common item.
+us, equations (6)–(9) give the same equations regardless of
the sign ± .

Figure 2 shows the dispersion curves of a 1mm steel
single plate and a 1mm double-layered plate made with
various thicknesses of steel and aluminum. +e material
properties are μ � 79.87GPa and ρ � 7.8 g/cm3 for steel
and μ � 26.13GPa and ρ � 2.7 g/cm3 for aluminum. Since
the double-layered plate is made of different materials, we
cannot separate the mode of propagation into symmetric
and anti-symmetric modes.+us, we named themMode 1,
Mode 2, Mode 3, . . ., in the order that their cutoff fre-
quencies appear. It is worth noting that Mode 1 of a
double-layered plate shown in Figure 2 is also dispersive,
unlike a fundamental mode (SH0) in a single-layered
regular plate in which the phase velocity is constant.

In order to fix the arbitrariness in the amplitude B(i)
a and

make it possible to directly compare the reflection and
transmission coefficients of all modes, the modal wave
functions are normalized as [16]

u
±(i),m
3 � N

m
.u
±(i),m
3 , (10)

σ±(i),m
13 � N

m
.σ±(i),m

13 , (11)

where Nm is the normalized factor of m-th mode defined as
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In (12), Pm
1 and Pinc

1 are the average powers of them-th
modal mode and the incident mode passing through out a
vertical section of a plate which can be defined as
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where the asterisk means the complex conjugate.

3. Boundary Element Implementation

With use of a standard weighted residual technique with the
weight function of the elastodynamic displacement funda-
mental solution in frequency domain [20], +e boundary

integral equation for the guided SH wave problem on the
surface S is expressed as

C(ξ)u3(ξ) + 􏽚
S
t
∗
(ξ, χ)u3(χ)dS(χ)

� 􏽚
S
u
∗
(ξ, χ)t3(χ)dS(χ) ξ ∈ S,

(14)

where C(ξ) is the constant and equal to 1/2 in the case of
smooth boundary. u3(χ) and t3(χ) are the displacement
and traction in the x3 direction at the point χ, respectively.
+e traction can be defined as a product of stress and unit
normal vector outward the boundary, namely, t3 � σ3jnj.
+e displacement fundamental solution u∗(ξ, χ) is
expressed as

u
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, r(ξ, χ) � |χ − ξ|, and H

(1)
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the Hankel function of the first kind of zero order. +e
traction fundamental solution t∗(ξ, χ) can be obtained by
taking the derivative of (15) with respect to a unit outward
normal vector
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(16)

where H
(1)
1 is the Hankel function of the first kind of first

order.
Now, boundary integral formulation (14) is applied to

two subdomains D(1) and D(2) surrounded by the bound-
aries S(1) and S(2) for each layer, as shown in Figure 3. After
discretized into N(i) constant elements for the i-th layer,
boundary integral equation (14) becomes
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Figure 2: Dispersion curves for 1mm steel single plate and 1mm
double-layered plates of steel and aluminum.
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Equation (17) gives the total N(1) + N(2) equations with

2 × (N(1) + N(2)) terms of u
(i)
3,q and t

(i)
3,q (p � 1, . . . N(i) and

i � 1, 2). Combining all of equation (17) yields a matrix
form:

HU � GT, (18)

where U and T are the vectors of the total displacement and
traction, respectively, on the boundaries S(1) and S(2). G is
the integral of the displacement fundamental solution, and
H is the traction counterpart defined as (H)pq � [􏽒

S
(n)
q

t∗(i)
pq dSq] + 1/2δpq. To make the number of unknown terms
equal to N(1) + N(2), which is the same as the number of the
equations in (18), the following continuity and boundary
conditions are introduced.

u
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Here, equations (19) and (20) are the continuity
conditions of displacement and traction, respectively, on
the interface on the assumption that two layers are

perfectly bonded together except for the debonding zone.
Equations (21) and (22) are the traction-free boundary
conditions on the bottom and top surface S

(1)
Bottom and S

(2)
Top,

respectively, and also the debonding part on the interface.
Now further required condition to solve (18) is the re-
lation between displacement and traction on the artificial
boundaries S

(1)
Left, S
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Left, S

(1)
Right, and S

(2)
Right which will be

discussed as follows.
+e relation between displacement and traction on

the artificial boundaries, S
(i)
Left and S

(i)
Right(i � 1, 2), is de-

rived by using the normal mode expansion technique, in
which wave fields are represented as the linear combi-
nation of normalized wave function for possible propa-
gating modes. For example, on the left boundary
S
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Left, the total displacement and traction can be

expressed as the summation of the incident and reflected
waves
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where k and l are the numbers of elements on S
(1)
Left and

S
(2)
Left, respectively, and t

±(i),m

3 � σ±(i),m
3j nj. M denotes the

maximum number of propagating modes at a certain
frequency, e.g., M � 2 at f � 2 MHz (see Figure 2). αinc is
the given amplitude of the incident wave and βm

R is the
unknown amplitude of m-th mode of the reflected waves
R. For the right boundary, similar expression can be
written as
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Figure 3: Schematic of decomposed and discretized domain.
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with T indicating the transmitted waves. Next, rearranging
(23) and (25) in terms of the unknown scattered
amplitudes,
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where [u]− 1 is the generalized complex inverse matrix of [u]

(see [24]). It is worth noting that the unknown scattered
amplitudes, βm

R and βm
T , are common for both displacement

and tractions, e.g., βm
R in (23) and (24) and βm

T in (25) and
(26). Consequently, we can substitute (27) and (28) into (24)
and (26), respectively, to obtain
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Now total tractions (29) and (30) are expressed in terms
of the total displacements. +en, substituting (29) and (30)
into (18), the total displacements are now the only remaining
unknowns on the artificial boundaries, S

(i)
Left and

S
(i)
Right(i � 1, 2), and hence (18) can be solved by any linear
solver.

Finally, substituting the calculated total displacements
into (27) and (28) yields the scattered amplitudes of re-
flection and transmission waves, respectively. +en, the
reflection and transmission coefficients can be obtained as
the ratios of absolute values between scattered and incident
waves:

R
inc,m

�
βm

R

αinc

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (31)

T
inc,m

� δinc,m +
βm

T
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (32)

where Rinc,m is the reflection coefficient and Tinc,m is the
transmission coefficient for m-th mode with the incident
wave of inc mode.

4. Numerical Results

+e numerical results of reflection/transmission coefficients
are shown to discuss the influences of incident mode,
material, location of the interface, and length of the
debonding for bi-material plate structures made of steel
and/or aluminum. As for the numerical accuracy of cal-
culations, the power balance of scattered waves is validated
as shown in the last part of this section. Figure 4 shows the
modeling configuration with various combinations of

incident mode of Mode 1 or Mode 2, location of interface
h � 0.3, 0.4, 0.5mm, and length of the debonding
l � 1.0, 1.1, 1.2, 1.3, 1.4mm. +e bottom layer is always
steel with the thickness d(1), and the top layer with the
thickness d(2) can be either steel or aluminum depending on
the considered problem. Note that the total thickness d(1) +

d(2) is fixed as 1mm. +e material properties for steel and
aluminum are the same as before. In order to apply the far-
field approximation, the lateral length of the model is
chosen to be L � 10 mm which is longer than two times of
the incident wavelength and the near-field evanescent
modes can be neglected [12]. +e total number of elements
is chosen to be more than ten per incident wavelength to
guarantee the convergence of the results. It is also men-
tioned that the crack-tip singularity on the interface can be
neglected for the calculation of scattered coefficients in far
field, and no special element is used at the crack tip.

Figures 5 and 6 show the reflection and transmission
coefficients versus frequency range from 0–4.5MHz of a
steel-steel plate with 1mm debonding at the center of the
plate subjected to the incident waves of Mode 1 and Mode 2,
respectively. “R” and “T” denote the reflection and trans-
mission, respectively, and the number after the symbols “R”
and “T” indicates the mode number.

Figure 5 shows that there is no scattering occurring in
the case of Mode 1 incidence for all frequency ranges. +is
behavior is because Mode 1 in the steel-steel plate, which is
equivalent to a single steel plate, is a fundamental mode
(SH0) with no dispersive properties and the amplitude is
constant across the vertical section, and hence no stress
disturbance occurs at the horizontal debonding.

Figure 6 shows the same results as Figure 5, but for
the frequency range from 2–4.5MHz and Mode 2
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incidence. In the case of Mode 2, scattered behavior
can be seen for the larger frequency than the cutoff
frequency around 2MHz. +e resonance phenomena
can also be seen at 3.5 and 4.15MHz where the reflection
coefficient becomes nearly unity and most of incident
energy is reflected from the debonding. Since material,
geometry, and debonding configurations are symmetric
and symmetric and anti-symmetric modes in a

homogenous single plate are uncoupled, no mode con-
version occurs where Mode 1 and Mode 3 remain zero.
Furthermore, the results confirmed the power balance so
that reflection and transmission coefficients reverse the
trend to each other.

Figure 7 shows the reflection and transmission coeffi-
cients versus frequency range from 0–4.5MHz of a steel-
aluminum plate with 1mm debonding at the center of the
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Figure 5: (a) Reflection and (b) transmission coefficients for the steel-steel plate with h � 0.5mm and l � 1.0mm, subjected to Mode 1
incidence.
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Figure 6: (a) Reflection and (b) transmission coefficients for the steel-steel plate with h � 0.5mm and l � 1.0mm, subjected to Mode 2
incidence.
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Figure 4: Problem setting for the numerical calculation.
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plate subjected to Mode 1 incidence. Since the uncouple
property for a single plate cannot be held for the bi-material
plate, all possible modes are generated as the scattered waves
by the debonding. Mode conversions fromMode 1 toModes
2 and 3 occur for the frequencies beyond the cutoff fre-
quencies 1.5MHz and 3.2MHz of Modes 2 and 3, respec-
tively. In the case of Mode 1 incidence, however, mode
conversions are mild, and there is no large resonance
phenomenon in Figure 7.

Figure 8 shows the same results as Figure 7, but for the
frequency range from 2–4.5MHz and Mode 2 incidence. In
this case, large variations in reflection and transmission
coefficients are clearly seen by resonance phenomena at 3.4
and 4MHz. It is noted that because of mode conversion
from incident Mode 2 to other modes occurring for the bi-
material plate, the peak values of Mode 2 in Figure 8 are
slightly smaller than the values for the single plate as seen in
Figure 6.

From the results shown in Figures 5–8, it can be said that
the incident mode plays an important role to detect the
debonding when an SH plate wave is used in the non-de-
structive testing. Mode 1 incidence cannot be applied to de-
tection of any horizontal flaw in a homogenous plates and is
very difficult to detect horizontal debonding even in a double-
layered plate, although it is known that in the case of in-plane
Lambwaves, the first mode A0 is very effective for the detection
of the debonding [20]. Instead, in the case of SH plate waves,
Mode 2 incidence is much suitable, since a large amount of
scattered waves is generated. Material differences that produce
unsymmetric deformation in a plate also induce the mode
conversion significantly. In the following, therefore, the influ-
ence of location of the interface and length of the debondingwill
be discussed only for bi-material plates with Mode 2 incidence.

Figures 9 and 10 show the reflection and transmission
coefficients versus frequency in the bi-material plate with
different interface positions of h � 0.3 mm and h � 0.4mm,
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Figure 7: (a) Reflection and (b) transmission coefficients for the steel-aluminum plate with h � 0.5mm and l � 1.0mm, subjected toMode 1
incidence.
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Figure 8: (a) Reflection and (b) transmission coefficients for the steel-aluminum plate with h � 0.5mm and l � 1.0mm, subjected toMode 2
incidence.
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Figure 9: (a) Reflection and (b) transmission coefficients for the steel-aluminum plate with h � 0.3mm and l � 1.0mm, subjected toMode 2
incidence.
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Figure 10: (a) Reflection and (b) transmission coefficients for the steel-aluminum plate with h � 0.4mm and l � 1.0mm, subjected toMode
2 incidence.
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Figure 11: (a) Reflection and (b) transmission coefficients for the steel-aluminum plate with h � 0.5mm and various lengths (l) of
debonding, subjected to Mode 2 incidence.
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respectively. +e incident wave is Mode 2. From
Figures 8–10, it is said that the peaks of the resonance
phenomena are shifted to the lower frequency zone as h

decreases, namely, the aluminum portion becomes large,
which is related to the dispersion curves as the phase velocity
is changed depending on material thickness (see Figure 2). It
is also worth noting that for unsymmetric cases in geometry
of h � 0.3 mm and h � 0.4mm, the mode conversion from
the incident wave of Mode 2 into the transmission of Mode 3
becomes strong, resulting in the large transmission ampli-
tude of Mode 3 as shown in Figures 9(b) and 10(b), com-
pared with the case of h � 0.5 shown in Figure 8.

Figure 11 demonstrates the reflection and transmission
coefficients of Mode 2 versus frequency range from
3.6–4.2MHz where the peak and valley in the coefficients are
clearly visible. +e lengths of the debonding are varied from
l � 1.0 to 1.4mm. With the increase of the length of the
debonding, the peak of the resonance trend shifted to the
lower frequency zone. Similar behavior has been also ob-
served for Lamb waves in [25] which is related to the phase
interaction from two sides of the debonding tips.

Finally, the numerical accuracy of calculations is vali-
dated by the concept of power balance. Since all wave
functions are normalized by the power of amplitude ratio in
(10) and (11), the sum of the squares of the absolute scat-
tering coefficients of all scattered modes should equal 1 at
each frequency [26]. Figure 12 shows the error in the power
balance for the example shown in Figure 8. It is observed that
the error tends to increase as the frequency is increased, and
that several error spikes occur in the local frequency ranges
around the cutoff frequency at 3.2MHz and the resonance
phenomena at 3.4 and 4.0MHz. As a whole, however, the
errors are less than 2% for all frequency ranges with the
average of 0.76%. Hence, it can be said that the numerical
results obtained by the BEM analysis are sufficiently accurate
for investigating the scattering of guided SH waves.

5. Conclusion

+e scattering analysis of SH waves in a double-layered plate
was carried out by means of the boundary element method
together with the partial wave technique, and the reflection

and transmission coefficients were obtained.+e validity was
checked by the concept of power balance. From the cal-
culation, it was shown that the incident mode, materials,
location, and length of the debonding affected the scattered
coefficients which can be used as reference information in
ultrasonic guided wave inspection. Particularly, it was
suggested that Mode 1 incidence was not suitable for de-
tection of debonding due to the lack of scattered waves or
mild scattering, while Mode 2 could be used for the NDTof
debonding where the mode conversion and resonance
phenomena occurred throughout a whole frequency range.

In the future, three-dimensional analysis of layered plate
structures will be carried out by combining Lamb and SH
waves in a full 3-D space.
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