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Rolling bearings are omnipresent parts in industrial fields. To comprehensively reflect the status of rolling bearing and improve the
classification accuracy, fusion information is widely used in various studies, which may result in high dimensionality, redundancy
information of dataset, and time consumption. ,us, it is of crucial significance in extracting optimal features from high-di-
mensional and redundant feature space for classification. In this study, a fault diagnosis of rolling bearings model based on sparse
principal subspace discriminant analysis is proposed. It extracts sparse discrimination information, meanwhile preserving the
main energy of original dataset, and the sparse regularization term and sparse error term constrained by l2,1-norm are introduced
to improve the performance of feature extraction and the robustness to noise and outliers. ,e multi-domain feature space
involved a time domain, frequency domain, and time-frequency domain is first derived from the original vibration signals. ,en,
the intrinsic geometric features extracted by sparse principal subspace discriminant analysis are fed into a support vector machine
classifier to recognize different operating conditions of bearings. ,e experimental results demonstrated that the feasibility and
effectiveness of the proposed fault diagnosis model based on a sparse principal subspace discriminant analysis algorithm can
achieve higher recognition accuracy than fisher discriminant analysis and its extensions, and it is relatively insensitive to the
impact of noise and outliers owing to the sparse property.

1. Introduction

Rolling element bearings play an indispensable role in ro-
tating machinery, which are inclined to damage for they are
often working under awful conditions, such as high tem-
perature, high torque, and high rotating speed, and almost
45–55% of rotating machinery failures are bearing faults
[1–3]. ,us, accurate and efficient diagnosis of incipient
bearing faults is of great significance to ensure the safety of
the mechanical system, since unexpected failures may cause
huge economic losses and even lead to catastrophic casu-
alties [2, 4]. Hitherto, various vibration signal-based
methodologies for bearing faults diagnosis are emerging
because vibration signals can be easily obtained and offer
more useful information than other types of signals [5–7].
Generally, these methods are composed of three stages,
namely, signal collection and preprocessing, feature ex-
traction, and condition recognition, while the crucial

procedure is feature extraction, which determines the ac-
curacy of fault identification, and how to extract reliable and
sensitive features from vibration signals is a research focus
[8].

To comprehensively reflect the machine status, the fu-
sion information including time domain, frequency domain,
and time-frequency domain is utilized to recognize the fault
type [9–11]. Although information fusion is reported to be
beneficial to improve the classification accuracy of fault
diagnosis, it may result in a curse of dimensionality and
information redundancy that would significantly increase
the computational cost of subsequent classifiers or even
decrease the performance [12]. Fortunately, dimension re-
duction is an effective feature extraction method, and var-
ious dimension reduction methods for fault diagnosis have
been developed in the past few decades. ,e most well
known is the principal component analysis (PCA) [13],
which aims to preserve the main energy of the original
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feature set and maximize the second-order statistics of
original features [3]. For its superior capability of main-
taining global data structure, the PCA is widely used as a
data preprocessing and feature extraction technique for face
recognition, computer vision, and fault detection [14–17].
Despite some advantages, PCA is not suitable for manifold-
structure data because it is a linear method that only con-
siders the global Euclidean structure of samples. ,us, some
manifold-based dimension reduction methods such as lo-
cality preserving projection (LPP) [18], neighborhood pre-
serving embedding (NPE) [19], and sparsity preserving
projections (SPP) [20] are presented to deal with dimension
reduction related to manifold-structure samples, with a view
to preserve geometric structures of original dataset in the
subspace. ,ough these methods are effective in feature
extraction, they are unsupervised that may unsuitable for
classification issues since the features are extracted without
discrimination information [21].

Fisher discriminant analysis (FDA), as a classical su-
pervised subspace discriminant analysis (SDA) method, is
widely used in fault diagnosis, which extracts discriminant
features by finding an optimal projection direction with the
purpose of simultaneously maximizing the between-class
scatter and minimizing the within-class scatter [22, 23].
However, the classification results of FDA can be easily
affected by outliers and noise since it minimizes the sum of
squared errors. Moreover, FDA tends to obtain undesired
results for multi-classification tasks, where an overlap of
latent features of different attributes may be obtained
[23, 24]. To address these issues, various extensions of FDA
are investigated to enhance the performance and efficiency.
Sugiyama et al. proposed a local FDA (LFDA) to deal with
multimodal labeled data by integrating LPP and FDA [25].
Chen and Hao exploited PCA-LDA (short for PSDA) for
radio frequency fingerprint feature dimension reduction,
and simulation results showed the superiority of PSDA in a
high signal-noise ratio [26]. Jin et al. introduced the trace
ratio linear discriminant analysis (TRLDA) for motor
bearing fault diagnosis [10]. Jiang et al. designed a rolling
bearing fault diagnosis model based on marginal fisher
analysis (MFA), which is an extension of FDA [27]. Gao et al.
presented a novel feature extraction and dimension re-
duction method called joint global and local structure dis-
criminant analysis (JGLDA) that integrated the local
intrinsic structure into FDA [28]. Feng et al. devised a kernel
joint Fisher discriminant analysis (KJFDA) method for fault
diagnosis, in which both the local and global discriminant
information are extracted [29]. Van and Kang put forward a
bearing fault diagnosis method based on wavelet kernel local
Fisher discriminant analysis (WKLFDA), and particle
swarm optimization (PSO) was applied to optimize the
parameters of WKLFDA [23]. Zhong et al. use the sparse
kernel local Fisher discriminant analysis (SLFDA) for fault
diagnosis of diesel engine working process [30]. Although
the FDA-based methods mentioned above all can improve
the diagnostic performance to overcome the unimodal
weakness of classical FDA, they are sensitive to outliers and
noise since the scatter matrixes are calculated by l2-norm,
which is likely to magnify the impact of outliers as distance

criterion of the objective function [24]. Meanwhile, the l2-
norm regularization depends on Gaussian noise, which may
complicate the precise estimation of two scattering matrices.
Compared to l2-norm regularization, the l1-norm regula-
rization can reduce the influence of outliers since it accu-
mulates the absolute value of elements, which would
decrease the deviation degree of dataset with large errors.
Recently, various techniques related to l1-norm have been
reported to be more robust than l2-norm-related methods
[31–33]. Wang et al. reported the FDA with l1-normmethod
for image recognition, and the experimental results proved
its robustness to outliers [31]. Zhang et al. presented a novel
feature extraction method called l1-norm-based global op-
timal locality preserving LDA (GLDA_L1), which utilized
the FDA and LPP to integrate both global and local structure
information via a unified l1-norm optimization framework
[32]. Wang et al. devised the sparse LFDA for facial ex-
pression recognition based on LFDA and l1-norm [34].
However, the classification performance of these methods
related on the l1-norm may decline since each projection
vector requires to be iteratively solved. Meanwhile, the es-
sence of l1-norm is a derivation of absolute value that may
result in some defects in robust feature selection, because
they cannot comprehensively cover the intuitive difference
across features [24]. To address this issue, some subspace
learning techniques are proposed, such as sparse discrimi-
nant analysis (SDA) [35], sparsity regularization discrimi-
nant projection (SRDP) [36], and robust sparse linear
discriminant analysis (RSLDA) [21], in which the sparse
constraint is adopted to select sensitive features and remove
the redundancy of dataset. Here, the l2,1-norm regularization
based on the sparse technique is adopted to constraint the
error function and discriminant matrix, which can adap-
tively select the optimal mapping direction. ,e l2,1-norm-
related algorithm can improve the recognition performance
in the presence of outliers, because the influence on the
residual of the objective function constrained by the l2,1-
norm is less than the squared residual constrained by the l2-
norm.

Inspired by the subspace discriminant analysis and the
l2,1-norm-related regularization methods, this study pre-
sented a rolling bearing fault diagnosis model based on
sparse principal subspace discriminant analysis (SPSDA) by
integrating PCA, LDA, and sparse constraint. ,e proposed
method can simultaneously extract discrimination infor-
mation and preserve the main energy of original dataset with
respect to the number of projection directions. ,e pro-
jection matrix of SPSDA is constrained by l2,1-norm, which
can improve the performance of feature extraction owing to
the row-sparsity property. A sparse error term adapted noise
during feature extraction is introduced to improve the ro-
bustness to noise and outliers. Experimental investigations
are carried out to demonstrate the feasibility and effec-
tiveness of the proposed method for rolling bearing fault
diagnosis.

,e rest of the article is organized as follows: in Section 2,
the principle of FDA and PSDA is introduced, and an
improved PSDA method based on sparse technique is dis-
cussed in detail.,en, the fault diagnosis model based on the
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SPSDA algorithm is presented in Section 3. After that, the
practical cases are studied to validate the superior perfor-
mance of the proposed model in Section 4. Finally, some
concluding remarks are summarized in Section 5.

2. Principle of the Proposed Method

2.1. Brief Review of FDA. Given a set of C-class training
sample patterns xj

i ∈ RN (i� 1, 2,...,C; j� 1,2,...,ni), where ni
is the number of samples with ith class, N � 􏽐

C
i�1 ni is the

total number of all samples, and xj

i is the jth training sample
of ith class. FDA tries to seek an optimal mapping matrix to
project high-dimensional original feature space into the low-
dimensional feature space, with the purpose of simulta-
neously separating the different attribute samples and
gathering the same attribute samples. FDA acquires the
optimal projection matrix by the following equation based
on Fisher’s discriminant problem [19]:

W � arg max
WTW�I

WTSbW
WTSwW

, (1)

where Sb and Sw are the between-class scattering matrix and
within-class scattering matrix, respectively, which are de-
fined as follows:

Sb �
1
N

􏽘

C

i�1
ni μi − μ( 􏼁 μi − μ( 􏼁

T
,

Sw �
1
N

􏽘

C

i�1
􏽘

ni

j�1
xi

j − μi􏼐 􏼑 xi
j − μi􏼐 􏼑

T
,

(2)

where μi � 1/ni 􏽐
ni

j�1 xi
j is themeanmatrix of the ith class and

μ � 1/N 􏽐
C
i�1 􏽐

ni

j�1 xi
j denotes the mean feature of total

samples. Generally speaking, the equation (1) is equal to the
following optimal problem [21]:

W � arg min
WTW�I

Tr WT Sw − λSb( 􏼁W􏼐 􏼑, (3)

where the global solution to the optimization (1) can be
obtained by the eigenvectors corresponding to the first d
maximum nonzero eigenvalues of the generalized problem
SbW � λSwW, where Sw is nonsingular and λ is a small
positive constant. Note that the definition of Sb is based on
l2-norm, which may result in the sensitivity of outliers and
noise since the error of distance increases in square form.

2.2. Introduction of SPSDA. Despite FDA being a widely
used SDA method in classification, its performance may
decline when encounters multimode or nonGaussian data
that is common in an actual industrial environment.
Meanwhile, preremoval of redundancy and coupling in-
formation between features can improve the recognition
performance. ,erefore, PSDA integrated PCA and FDA is
presented to overcome the shortcomings [26], which utilizes
a linear transformation to preproject the original features
into latent features. For a given original matrix X� [x1, x2,
. . ., xn], the preprojection of latent features can be obtained

by S�PX and PTP= I, where P and S are the loading matrix
and latent features, respectively. Here, S is calculated by
eigen decomposition to remove redundant information.
Subsequently, the between-class distance Sb

′ and within-class
distance Sw

′ of latent feature space can be redefined as
follows:

Sb
′ �

1
N

􏽘

C

i�1
ni μi
′ − μ′( 􏼁 μi

′ − μ′( 􏼁
T
,

Sw
′ �

1
N

􏽘

C

i�1
􏽘

ni

i�1
pix

i
j − μi
′􏼐 􏼑 pix

i
j − μi
′􏼐 􏼑

T
.

(4)

Here, the μ′ is the mean matrix of latent features and the
μi
′ is the mean matrix of the ith class of latent features. ,us,
the objective function of PSDA can be described as follows:

W′ � arg min
W′TW′�I

Tr W′T Sw
′ − λSb
′( 􏼁W′􏼐 􏼑. (5)

However, PSDA acquires optimal discriminant pro-
jection by using principal subspace latent features, which
may make the centre of original scattering matrix easily
deviate from the original model since the measured signals
are usually polluted by noise and outliers under the
complex industrial environment. To surmount the limi-
tations of PSDA with vast quantities of noise and outlier
corruptions, a sparse principal subspace discriminant
analysis algorithm (SPSDA) based on l2,1-norm regulari-
zation is presented in this section. Compared with l2-norm
and l1-norm regularization, l2,1-norm regularization has a
good sparse property, which can effectively suppress the
influence of outliers and noise and make the learned fea-
tures have better interpretability. ,us, a new objective
function of SPSDA with l2,1-norm regularization is defined
as follows:

W � arg min
W

Tr WT Sw
′ − λSb
′( 􏼁W􏼐 􏼑 + β‖W‖2,1, (6)

where W is the principal discriminant projection matrix,
and Sb
′ and Sw

′ are the between-class matrices and within-
class matrices, respectively. λ is a small positive constant that
is utilized to balance the importance of Sb

′ and Sw
′ , and β is a

trade-off parameter determining the importance of the
corresponding term. ‖ · ‖2,1 is the l2,1-norm that is defined as
‖W‖2,1 � 􏽐

m
i�1

�������
􏽐

m
j�1 w2

i,j

􏽱
.

Considering the reconstruction relationship between
extracted features and original features, the objective
function of SPSDA can be rewritten as follows:

W � arg min
W,Q,E

Tr WT Sw
′ − λSb
′( 􏼁W􏼐 􏼑 + β1‖W‖2,1 + β2‖E‖2,1,

s.t. S � QWTS + E � QWTS + E,QTQ � I,

(7)

where E denotes the sparse outliers and random noise and β1
and β2 are the trade-off parameter determining the im-
portance of the corresponding term. Finally, the alternating
direction method of multipliers (ADMM) [37] is adopted to
solve the optimization problem (7).
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3. Process of Fault Diagnosis by SPSDA

High-dimensional heterogeneous feature set should be
constructed before the implementation of feature extraction
by using the proposed SPSDA. Once faults such as rubbing
and loosening appear in equipment, both the amplitude and
distribution of the original vibration signals differ from
those of the state of being healthy, and the frequency
spectrum and distribution vary accordingly. Time-domain
characteristics are sensitive to the incipient failures, and
frequency-domain features can reveal the instantaneous
cyclical component of the high frequency, while time-fre-
quency features can reflect the frequency components and
the time-varying characteristic of nonstationary signals.
,us, 11 statistical characteristics related to time-domain
signals and 13 statistical characteristics associated with
frequency-domain spectrum are selected [38], which is listed
in Table 1. Among them, x(n) is the original signal series,N is
the total number of the data points in a single signal sample,
and s(n) and f(n) are the normalized power spectral density
(PSD) of x(n) and the corresponding frequency of s(n),
respectively.

In addition, the time-frequency domain features asso-
ciated with wavelet packet decomposition (WPD) and
empirical model decomposition (EMD) are considered to
adequately represent the different types of bearing faults.
,us, 32 relative energy and energy spectrum entropy fea-
tures related to 4-level db2 WPD coefficients are also
employed to discriminate different types of faulty signals
since WPD can meticulously analyse nonstationary signals,
which can adequately describe the energy distribution in
time-frequency domain [39]. Similarly, 6 EMD relative
energy features and 6 EMD energy entropy features cor-
responding to the first 6 intrinsic mode functions (IMF) are
also adopted. ,e relative energy and energy spectrum
entropy in time-frequency domain are defined as follows:

RE(i) �
􏽐

K
j�1 C

j
i􏼐 􏼑

2

􏽐
N
m�1 􏽐

K
j�1 C

j
m􏼐 􏼑

2,

En(i) � − 􏽘
K

j�1
p

j
i log2 p

j
i􏼐 􏼑,

(8)

where p
j
i � (C

j
i )
2/􏽐

K
j�1 (C

j
i )
2, C

j
i is the jth coefficients of the

ith wavelet packet node or IMF, N is the total number of
wavelet packet nodes or IMFs, and K is the total number of
coefficients in each wavelet packet node or IMF. RE(i) and
En(i) denote the relative energy and energy spectrum en-
tropy features of the ith level wavelet decomposition or IMF.
,erefore, a high-dimensional feature set containing 68
features is constructed to describe the state of rolling
bearing.

After the construction of high-dimensional heteroge-
neous feature set, feature extraction should be conducted to
remove redundant information and improve diagnosis ac-
curacy and diagnosis efficiency. Since the dimension re-
duction methods based on subspace discriminant analysis
can effectively extract the representative features, a rolling

bearing fault diagnosis model based on the SPSDA by in-
tegrating PCA, LDA, and sparse constraint is proposed in
this study, and the flowchart of proposed fault diagnosis
method is shown in Figure 1. ,e high-dimensional het-
erogeneous features of training samples and testing samples
are first constructed from original vibration signals. ,e
SPSDA is subsequently employed in the feature extraction
from the heterogeneous feature set of vibration signals under
the circumstances of massive samples. Finally, the obtained
low-dimensional features are fed into the support vector
machine (SVM) to recognize the running state of rolling
bearing. ,us, we can put forward the corresponding de-
cisions or control measures to determine the type of failures
by the classification results.

4. Experimental and Results

4.1. Experimental Configuration and Vibration Signals
Collection. In order to evaluate the effectiveness of the
proposed algorithm, an experimental study on fault diag-
nosis of rolling bearings was carried out. ,e vibration
measuring system is mainly composed of mechanical system
and hardware of electrical system, and the hardware
structure chart of electrical system and the actual vibration
measurement system are shown in Figures 2(a) and 2(b),
respectively. ,e 63/28-2RZ series deep groove ball bearings
were utilized as tested bearings, which were delivered by the
automatic machinery system that was composed of the
preset mechanism, the measuring mechanism, the sorting
mechanism, and the feeding mechanism [39]. ,e geometric
parameters of tested bearings were listed in Table 2. ,e
piezoelectric acceleration sensor (YD-1) was mounted on
the top of tested bearings to collect the single-point radial
vibration signals, which would be amplified by a charge
amplifier (DHF-2). ,e charge sensitivity and frequency
response of acceleration sensor were 6–10 pC/ms−2 and
1–10 kHz± 1 dB, respectively, and the frequency range of the
amplifier was 0.3Hz–100 kHz. Subsequently, the vibration
signals were transformed into voltage signals by an A/D
converter (PCI-9114) and imported into a computer for
further processing.,e rotational speed of the driving motor
and sampling frequency were 1500 rpm and 25 kHz, re-
spectively. A radial load of 0 kN and axial load of 1.0 kNwere
loaded onto the shaft and bearings by the cylinder.

Four different operating conditions including inner race
fault, outer race fault, ball fault, and normal condition were
introduced. ,e scratch defects of the bearings were ma-
chined by electric engraving pen, and the width of the
scratch defects of the inner race, outer race, and ball was
65± 22 μm, 70± 20 μm, and 70± 20 μm, respectively, and the
depths of the scratch defects were 0.2± 0.05mm. ,erefore,
the characteristic bearing defect frequencies can be calcu-
lated according to the kinematic parameters and the rota-
tional speed, and the characteristic bearing defect
frequencies of the inner race, outer race, and ball are
121.75Hz, 78.25Hz, and 55Hz, respectively. Figure 3 shows
the normalized time-series vibration signals in conjunction
with frequency spectrums of those four working conditions.
Obviously, there are certain differences among those signals,
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such as the signals of normal status are almost white noise,
the signals of inner race fault and outer race fault are
characterized by period impulse, and the signals of ball fault
are submerged into white noise. It is difficult to distinguish
different faults only from the vibration signals and the
frequency spectrums because of the influences of the noise.
About 100 bearings of each status were tested, and the radial
vibration signals under those four operating conditions are
collected as samples.,erefore, 400 datasets can be acquired,
and each sample is collected for one second. ,en, 50
samples for each status are randomly selected as the training

dataset and the remaining samples as the test dataset to
evaluate the classification accuracy.

4.2. Dimensionality Reduction Performance of the Proposed
Method. In order to intuitively authenticate the performance
of the proposed SPSDA method, the following comparative
experiments with other existing dimension reduction methods
including PCA, FDA, PSDA, and MFA on the measured vi-
bration signals were conducted by the above bearing failure
simulation test rig. ,e compared dimension reduction

Table 1: ,e time-domain and frequency-domain feature parameters.

Time-domain features Frequency-domain features

t1 � 􏽐
N
n�1 x(n)/N f1 � 􏽐

N
n�1 s(n)/N

t2 �

��������������������

􏽐
N
n�1 (x(n) − t1)

2/N − 1
􏽱

f2 � 􏽐
N
n�1 (s(n) − f1)

2/N − 1

t3 � (

�������������

􏽐
N
n�1 (x(n))2/N

􏽱

) f3 � 􏽐
N
n�1 (s(n) − f1)

3/N(
���
f2

􏽰
)3

t4 � (􏽐
N
n�1

�����
|x(n)|

􏽰
/N)2 f4 � 􏽐

N
n�1 (s(n) − f1)

4/N(f2)
2

t5 � max(x(n)) − min(x(n))/2 f5 � 􏽐
N
n�1 s(n)f(n)/􏽐

N
n�1 s(n)

t6 � 􏽐
N
n�1 (x(n) − t1)

3/(N − 1)t32 f6 �

����������������������

􏽐
N
n�1 (f(n) − f5)

2f(n)/N
􏽱
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N
n�1 (x(n) − t1)

4/(N − 1)t42 f7 �

���������������������

􏽐
N
n�1 f(n)2s(n)/􏽐

N
n�1 s(n)

􏽱

t8 � max|x(n)|/t3 f8 �

��������������������������

􏽐
N
n�1 f(n)4s(n)/􏽐

N
n�1 f(n)2s(n)

􏽱

t9 � max|x(n)|/t4 f9 �

����������������������������������

􏽐
N
n�1 f(n)2s(n)/􏽐

N
n�1 s(n) 􏽐

N
n�1 f(n)4s(n)

􏽱

t10 � Nt3/􏽐
N
n�1 |x(n)| f10 � f6/f5

t11 � Nmax|x(n)|/􏽐
N
n�1 |x(n)| f11 � 􏽐

N
n�1 (f(n) − f5)

3s(n)/Nf3
6

f12 � 􏽐
N
n�1 (f(n) − f5)

4s(n)/Nf4
6

f13 � 􏽐
N
n�1

����������
(f(n) − f5)

􏽰
s(n)/N

���
f6

􏽰

Original vibration signals

Time-domain 
features

freqency-domain 
features

Time-freqency 
domain features

High-dimensional features 
of training samples

Training samples Testing samples

Dimension reduction Optimal projection

low-dimensional 
training features

low-dimensional 
test features

classifier

Fault recognition and Decision

The proposed 
SPSDA method

SVM

High-dimensional 
features of test samples

Supporting 
techniques

Figure 1: Implementation process of the proposed fault diagnosis method.
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methods include an unsupervisedmethod and three supervised
methods. Specifically, PCA is adopted as the compared un-
supervised method, which extracts latent features without
considering class information. ,e supervised methods consist
of FDA, PSDA, and MFA, which can exploit the labeled in-
formation into the objective functions related to l2-norm that
projects original feature space into optimization low-dimen-
sional subspace. After the high-dimensional feature dataset is
constructed, it would be projected into the embedded subspace
by the corresponding projection matrix of different dimension
reduction methods, which can effectively eliminate redundant
information and extract low-dimensional features. ,e target
dimensionality of the embedded subspace for each technique is
set to a certain number so that the cumulative variance con-
tribution rate is more than 95%. Figures 4–8 display the plots of
the first three principal components of their projection results
for visualization, where Figures 4(a), 5(a), 6(a), 7(a), and 8(a)
represent the training results, Figures 4(b), 5(b), 6(b), 7(b), and
8(b) represent the testing results, and the hollow dots and the
solid dots denote the training samples and the testing samples,
respectively. Obviously, since PCA is a linear and unsupervised
method, the PCA has certain limitations in the extraction of
low-dimensional sensitive features of rolling bearings, and the
extracted features of PCA are mostly overlapped as shown in
Figure 4. Compared to the unsupervised method, FDA and its
extensions MFA and PSDA can extract satisfactory discrimi-
nant features in the embedded subspace. As seen in
Figures 5–7, most of the low-dimensional features of FDA and
its variants can be distinguished, and only a small number of
extracted features are confused. From Figure 5, most of the
low-dimensional features dataset of FDA can be distinguished
and partial samples are overlapped. As seen in Figure 6, the
inner race fault in the low-dimensional features dataset of

PSDA can be recognized, while the normal condition, ball fault,
and outer race fault samples are overlapped. From the clus-
tering results of MFA as shown in Figure 7, most of the low-
dimensional features of MFA can be identified and only several
data points are overlapped. From the clustering results of the
proposed SPSDA as shown in Figure 8, the low-dimensional
feature dataset of SPSDA separates from each other in 3-D
space and only a few data points are mixed. ,e experimental
results indicated that the low-dimensional reduced features
obtained by SPSDA in the embedded subspace have obvious
discriminant characteristics than other methods.

Within the fault diagnosis related to pattern recognition
in conjunction with feature extraction techniques that find
low-dimensional sensitive features for original signals,
classifiers should be adopted to recognize the type of bearing
faults. SVM was exploited for classification in this study for
its well-developed statistical learning theory. ,en, 50 data
for each status including inner race fault, outer race fault,
ball fault, and normal condition were randomly selected for
SVM training, and the remaining samples were employed
for testing. To evaluate the effectiveness of the proposed
SPSDA-SVM method, the failure detection rate of the
proposed method was compared with the classification re-
sults of SVM, PCA-SVM, FDA-SVM, PSDA-SVM, and
MFA-SVM. ,e quantitative evaluation procedure for dif-
ferent methods was repeated for 10 times, and the recog-
nition results are listed in Table 3. ,e classification
accuracies of original features, PCA, FDA, PSDA, MFA, and
SPSDA are 78.4%, 83.7%, 94.5%, 95.6%, 93.55%, and 97.65%,
respectively. All accuracies of low-dimensional features are
higher than original features, which implies that the rec-
ognition accuracies can be improved and the redundancy
information can be removed by means of dimension

Table 2: ,e geometric parameters of 63/28-2RZ.

Items Inner ring diameter Di
(mm)

Outer ring diameter Do
(mm)

Ball diameter Db
(mm)

Pitch diameter Dm
(mm)

Number of
balls Z

Contact angle α
(rad)

Value 28 68 11.509 48.5 8 0.274

Spindle

Charge Amplifier

Load

Tested Bearing

Acceleration sensor

A/D

IPC

Vibration 
detection system

F

V

Magnetic Switch

PLC

Electromagnetic 
value

Action control 
system

(a)

Accerleration sensor

Tested 
bearings

cylinder

(b)

Figure 2: Test rig. (a) ,e hardware structure chart of electrical system and (b) the actual experimental system.
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reduction methods. ,e classification performance of su-
pervised method is better than that of unsupervised method,
since the supervised method can take full advantage of
discriminant information. SPSDA performs better than
other dimensionality reduction techniques in terms of
extracting discriminative features, which can achieve high
recognition results. ,is is primarily due to the fact that the
proposed SPSDA method can simultaneously extract dis-
crimination information and preserve the main energy of
original dataset with respect to the number of projection
directions and considers the row-sparsity property by in-
troducing the l2,1-norm regularization terms, which can
make the low-dimensional features more beneficial to the
discrimination among different classes.

4.3. Robust Performance Comparison on Noisy Signals. To
authenticate the effectiveness and robustness of the pro-
posed SPSDA method on noisy bearing fault datasets, a

series of experiments on the noisy bearing fault datasets
were performed. To simulate the real industrial environ-
ment, the white noise is added into the original vibration
signals to yield noisy data with SNR of 10 dB, 5 dB, and
2 dB, respectively. For each status, each class has 100 in-
stances containing 25000 sampling points, where 50%
samples are randomly selected for training and the
remaining instances are adopted for testing. ,e dimen-
sionality of the embedded subspace is set to a certain
number, so that the cumulative variance contribution rate
is more than 95%. SVM was employed as the base clas-
sification in this case, and the quantitative evaluation
procedure for different methods was repeated for 10 times
to avoid randomness. ,e average classification results are
listed in Table 4. As seen, the classification accuracies of all
dimensionality reduction methods decrease with the de-
crease of SNR, which means that the presence of noises can
weaken the performance of these dimension reduction
methods in feature extraction. ,e classification results of
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Figure 3: ,e time domain and frequency domain figures of vibration signals for the four bearing conditions. (a) Normal condition, (b) inner
race fault, (c) outer race fault, and (d) ball fault.
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original features are lowest for all cases, which implies that
effective dimensionality reduction techniques can remove
redundancy information, alleviate the impact of noises,
and improve identification performance. ,e proposed
SPSDA dimension reduction method can effectively re-
lieve the influence of noises by incorporating sparse
regularization terms, and the recognition accuracy of
SPSDA features is obviously higher than other peer

algorithms. ,e sparse regularization term and sparse
error term constrained by the l2,1-norm can adapt noise
during feature extraction and improve the robustness to
noise and outliers. Above all, the proposed SPSDA method
has better robustness compared with other peer methods,
and SPSDA can effectively extract low-dimensional sen-
sitive features from noisy signals, which can improve the
classification performance of rolling bearings.
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Figure 4: Clustering results with PCA. (a) Training results and (b) testing results.
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Figure 5: Clustering results with FDA (a) Training results and (b) testing results.
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Figure 6: Clustering results with PSDA. (a) Training results and (b) testing results.
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Figure 7: Clustering results with MFA. (a) Training results and (b) testing results.
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5. Conclusions

In order to address the problems of high-dimensionality,
strong relevance, and redundancy generated by information
fusion in the bearing fault diagnosis domain, a rolling
bearing fault diagnosis model based on sparse principal
subspace discriminant analysis (SPSDA) is proposed in this
study. ,e proposed method can extract discrimination
information, meanwhile preserving the main energy of
original dataset and introducing sparse regularization term
and sparse error term constrained by l2,1-norm to improve
the performance of feature extraction and the robustness to
noise and outliers. Firstly, the high-dimensional

heterogeneous feature set involved the time domain, fre-
quency domain, and time-frequency domain is constructed.
Subsequently, SPSDA is applied to extract low-dimensional
features to remove redundancy information and improve
the diagnosis accuracy and diagnosis efficiency under the
circumstances of massive samples, because dimension re-
duction methods based on subspace discriminant analysis
can effectively extract the representative features. Finally, the
obtained low-dimensional features are fed in SVM to rec-
ognize the running state of rolling bearing. Experimental
investigations are conducted to validate the superiority and
effectiveness of the proposed SPSDA method. Compared
with other peer methods, the SPSDA outperformed the PCA,
FDA, PSDA, andMFA by yielding improvements of 13.95%,
3.15%, 2.05%, 4.1%, and SPSDA has a better fault diagnosis
effect on noised vibration signals, which implies that the
proposed method possesses more stable performance than
other compared ones and is relatively insensitive to the
impact of noises and outliers owing to the sparse property.
Next, we are trying to extend our algorithm to recognize
different fault severities. ,e challenge is that the optimal
projections of proposed method are obtained only consid-
ering global structure features, which may decline the rec-
ognition performance. ,erefore, locally joint sparse
strategies are deserved further investigation.
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Figure 8: Clustering results with the proposed SPSDA. (a) Training results and (b) testing results.

Table 3: ,e recognition accuracies of different methods to the bearing sets with the SVM classifier.

Methods Normal (%) Outer race fault (%) Inner race fault (%) Ball fault (%) Average accuracy
Original 77.8 76.8 82.4 76.6 78.4
PCA 81.6 78.6 90.4 84.2 83.7
FDA 94.2 94 95.4 94.4 94.5
PSDA 94.4 94.2 100 93.8 95.6
MFA 88.4 91.8 98.2 95.8 93.55
SPSDA 96.4 94.2 100 100 97.65

Table 4: ,e classification performance of different dimensionality
reduction methods on four noisy bearing fault datasets.

Methods Data Data
(10 dB)

Data
(5 dB)

Data
(2 dB) Average

Original 78.4 77.6 74.4 73.4 75.95
PCA 83.7 83.2 82.2 81.6 82.68
FDA 94.5 94.2 93.6 92.8 93.78
PSDA 95.6 94.6 94.2 93.2 94.40
MFA 93.55 92.8 91.5 90.6 92.11
SPSDA 97.65 97.2 96.2 95.6 96.66
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