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A typical way to predict the remaining useful life (RUL) of bearings is to predict certain health indicators (HIs) according to the
historical HI series and forecast the end of life (EOL). -e autoregressive neural network (ARNN) is an early idea to combine the
artificial neural network (ANN) and the autoregressive (AR) model for forecasting, but the model is limited to linear terms. To
overcome the limitation, this paper proposes an improved autoregressive integrated moving average with the recurrent process
(ARIMA-R) method.-e proposedmethod addsmoving average (MA) components to the framework of ARNN, adding the long-
range dependence and nonlinear factors. To deal with the recursive characteristics of the MA term, a process of MA component
estimating is constructed based on the expectation-maximummethod. In the concrete realization of the method, the rotation tree
(RTF) is introduced in place of ANN to improve the prediction performance.-e experiment on FEMTO datasets reveals that the
proposed ARIMA-R method outperforms the ARNN method in terms of predictive performance evaluation indicators.

1. Introduction

Bearings are critical parts of most rotating machines. -ey
carry the resolves of shafts, but also bear the largest pressure.
44% of failure of some rotating machines are due to the
malfunction of bearings, which cause force focusing on other
fragile parts and then lead to systematic failure [1–4]. A
difficulty in the maintenance is that the replacement of
bearings needs disassembly of all related parts and requires
planned maintenance based on their health condition. -e
necessity of prediction of the degradation process, therefore,
arises that if the degradation can be predicted somehow,
maintenance can be arranged to examine the least parts and
repair most potential faults. -erefore, the estimation of the
time before failure, that is, the remaining useful life (RUL) of
bearings, is an important part of rotating machines’ prog-
nostics and health management (PHM) [5–7].

In the prediction of RUL, because of the nonlinearity and
condense noise mixed within, certain forms of health in-
dicators (HIs) are proposed to simplify the prediction. HIs
are generally quantities that can be calculated according to

life data, and they are designed to be more predictable than
RULs and keep consistency with RULs. -at is, the time HIs
reach a given threshold corresponds to the time RULs are
depleted, and the end of life (EoL) of the measuring
equipment is met [8].

Although the end of life (EoL) of the equipment can be
judged by the failure criterion, the service life itself is not a
physical quantity that can be directly observed. It needs to be
achieved through indirect methods (i.e., the state observa-
tion signal is processed to obtain indicators that reflect the
degradation state and then the health indicators (HIs) are
used to determine the EoL location with HI degradation
trend prediction).

Generally, degradation prediction methods of bearings
can be classified as physical model-based and data-driven-
based approaches. Physical model-based approaches de-
scribe the whole system with a comprehensive mathematical
model, indicating the characteristics and failure patterns of
the system, especially the occurrence and growth of cracks,
and the modes and energy of vibration [9–11]. Alternatively,
data-driven methods dynamically build a model for the
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observed machine based on the signals acquired, with a
certain prior knowledge that usually comes from previous
data collected. Compared with the model-driven methods,
the digital model based on the data-driven monitoring
method is not accurate, but from the perspective of feasi-
bility, the observation data required by these methods are
easy to be obtained, are more versatile, and can provide
satisfactory prediction requirements [12–17].

It is a very popular path to build a hybrid model
combining the ML-based models with time series analysis
(TSA) [18–20]. Methods based on TSA deem the degra-
dation of the equipment like a process continuous in time.
-e autoregressive (AR) model and its successive models are
widely used time series models in prognostics. In this family
of models, the past signal is linearly mapped to the current
signal, and the current signal is the linear polynomial
summing up the historical signals and other random factors.
-emoving average (MA)models are combined with the AR
model to introduce long-range dependence missed from the
AR model, which becomes the ARMA model [21]. Derived
from this combination, the differential process is further
added to it, giving rise to the autoregressive integrated
moving average (ARIMA). Researchers solve forecasting
tasks with all types of ARIMAmodels since the time they are
invented [22–24]. -e long-range dependence expressed in
the MA terms of these models is critical in the prognostics of
bearings [25]. In addition, Qiu et al. [26] compared the
methods of predicting HIs and suggested that an ARMA
model achieves well balances in computing complexity and
performance.

Nevertheless, the traditional ARMA model solving
procedure needs to repeatedly fit a variety of AR and ARMA
models of different orders, which are lengthy and difficult for
large data. So, it is appealing to combine ARIMA with ANN
to simplify the solving. Autoregressive neural network
(ARNN) is an early combination of ML and TSA [27]. -e
ARNNmodel directly uses historical observation data as the
input of the neural network to solve the next observation,
but different from the original model, the outputs are not
necessarily obtained by a linear combination of inputs. It
mends AR with nonlinear trait and black box solving of
parameters and confines the input features of ANN to re-
duce overfit and difficulties on training. Because of the
nonlinear trait of ARNN, it is also called nonlinear autor-
egressive neural network (NARNN) [28–31].

ARNN is based on the AR model, so the long-term
coefficients described by the MA part of the ARMA model
will be neglected. As [25] suggests, such leakages will lead to
inaccurate prediction of HIs. Because ARMA describes more
complicated models and the ARIMA is more universal than
ARMA, it is natural to expect that a machine learning
method combines with the ARMA or ARIMA model.

-e main obstacle of such a combination of machine
learning algorithms and the ARMA or ARIMAmodel is that
the MA parts are basically the error terms between real and
predicted observation, so it refers to the model result, which
is still unknown when solving the model. -us, the family of
ARMAmodels is hard to be modeled by the ANN and other
similar ML structures [32–34]. In the application of time

series models to HI or RUL prediction, researchers mainly
combine the ARMA family and ML methods as two inde-
pendent parts, such as combining ARMA and SVM [35] and
particle filter (PF) [23]. Even the ARNN has been used for
such simply combination [36], or adding complexity from
exogenous input to it [37]. In this type of combination,
parameters and outputs of ARMA models are calculated by
the traditional method and the outputs are added to pre-
dictions of other models to obtain the final result.

-e contribution of this work lies in the following two
aspects: first, this paper proposes an ARIMA-R method as
the implementation framework of approximating the
ARIMA model with ML, which is realized with the moving
average approximation by recurrent means. Second, a test in
series generated from an ARIMA model is carried out to
examine the proposed ARIMA-R method, and the result
shows that the method can estimate the next observation in
such series with high accuracy.

-e rest of this paper is organized as follows: Section 3
describes the ARIMA model and proposes the ARIMA-R
method on its basis; Section 4 expresses the verification on
the ability of the ARIMA-R model in describing generated
ARIMA series and then uses the method to estimate bearing
HIs through the public FEMTO dataset, with analysis of the
parameter settings of the method; Section 5 concludes the
whole study.

2. Methodology

2.1. ARIMAandARNN. -e ARIMA model originates from
the AR model and MA model [21]. -ese models belong to
the same type, depicting the autocorrelation of series data,
which is the correlation between the data and its “lagged”
copy. If autocorrelation exists, those data of the past will
influence the future in some ways, usually described by
functional relationships. Autocorrelation is common in
times series analysis since most time series data reflects the
inherited causality of the observation subject.

Assuming the autocorrelation in series is linear, the AR
model and MAmodel can be obtained. In the AR model, the
result is related to its previous observation and expressed by
the linear combination of historical observations. Different
from the ARmodel, the output in theMAmodel is explained
by the errors of historical predictions. -e prediction errors,
implying the relationship between output and its trend or
expectation, include accumulative historical effects and
long-range dependency, as well as the influences of random
history.

-e combination of AR model and MA model is the
ARMA model, while its improvement by applying differ-
encing to both inputs and outputs results in the ARIMA
model. -e ARMA model includes short-term autore-
gressive and long-term moving average, which can better
describe time series. However, ARMA inherits the strict
requirements of the AR and MA models for the sequence to
ensure the existence of autocorrelation.-e sequence subject
to the ARMA model is required to have weak stationarity,
that is, zero mean and constant variance.-e ARIMAmodel
weakens this requirement by introducing the difference of
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the sequence. It only needs the sequence to have differencing
stationarity; in other words, it can become a stationary
sequence after a finite number of differences.

For convenience, we denote the lag operator L with
Ldxt � xt− d. -en, given a time series observation
X � x1, x2, . . . , xt, the ARIMA model describes the series as

yt � (1 − L)
d
xt 1 − ϕ1L − · · · − ϕpL

p
􏼐 􏼑,

yt � c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑εt,
(1)

where c is the base value of X; εs � 􏽢ys − ys is the historical
prediction error (assumed to be white noise when s � t); p is
the order of AR terms (1 − ϕ1L − · · · − ϕpLp)yt, q of MA
terms (1 + θ1L + · · · + θqLq)εt, and d of differencing orders;
ϕ and θ are the parameters of the AR and MA (q) model,
respectively. To emphasize the order parameters, the model
may be written as follows: ARIMA(p, d, q).

-is description takes the series as the d order sum of
linear combination by multiple predictors in terms of AR,
MA, and random noise. -e orders of AR, MA, and the
sum determine the specific form of ARIMA model, while
the parameters of each term are to be solved to provide the
prediction. With the variety of orders, the ARIMA model
can generate time series ranging from white noise and
random walk to complicated drift with the quadratic
trend.

-e simplicity of ARIMAmodel requires certain features
of the subject data. -e critical requirement is the auto-
correlation of the series, so the autocorrelation function
(ACF) and partial autocorrelation function (PACF) need to
be calculated from the data to determine which order of AR
and MA terms are available in the prediction.

A reliable procedure has been described by Box and
Jenkins [38] to build the ARIMA model, including the
following three steps: (1) model identification and deter-
mination of the orders p, d, and q, (2) parameter estimation
of AR and MA terms, and (3) prediction checking and
performance evaluation.

Proposed by [27], the ARNN attempts to use ML
methods to solve AR models. -e output variable (i.e.,
target) (p) can be expressed as follows:

􏽢yt � h c, yt− 1, . . . , yt− p􏼐 􏼑, (2)

where h(·) is the nonlinear transformation obtained by the
neural network.

Because the neural network can produce nonlinear
features by introducing activation functions with strong
nonlinear features, the application of activation functions
with weak nonlinear characteristic in ARNN can achieve an
effect that is almost equivalent to the AR model. However,
this method is not expanded to the ARMA model because
simply using the input data cannot directly obtain the
prediction error features.

2.2. Rotation Forest. Rotation forest is an ensemble ML
method, which integrates weak learners to gain accurate
results. It is originally proposed only for classification

purposes in [39], but the regression version was imple-
mented later in [40].

In the field of ML, ensemble methods mainly include
bagging (which is to train the classifiers with partial sample)
and boosting (which is used to chain the weak classifiers for
reinforcement). On the basis of bagging, the rotation forest
constructs different features by rotating the features in
feature space, thereby generating diversity on the classifiers.
Different from bagging, although bootstrapping is used in
the rotation forest method, instances are not discarded
during classification, and all information about features is
retained. -e procedure of rotation forest can be depicted as
follows.

Let X � [x1, x2, . . . , xN]T be a dataset with N instances,
where each xi instance includesm features inm-dimensional
feature space Fm, xi � [Fxii,1, Fxi,2, . . . , Fxi,m]T ∈ Fm.
-erefore, X is an N × m matrix. Let Y � [y1, y2, . . . , yN]T

be the regression target with respect to X.
Rotation forest generates l decision trees, D1, D2, Dl, to

form a rotation tree.
-e training set for an individual DT is processed with

the following steps:

Step 1: randomly divide the feature set F into k subset
F1, F2, . . . , Fk. Assume each subset contains
q�m/k features.

Step 2: for each subset Fj, let Xj be the training set with
only features in Fj and a bootstrap subset of Xj is
drawn and used to form a new training set
denoted by Xj

′.
Step 3: principal component analysis (PCA) is applied to

each Xj
′ and gives weight matrix Cj.

Step 4: all k matrices, C1 to Ck, is used to construct a
rotation matrix R in the form of diagonal block
matrix that C1 to Ck is put to the main diagonal
blocks, and set all other blocks to zero as shown in
equation (3).-e columns ofR, which are divided
from feature F, are then rearranged according to
F, denoted as R′.

R �

C1 0{ } . . . 0{ }

0{ } C2 . . . 0{ }

. . . . . . . . . . . .

0{ } 0{ } . . . Ck

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (3)

Step 5: the training set for a DT is given by T � XR′. DT
is then trained by T and Y.

All l trees estimate the regression target with yi. -e
average of all yi is taken as the output of the rotation tree as
in

􏽢y � 􏽘
i

􏽢
y

i
. (4)

For the entire training set Xt, randomly generate a subset
Fj of all features Ft for K times. For each subset Fj, the
features in the intersection of Fj and X are selected to create
the corresponding subset Xj. A random replacement
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sampling is performed in Xj to produce the bootstrap
sample Xj

′. With K bootstrap sample X′j, PCA is used on
X′j to obtain the component matrix Cj, and all Cj rearrange
internally to form a block diagonal matrix R as the rotation
matrix. A rotation regression tree D is trained based on the
sample X, Y and matrix R:

D � f: T⟶ Y � f: XR′ ⟶ Y. (5)

To further increase the number of ensemble samples,
repeat the above process L times to obtain L rotating trees
and then use all rotating trees to form a rotation forest. -e
average prediction of all trees is the output of the rotation
forest.

3. ARIMA-R

3.1. Flowchart and Basics of Proposed ARIMA-R.
Compared with the AR model, the solution of the ARIMA
model is more difficult and complicated. To determine the
three order parameters of p, d, and q, it is necessary to
enumerate different differential order d and search for the
proper combination of p and q. Given a tentative d, the
inputs and outputs are differenced to d order for successive
calculation.-e autocorrelation function (ACF) is calculated
with respect to all possible lags and then another tentative
middleware; the AR model is fit by the differential data for
the partial autocorrelation function (PACF) or directly
maximum likelihood estimation (MLE). -e tentative p and
q are determined by the result of ACF and PACF; then, the
still tentative ARIMA model is finally solved only for
evaluating the criterion such as Akaike information criterion
(AIC). After testing multiple combinations of parameters,
the order parameters are finally determined.

As shown in Figure 1, to simplify the solving of ARIMA
model, a framework called ARIMA-R is constructed based
on the ARNN method. -e framework takes series data as
input and provides its prediction as output.

Given a time series S and its observation X, where the
time series is discrete and X contains observations until time
t − 1, X � xt− 1, xt− 2, . . . , x1􏼈 􏼉, the prediction target is the
observation xt at time t. According to the ARIMA model,
given orders p, d, and q, the target xt can be expressed as
follows:

1 − ϕ1L − · · · − ϕpL
p

􏼐 􏼑(1 − L)
d
xt � c

+ 1 + θ1L + · · · + θqL
q

􏼐 􏼑εt,

ετ � (1 − L)
d
􏽢xτ − (1 − L)

d
xτ ,

(6)

where ϕ1,ϕ2, . . . ,ϕp are the coefficients of AR terms,
θ1, θ2, . . . , θq are the coefficients of MA terms, ετ is the
prediction error at time point τ, when τ � t, ετ meets the
Gaussian distribution, L is the lag operator, and c is the
constant. For convenience, assume yt � (1 − L)dxt as the
observation, and the prediction error can be written as
ετ � 􏽢yτ − yτ .

For calculation of ετ , we introduce the recurrent moving
average (RMA) terms (1 + θ1L + · · · + θqLq)ε(n)

t , where ε(n) �

􏽢y(n− 1) − y is the nth generation error of prediction and real
history.

For recurrent prediction, the model is depicted as
follows:

1 − ϕ1L − · · · − ϕpL
p

􏼐 􏼑􏽢y
(n)
t

� c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑ε(n)
t

� c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑􏽢y
(n− 1)

− 1 + θ1L + · · · + θqL
q

􏼐 􏼑y.

(7)

-e input term F
(n)
t of ARIMA-R can be described as

follows:

F
(n)
t � c, Lyt, L

2
yt, . . . , L

p
yt, ε

(n)
t , Lε(n)

t , . . . , L
qε(n)

t􏽮 􏽯. (8)

Using the rotation forest based on regression tree, the
prediction output of this generation can be given as follows:

􏽢Y
(n)

� 􏽢y
(n)
1 , 􏽢y

(n)
2 , . . . , 􏽢y

(n)
t where 􏽢y

(n)
t �

1
L

􏽘

L

i�1
Di F

(n)
t􏼐 􏼑, (9)

where L is the number of rotation trees (e.g., the magnitude
of ensemble) and Di is the single regression tree found by
rotation forest algorithm.

After each iteration, if the parameters of MA terms
converge or the maximum iteration generation R is reached,
the recursion ends. In the end, calculate xt from 􏽢Y

(n) re-
ferring to the reverse of yt � (1 − L)dxt. -e first prediction
􏽢y(0) needs to be estimated by other means. Considering that
the evolution of regression tree may fall into local maxima, a
more accurate estimate of y should be selected for the
preliminary prediction value. -e most universal way is to
set it as equal to the last historical data xt− 1, which can be
regarded as a coarse solution of AR(1) model. Given the
condition of stationary including zero-mean sequence, an
estimation of always 0 is also acceptable.

3.2. Order Determination in Proposed ARIMA-R. -e main
purpose of order determination is to estimate the polyno-
mial form when building the model. Too fewmodel variables
cannot give a model that can describe the data well; too
many variables are avoided in traditional modeling based on
the principle of reducing assumptions, but in ML because
the solution is approximate, too many feature variables are
likely to cause overfitting. In themethod, we choose to use an
integrated algorithm based on regression decision tree-ro-
tating tree algorithm to alleviate this problem when solving
the model.

-e regression tree algorithm uses features to divide the
output space, and it applies the information entropy to
divide the input feature space. If some features do not
produce meaningful division, the pruning algorithm will be
used to remove the judging branch of the feature. -is study
applies the bagging strategy to generate samples with diverse
characteristics through random sampling. A shallow weak
decision tree is generated for each sample, and the final
regression result is generated. Since the weak decision tree
naturally tends to be underfitting, plus that there are pruning
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algorithms to further reduce the decision branches, the
integrated decision tree algorithm can effectively alleviate
the overfitting problem caused by too many features.

3.3.DiscussionaboutMATerms. As shown in (1), it is easy to
see that the different process in the model only uses the
different observation data and the prediction error of the
different data as input and the difference of the prediction
result as the output. In other words, this process equally
affects historical data as input and prediction results as
output.-erefore, the actual problem to be predicted after d-
order differential process is the same in form as the ARMA
model. In this way, it is also possible to study the ARIMA
model in the same way as the ARMA model.

When trying to useMLmethods such as neural networks
to model the ARMA model, the MA term in the ARMA
model, that is, the random error term, is difficult to deal
with. -is term represents the error between the past pre-
dicted results and the actual results. Before modeling this
term, one must first obtain all the predicted outputs before
this input when training each input. -is also means that a
model for each data point needs to be trained step by step,
instead of training a model for all data at once. In addition,
in this case, there will be no consistency between models for
each sequential data point and it is possible that a model only
for this moment may be trained, and it has no predictive
ability for data in other time periods [18, 41].

According to the definition of the MA term, the MA
term is the error between the predicted result and the actual
result, so the ARMA model can be rewritten as follows:

1 − ϕ1L − · · · − ϕpL
p

􏼐 􏼑 + 1 + θ1L + · · · + θqL
q

􏼐 􏼑􏼐 􏼑yt

� c + 1 + θ1L + · · · + θqL
q

􏼐 􏼑􏽢yt.
(10)

As shown in (10), there are p groups of parameters for
AR terms and q parameters for MA terms to be solved in the
building of themodel. It can be seen that the ARMAmodel is

actually a linear model about q items of historical prediction
results and h � max p, q􏼈 􏼉 items of historical observation
data. -e long-range dependence of the MA item is also
because if the historical observation term is expanded each
time the MA term is expanded, the previous h items of
historical data will be added to the model. -is also explains
why the MA term should not be directly assumed as a series
of uniformly distributed random variables. Although the
historical prediction 􏽢y is an estimate of historical data y, it is
generally assumed that the estimated error y − 􏽢y is a normal
distribution with a fixed variance of zero means, but in fact,
if the error is directly assumed to come from a zero-mean
normal distribution, or if it is assumed to be zero, it will lose
earlier observations and cause greater losses.

According to the above conclusions, the ARMA model
can be established and solved by ML methods. However, the
problem of how to calculate the predicted results before
giving the model parameters and solving the model is still to
be solved. Traditionally, the parameters are solved by cal-
culating their maximum likelihood estimation (MLE) or
least-squares estimation (LSE). However, considering that
what we really need is the single-step estimation of time
series prediction, it is also reasonable to calculate the result
by training an artificial neuron network (ANN) or other
regressors. However, in the ARNN model, MA term is
excluded, so there is no solution in ARNN implementation.

-is work introduces the idea of expectation maximi-
zation (EM) algorithm to carry out the iterative process [42].
-e EM algorithm can calculate the MLE when the pa-
rameters are incomplete. For the statistical model of the
observation data X and the unknown data Z, the parameter
Θ needs to be estimated. Each iteration of the EM algorithm
consists of the following two steps:

(1) Step E is to calculate the expected value of Z based on
the existingmodel dataX and the parameter th and use
the expected value to replace the true value of the
missing data and calculate theMLE of the parameter th

Original signal

History

Differencing signal

Prediction

Prediction of differencing signal

Prediction of original signal

First 
estimator

ARIMA-R feature 
AR RMA

Error

Store difference series for recovering signal

Rotation Forest

Rotated feature

Update prediction

Determine order by mean and ACF

Output when converged

Figure 1: Flowchart of ARIMA-R.
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(2) StepM is to use the MLE of the parameterΘ given in
Step E to find the parameter Θ when the MLE is
minimized

After each iteration, update the parameter Θ and check
whether it has converged. If it converges, the estimation is
ended. In the EMmethod, the missing data Z is the expected
value calculated based on other data, and the initial value of
the parameter Θ is a random value.

On the one hand, the data to be estimated in step E are
historical forecast data 􏽢y, and the expected value of 􏽢y is
consistent with the historical data y, which will cause theMA
item to always be zero. On the other hand, if the estimated
value of 􏽢y is related to earlier historical data, it will speed up
the convergence of the prediction model. In addition, if the
parameter values of the ARMA model are initialized ran-
domly, it is likely that the calculation result completely
deviates from the true value, leading to overfitting or falling
into local optimal problems. -erefore, the choice here is to
use an AR(1) model to predict y and use this prediction

result as the historical prediction data 􏽢y and then directly
solve the model parameters. Since the ARMA model de-
scribes a zero-mean sequence with stationarity, it is feasible
to use zero as the prediction result.

StepM is obtained by solving and optimizing theMLE in the
EM algorithm. In the method proposed here, the rotating forest
can be used directly to obtain the model parameters, so only the
model parameters need to be saved for the next iteration.

Only for single-step prediction, the proposed framework
is useful, while on the multiple-step prediction, there is a
limit to the ARIMA-R method. Since the ARIMA model is
modeling the next value of observation, such a model is not
fit to direct regression of future value. -e only method is to
predict the future step by step. In the calculation of pre-
diction, the future errors are assumed to be zero and the
future observations are replaced with the prediction before.
Such treatment means that, on prediction, an ARIMA
(p, d, q) model is degraded to an ARIMA (p, d, 0) model.
-is means that the proposed ARIMA-R model must

Input: X � x1, x2, . . . , xt− 1
(1) d⟵ 0
(2) repeat
(3) Y: (1 − L)dX

(4) Dd � Y

(5) Calculate ACF of y
(6) d⟵d + 1
(7) until E(y) − 0< eps and ACF converge \(⊳\) the limit eps depends on practical situation.
(8) First guess:
(9) for training and testing set do
(10) Calculate Y0 by Y0 � L1Y \(⊳\) other prediction methods also work.
(11) : end for
(12) : k� 1
(13) repeat
(14) for training and testing set do
(15) Calculate RMA
(16) e〈k〉 � y − y〈k − 1〉

(17) Construct feature
(18) F(k): F

(k)
t � yt− 1, . . . , yt− p, et− 1 . . . et− q􏽮 􏽯

(19) end for
(20) Train the Rotation Forest in training set
(21) for training set do
(22) y � D(k)(F(k))

(23) end for
(24) Calculate y〈k〉

(25) for training and testing set do
(26) y � D(k)(F(k))

(27) end for
(28) Calculate changes
(29) s � MSE(y(k), y(k))

(30) until k> kmax or s< eps

(31) Construct F<k>
(32) for j from 1 to k do
(33) Calculate e(k), F(k), y(k)

(34) end for
(35) xt � D(F(k)) + D1 + · · · + Dd− 1

Output: estimated output xt

ALGORITHM 1: ARIMA-R.
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similarly reduce to the ARIMA (p, d, 0) model. -erefore, it
turns out that, on multiple-step prediction of enough length,
the recursive order r should be 1 or 0. In such a situation, this
model is indiscriminate from the normal ARNN model.

3.4. Analysis of Computational Complexity. To analyse the
computational complexity of ARIMA-R, we adopt the big O
notation to describe the relation between operation quan-
tities and input sizes. A complexity O(p(N)) means that
when the input size N approaches infinite, the time of
operation is infinite with the same order as p(N).

For a signal series with length N, given orders p and q, our
method needs r times of iteration in which a rotation forest is
trained, where r is a small constant. Each time a rotation forest
is trained, L trees are calculated. Every rotation tree needs K

times of PCA and to train a decision tree based on the
rearranged PCA results. In this process, L and K are pre-
determined parameters. -erefore, the algorithm needs to
calculate K × L times of PCA and train L decision trees, in
addition to L times of extra matrix multiplication. Reference
[43] shows that the complexity of PCA with d-dimension
vectors isO(d2N + d3); reference [44] indicates that training a
balanced regression tree on d-dimension data requires
O(dN logN) times of multiplication. We also know that a
matrix multiplication between anm-by-nmatrix and an n-by-
pmatrix isO(mnp). Summing up the results, the complexity is

O (p + q)
2
N +(p + q)

3
+(p + q)N log N +(p + q)

2
N􏼐 􏼑,

(11)

which is rewritten as

O s
2
N + s

3
+ sN log N􏼐 􏼑 � O(N log N), (12)

where s � p + q is relatively small.
-en, we come to ARIMA. As indicated by [45], the

computational complexity of ARIMA itself is
O((N − p)p2 + (N − p)q2), which is better than the proposed
ARIMA-R with fixed p and q. Nonetheless, the computing
burden lies on the order determination part. Following the
Box–Jenkins method (if assume pmax and qmax), given fixed
differential parameter i, pmax _qmax times of searches are
necessary to determine the proper order parameters p and q for
ARIMA. For each parameter combination, ACF and PACF to
certain orders, such as pmax order, should be calculated to
obtain the AIC and determine parameters. Reference [46]
suggested that if we use the common Levinson–Durbin method
to solve ACF and PACF, the complexity of ACF is O(N2) and
that of PACF is O(q2N2). Because the total times of ACF and
PACF solving in the Box–Jenkins method are pmaxqmax, the
complexity in this part is O(pmaxqmaxq

2N2) � O(N2). In total,
the complexity of ARIMA is

O (N − p)p
2

+(N − p)q
2

+ pmaxqmaxq
2
N

2
􏼐 􏼑 � O N

2
􏼐 􏼑.

(13)

It is worth noting that the ACF and PACF solving is also
needed in ARIMA-R, while the total times are reduced to
pmax. With the common operations eliminated, traditional

ARIMA with the Levinson–Durbin method still needs
pmax(qmax − 1) times of searches, so the result keeps
unchanging.

-e above analysis suggests that the proposed ARIMA-R
algorithm reduced the computing burden in order deter-
mination, in the cost of complexity increasing in parameter
approximation. Overall, the computational complexity of
ARIMA-R is reduced.

4. Experimental Verification in
Prognostics of Bearings

-ree experiments are conducted to verify the ability of the
proposed ARIMA-R method: an experiment with simulated
data, a single-step forecast experiment based on bearing
remaining useful life datasets, and a long-term prediction
experiment.

To compare the prediction errors of ARNN and that of
ARIMA-R for each sample, four indicators, mean square
error (MSE), mean absolute error (MAE), coefficient of
determination (R2), and mean absolute percentage error
(MAPE), are introduced. Among the indicators, MSE,
MAE, and MAPE are better if they are closer to 0, which
means the prediction result is closer to the predicting
target. R2 indicates the proportion of the target that can be
explained by the prediction, so the value of R2 should close
to 1. Mathematical expressions of these indicators are
shown as

MSE �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
, (14)

MAE �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (15)

R
2

� 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − y( 􏼁

2

� 1 −
MSE
Var

,

(16)

MAPE �
|y − 􏽢y|

|y|

�
1
n

􏽘

n

i�1

yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|y|
.

(17)

4.1. Verification with Simulated Data. To verify the prog-
nostic capacity of the proposed ARIMA-R method, this
paper selects the following parameters to establish a curve
that meets the ARIMA model, as shown in Table 1.

Since the MA term actually uses random noise to replace
the unknown past data when generating the ARIMA curve
in simulation, other forms of the curve may also be gen-
erated with the same parameters and starting point. ARNN
and ARIMA-R were used to build a model to solve the first
100 data points of the curve and then used to make a single-
step prediction for the last 100 data points. -e results are
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shown in Figure 2. -is experiment is a single-step pre-
diction, that is, for each time point t, the data up to time
point t − 1 is used to predict the observation result. -e x-
axis in the figure is the order of observation samples, and the
y-axis is the actual HI value and the difference value of HI,
respectively. Figure 2(a) shows that the 1–100 observations
are used as training data and the 101–200 data are used as
test data. Figure 2(b) shows the different prediction results of
the test data part. It can be clearly seen that the prediction of
the ARIMA-R method is more accurate than that of the
ARNN method.

However, it should be emphasized that such high per-
formance comes from that the data are purely generated by
the ARIMA model and in single-step prediction. For long-
term prediction, random factors will dominate the result.
-e long-term result in Figure 3 indicates that the prediction
error blooms gradually after about 15 iterations of long-term
prediction.

4.2. Experiment Setup and Procedure for Single-Step Forecast.
In the prognostic experiment, vibration signals of bearings at
the run-to-fail situation are used. -e bearing dataset is
provided by FEMTO Institute, published on the NASA
Prognostics Center of Excellence (PCoE) [47]. Two or-
thogonally installed accelerometers in horizontal and ver-
tical directions on the housing of bearing collect vibration
signals in the form of acceleration, as shown in Figure 4. For
both signal channels, the sampling frequencies of signals are
25.6 kHz, while the data are collected every 10 seconds for
1 second. For all conditions and bearings, the data acqui-
sition is begun at the normal state of bearings and ended
when the bearings fail. -e detail of the platform and the
experiments can be obtained in [47]. -e dataset includes 17
subsets under three different conditions, as shown in Table 2.

-e root mean square (RMS) of the vibration signals is
calculated and provided as the HI prediction target. Each set
of data is a series of observation samples arranged in time
order, so the time series analysis is used for processing the
signals. -e bearing 1_4 data are taken as an example in
Figure 5. -e RMS data are a flat small value at the be-
ginning, namely, platform period, and in the middle of the
wearing period, abnormal values that far exceed the average
value of the platform period frequently appear; finally, in the
final stage, the RMS value increases abnormally, until the
bearing fails completely.

-e division of stages is carried out according to the
position of the node where the trend of the data changes
suddenly. Since the ARIMA model is a model based on
sequence prediction, it is not suitable for predicting the data
when sudden changes occur. So, it is better not to make

cross-stage predictions. Here, the data of the failure stage are
mainly selected as the prediction object for method verifi-
cation. In the process of model training using ML algo-
rithms, the data need to be divided into a training set and a
validation set. Under the assumption that the samples of the
two datasets follow the same model, the training set is used
to determine the model parameters and then the validation
set is used to verify the performance of the model. Generally
speaking, the training set and the validation set are randomly
selected regardless of the order of the data, but the ARIMA
model is a time series model; thus, training the model with
future data will result in inaccurate performance in the past
data in the validation set. -erefore, a certain length of data
is selected as the training set from the beginning of the
overall sequence, and the subsequent sequence is used as the
verification set.

In this experiment, after selecting the training data, the
key parameters can be determined through data research,
mainly to determine the order of the ARIMA model, in-
cluding AR order p, MA order q, and differencing order d.
As mentioned in the problem of order determination in
Section 2.2, the ARIMA-R method does not require precise
order determination, but it is still necessary to carry out the
difference and calculate the ACF to determine the differ-
encing order d and determine the reference values of p

and q.
-e data are generally divided into a training set and a

validation set for training the model and a test set for testing
the performance of the model. However, a special division is
required here. -e data are first divided into normal phase
data and abnormal phase data according to the trend, and
then the abnormal data are used to train the model [48]. -e
reason is that the data of different phases cannot be regarded
as in the same distribution, so it cannot be learnt by the same
model. In this study, bearing datasets 1_4, 1_6, and 3_3 are
used as the training target for prediction, where first 1/3 of
data are selected as the training samples, and the rest are for
testing. -e data of these bearings in the abnormal state are
shown in Figure 6.

-e ACF and PACF of RMS itself and its difference are
represented in Figure 7, from dataset 1–7. -is dataset is not
used in the prediction, and the ACF/PACF results are taken as
reference in order determination. In order to be processed
using the ARIMA-R model, the sequence used for model
prediction needs to be a sequence of approximately zeromean
after differencing, so the ACF function of the sequence is
calculated first, and the PACF function is calculated based on
the AR (15) model, whose orders are determined by the result
of ACF function. According to the lags that the ACF/PACF
value is above the significance line, the orders of model are
determined as shown in the ARIMA-R part of Table 3.

Table 1: Parameters to simulate ARIMA data.

Term Order Order AR param. MA param.
AR 2 1 0.5 0.65
MA 4 2 − 0.75 − 0.5
Diff. 2 3 − 0.2

4 − 0.1
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After determining the order of the ARIMA-R model,
the ML algorithm be used to train the model, so the data
must be divided first. -e ML algorithm inside the model is
selected to be Rotation Forest Regressor (RTF), and the
parameter settings of the two models are shown in Table 3.
In addition, as the reference for RMA, the Lag 1 obser-
vation, that is, the last one, is used in calculating RMA for
the first estimate of this observation. Since the maximum
value of the three parameters d, p, and q is 20, the model
can be regarded as a single-step forecast using 20 historical
data.

-e prediction directly given by RTF or other algorithms
is the d-order difference of the observed data. -e actual
predicted value can be obtained by adding the predicted
difference value to the sum of the observed value and dif-
ference of this observation.

Taking the data of prediction in bearing 1–4 as an example,
the prediction results are shown in Figure 8(b), and the pre-
diction result obtained after accumulating the observation
value and the difference value is shown in Figure 8(a). In
Figure 8(b), the comparison is the prediction result of ARNN
method. Except for the first 50 data where due to sudden
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Figure 2: -e single-step prediction result of the generated data. (a) -e prediction result after the difference is restored. (b)-e prediction
result of the differenced data.
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Figure 3: A part of long-term prediction by ARIMA-R.
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changes in data and lack of historical data, the predictions of
both methods are identically zero, the ARIMA-R method has
certain advantages over the ARNN method. Because it is a

single-step forecast, it can be seen that the forecast results are in
good agreement with the actual data, but if the model is ex-
tended to multistep, serious errors will surely occur.

4.3. Experiment Performance and Analysis. -e single-step
prediction results of the ARIMA-R model for several test
samples are shown in Table 4. Comparing the performance
of the two methods in the table, it can be seen that the overall
performance of the ARIMA-R method is better than that of
ARNN, but there is no significant advantage. -is is because
the data used for testing have obvious noise, which affects
the learning of the model. -e performance of the ARNN
algorithm in different data is unstable. -is is because the
number of samples is insufficient, resulting in overfitting.

-e combination of the ARIMA-R model and various
ensemble tree algorithms can be used to train the prediction
model, and the comparison of the results is shown in Table 5.
-e table demonstrates the results replacing RTF in ARIMA-
R with different ensemble ML algorithms. Like previous
experiment, the result comes from single-step prediction on
the bearing dataset, and the result from the ARNN algorithm
is provided as a reference.

-e algorithms chosen to combine with include Gradient
Boosting Tree (GBT), AdaBoost Tree (ABT), and Random
Forest (RF), in addition to ANN.-e result suggests that the
RTF algorithm has some advantages over the others in the
framework of ARIMA-R, but is not always better. -is is as
expected because these ensemble trees have similar learning
capabilities, and that is similar to the ability of ANN.

4.4. Long-Term Prediction. A long-term prediction by
ARIMA-R is conducted on the FEMTO data, aiming to
further examine the performance of the proposed method.

NI DAQ Pressure regulator Cylinder pressure Force sensor Bearing tested Accelerometers

Motor Tachometer Speed reducer Torque meter Coupling Platinum RTD

Figure 4: -e experimental platform PRONOSTIA. In the accelerated degradation experiment of bearings carried out on the PRONOSTIA
platform, the data collected from two mutually orthogonal acceleration sensors are transmitted to the computer through DAQ equipment.
In order to accelerate the aging of the bearing, radial force is exerted on the bearing [47].

Table 2: FEMTO datasets.

Operation cond. Condition1 Condition2 Condition3

Datasets

Bearing1_1 Bearing2_1
Bearing1_2 Bearing2_2
Bearing1_3 Bearing2_3 Bearing3_1
Bearing1_4 Bearing2_4 Bearing3_2
Bearing1_5 Bearing2_5 Bearing3_3
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7

Bearing1_4

0

2

4

6

8

10

12

H
I

500 1000 15000
Observation

Figure 5: RMS of bearing 1_4.
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Figure 6: RMS in abnormal state. (a) Bearing 1_4. (b) Bearing 1_6. (c) Bearing 3_3.
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Figure 7: ACF analysis of bearing 1_7. From up to down: the 0,1,2,3 order difference of RMS.
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A rule similar to IEEE PHM 2012 Data Challenge is
adopted. -e data from bearing 1_3 to 1_7, 2_3 to 2_7, and
3_3 are taken as test data, in which only the given length of
data is available, and the RUL at the end of test data is to be
predicted.

As implied before, the proposed method is not fit to
predict a long sequence directly. To compensate for this, a 2-
order linear regression model based on ordinary least-
squares (OLS), provided by scikit-learn [49], is used for
initial prediction.-e rotation forest regressor then modifies

Table 3: Parameters of ARIMA-R and algorithm associated.

ARIMA-R Random forest and
rotation forest

AdaBoost and Gradient
Boost ARNN

p 20 Estimators 800 Estimators 200 Hidden layer (10, 30)
q 20 Max depth 10 Activation ReLU
d 2 Learning rate 0.2 Solver Adam
r 2 Learning rate Adaptive
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Figure 8: Single-step prediction of ARIMA-R and ARNN. (a) RMS. (b) Difference. (c) Error rate (%) of difference.
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the prediction thereafter. -e modification part is similar to
the recurrent process in the proposed method. -e pre-
diction result is evaluated by the criterion introduced by
[47], as depicted in the following equation:

score �
1
n

􏽘

n

i�1
e
ln(0.5)Ciεi , (18)

where ϵi is the ith relative error of predicted RUL in per-
centage and Ci is the coefficient that depends on ϵi:

Ci �

− 1
5

, ϵi ≤ 0,

1
20

, ϵi > 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

-e result and criterion score are compared with results
from previous research studies [50–54], as shown in Table 6.
In the table, predicted RULs, authentic RULs of all test
datasets, and relative errors in percentage are presented. -e

Table 4: Single-step prediction of ARIMA-R and ARNN.

Algorithm R 1_6 1_4 3_3
MSE MAE MSE MAE MSE MAE

ARNN 3.58 53.30 3.58 53.30 2.57 45.08
ARIMA 1 1.60 30.15 3.91 55.23 1.32 23.49
ARIMA 2 1.54 26.04 5.21 46.48 2.57 30.91

Table 5: RMA method comparison.

Data Algorithm MSE MAE R2 MAPE

1_4

ARNN
5.39 55.16 0.968 6.13

GBT 8.95 72.25 0.990 1.70
ABT 3.91 55.23 0.991 1.57

ARIMA-R
RF 4.84 64.57 0.993 1.37
NN 3.58 53.30 0.977 2.45
RTF 5.21 46.48 0.997 0.84

1_6

ARNN
5.34 55.76 0.960 6.26

GBT 2.01 30.68 0.977 4.79
ABT 1.60 30.15 0.985 3.63

ARIMA-R
RF 1.60 31.69 0.986 3.64
NN 4.01 47.67 0.976 5.35
RTF 1.54 26.04 0.991 2.76

3_3

ARNN
15.55 96.15 0.914 5.60

GBT 4.55 48.25 0.975 2.58
ABT 4.15 43.91 0.977 2.29

ARIMA-R
RF 4.00 41.64 0.978 2.17
NN 10.74 74.34 0.941 3.98
RTF 2.57 30.91 0.986 1.63

Table 6: Prediction performance score comparison on the FEMTO dataset.

Dataset Predicted RUL(s) Authentic RUL(s)
Relative error (%)

A [51] B [52] C [53] D [54] E [50] ARIMA-R
Bearing1_3 3973 5730 43.28 37 − 1.04 − 0.35 1.05 30.66
Bearing1_4 247 339 67.55 80 − 20.94 5.6 20.35 27.14
Bearing1_5 1403 1610 − 22.98 9 − 278.26 100 11.18 12.85
Bearing1_6 1459 1460 21.23 − 5 19.18 28.08 34.93 0.05
Bearing1_7 7338 7570 17.83 − 2 − 7.13 − 19.55 29.19 3.07
Bearing2_3 4361 7530 37.84 64 10.49 − 20.19 57.24 42.08
Bearing2_4 1302 1390 − 19.42 10 51.8 8.63 − 1.44 6.37
Bearing2_5 333 3090 54.37 − 440 28.8 23.3 − 0.65 89.23
Bearing2_6 822 1290 − 13.95 49 − 20.93 58.91 − 42.64 36.30
Bearing2_7 349 580 − 55.17 − 317 44.83 5.17 8.62 39.86
Bearing3_3 589 820 3.66 90 − 3.66 40.24 − 1.22 28.17
Score - - 0.263 0.307 0.355 0.429 0.569 0.479
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score (18)of each group of predictions is shown at the
bottom of the table.

We can see from the score that the proposed method has
an advantage on method A-D, especially for data from
bearing1_6 and bearing1_7. -at is because, at the end of
these datasets, the trend of sequence conforms with the weak
stationarity requirement of ARIMA, e.g., the order statio-
narity. With such stationarity, ARIMA constructed from
history observation can reflect the future closer. On the other
side, bearing datasets 2_4 and 3_3 illustrate a clear situation
transition during the final stage of degradation, and the
predictions are far from the true RULs.

In fact, the basic assumption of ARIMA model includes
certain types of stationarity on the series. Moreover, suffi-
cient information on the history series is required to obtain a
more accurate forecast. In the situation that the monitoring
bearings are seriously damaged, neither stationarity nor
information is sufficient. -us, the prediction result is not
only because of the predicting ability of the model itself but
also due to the nonlinear component introduced by the
machine learning method when the rotation forest is used to
solve the model parameters.

According to the results, further analysis of the com-
bination between the time series model represented by
ARIMA and the machine learning algorithm will be im-
portant in the research hereafter.

5. Conclusion

An implementation method of approximating the ARIMA
model with ML estimation is proposed in this paper, named
ARIMA-R. -e advantage of this method is that it does not
need to calculate and predict the entire history of the
training samples step by step to obtain the MA term of
ARIMA model, so it is suitable for general nonrecursive ML
methods. -is method also adds feature terms to the ARNN
model corresponding to moving average terms, improving
the ability to describe RUL indicators. At the same time, the
idea of using an ensemble regression tree algorithm, rotation
forest, instead of ANN to find parameters is proposed to
improve the predictive ability when the quantity of data is
small. -is modification is fit to the data accessibility in
bearing HI prediction. -e proposed ARIMA-R method
combines ARIMA time series prediction model and en-
semble regression trees and is used to predict bearing health
indicators. -e experimental results show that its prediction
outperforms the ARNN algorithm. -is method constructs
the RMA quantity in an iterative way to replace theMA term
in the ARIMA algorithm, which is the prediction error term.
At the same time, it is proposed to use an ensemble tree
instead of ANN in ARNN to improve the fitting ability of
small sample training. -rough this method, the major
benefit is that the ARIMA model can be implemented more
completely in the nonrecursiveML algorithm.-erefore, the
ARIMA model and similar models such as ARMA, SAR-
IMA, and FARIMA can be used to improve accuracy and
efficiency of large-scale data fitting using ML. -e further
work can be included at the following three aspects. First,
more samples can be used to verify the performance of the

proposed method. Second, how to combine this method
with other ML algorithms and life prediction frameworks is
worth exploring. -ird, it is meaningful that in-depth re-
search of the relationship between preliminary estimation
and the prediction results of the iterative model needs to be
studied.

Data Availability

-e datasets generated during and/or analysed during the
current study are available in the NASA Prognostics Data
Repository. URL: https://ti.arc.nasa.gov/tech/dash/groups/
pcoe/prognostic-data-repository/#femto.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is work was funded in part by the Science and Technology
Development Fund, Macau SAR (Nos. 0018/2 019/AKP,
0008/2 019/AGJ, FDCT/194/2 017/A3, and SKL-IOTSC-
2018-2020), the University of Macau (Grant nos.
MYRG2018-00 248-FST and MYRG2019-0137-FST), the
Science Foundation of Henan University of Technology
(Grant no. 2019BS004), the Cultivation Programme for
Young Backbone Teachers in Henan University of Tech-
nology (Grant no. 21 420171), the Natural Science Project of
Henan Province (Grant no. 202102 210136), and the Key
Laboratory of Grain Information Processing and Control,
Ministry of Education, Henan University of Technology
(Grant no. KFJJ-2016-110).

References

[1] M. Cerrada, R.-V. Sánchez, C. Li et al., “A review on data-
driven fault severity assessment in rolling bearings,” Me-
chanical Systems and Signal Processing, vol. 99, pp. 169–196,
Jan. 2018.

[2] X.-B. Wang, Z.-X. Yang, and X.-A. Yan, “Novel particle
swarm optimization-based variational mode decomposition
method for the fault diagnosis of complex rotating machin-
ery,” IEEE, vol. 23, no. 1, pp. 68–79, 2017.

[3] Z.-X. Yang, X. Wang, and P. K. Wong, “Single and simul-
taneous fault diagnosis with application to a multistage
gearbox: a versatile dual-elm network approach,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 12,
pp. 5245–5255, 2018.

[4] X.-B. Wang, L. Luo, L. Tang, and Z.-X. Yang, “Automatic
representation and detection of fault bearings in in-wheel
motors under variable load conditions,” Advanced Engi-
neering Informatics, vol. 49, Article ID 101321, 2021.

[5] Z.-X. Yang and P.-B. Zhang, ““Elm meets rae-elm: a hybrid
intelligent model for multiple fault diagnosis and remaining
useful life predication of rotating machinery,” in Proceedings
of the 2016 International Joint Conference on Neural Networks
(IJCNN), pp. 2321–2328, IEEE, Vancover, Canada, July 2016.

[6] J. Zhong, Z. Yang, and S. Wong, “Machine condition mon-
itoring and fault diagnosis based on support vector machine,”
in Proceedings of the 2010 IEEE International Conference on

14 Shock and Vibration

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#femto.
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#femto.


Industrial Engineering and Engineering Management,
pp. 2228–2233, IEEE, Xiamen, China, October 2010.

[7] Y. Jiang, C. Li, Z. Yang, Y. Zhao, and X. Wang, “Remaining
useful life estimation combining two-step maximal infor-
mation coefficient and temporal convolutional network with
attention mechanism,” IEEE Access, vol. 9, pp. 16323–16336,
2021.

[8] G. Prakash, X.-X. Yuan, B. Hazra, and D. Mizutani, “Toward a
big data-based approach: a review on degradation models for
prognosis of critical infrastructure,” Journal of Nondestructive
Evaluation, Diagnostics and Prognostics of Engineering Sys-
tems, vol. 4, 2021.

[9] M. R. M. Akramin, M. S. Marizi, M. N. M. Husnain, and
M. Shamil Shaari, “Analysis of surface crack using various
crack growth models,” Journal of Physics: Conference Series,
vol. 1529, no. 4, Article ID 042074, 2020.

[10] T. E. Tallian and J. I. McCool, “An engineering model of
spalling fatigue failure in rolling contact,”Wear, vol. 17, no. 5-
6, pp. 447–461, 1971.

[11] J. Liu, R. Pang, S. Ding, and X. Li, “Vibration analysis of a
planetary gear with the flexible ring and planet bearing fault,”
Measurement, vol. 165, Article ID 108100, 2020.

[12] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery
health prognostics: a systematic review from data acquisition
to RUL prediction,” Mechanical Systems and Signal Process-
ing, vol. 104, pp. 799–834, 2018.

[13] P. Liang, C. Deng, J. Wu, Z. Yang, J. Zhu, and Z. Zhang,
“Single and simultaneous fault diagnosis of gearbox via a
semi-supervised and high-accuracy adversarial learning
framework,” Knowledge-Based Systems, vol. 198, Article ID
105895, 2020.

[14] Z.-X. Yang, X.-B. Wang, and J.-H. Zhong, “Representational
learning for fault diagnosis of wind turbine equipment: a
multi-layered extreme learningmachines approach,” Energies,
vol. 9, no. 6, p. 379, 2016.

[15] J.-H. Zhong, P. Wong, and Z.-X. Yang, “Simultaneous-fault
diagnosis of gearboxes using probabilistic committee ma-
chine,” Sensors, vol. 16, no. 2, p. 185, 2016.

[16] Z. Yang, P. K. Wong, C. M. Vong, J. Zhong, and J. Liang,
“Simultaneous-fault diagnosis of gas turbine generator sys-
tems using a pairwise-coupled probabilistic classifier,”
Mathematical Problems in Engineering, vol. 2013, 2013.

[17] Z. Yang, W. I. Hoi, and J. Zhong, “Gearbox fault diagnosis
based on artificial neural network and genetic algorithms,” in
Proceedings of the 2011 International Conference on System
Science and Engineering, pp. 37–42, IEEE, Noida, India,
December 2011.

[18] A. Tealab, “Time series forecasting using artificial neural
networks methodologies: a systematic review,” Future Com-
puting and Informatics Journal, vol. 3, no. 2, pp. 334–340,
2018.

[19] P. Liang, C. Deng, J. Wu, G. Li, Z. Yang, and Y. Wang,
“Intelligent fault diagnosis via semisupervised generative
adversarial nets and wavelet transform,” IEEE Transactions on
Instrumentation and Measurement, vol. 69, no. 7, pp. 4659–
4671, 2019.

[20] P. Liang, C. Deng, J. Wu, Z. Yang, J. Zhu, and Z. Zhang,
“Compound fault diagnosis of gearboxes via multi-label
convolutional neural network and wavelet transform,”
Computers in Industry, vol. 113, Article ID 103132, 2019.

[21] R. Hyndman and G. Athanasopoulos, Arima Models,” in
Forecasting: Principles and Practice, OTexts, Melbourne,
Australia, 2nd edition, 2018.

[22] Y.-S. Lee and L.-I. Tong, “Forecasting time series using a
methodology based on autoregressive integrated moving
average and genetic programming,” Knowledge-Based Sys-
tems, vol. 24, no. 1, pp. 66–72, Feb. 2011.

[23] Q. Li and S. Liang, “Degradation trend prediction for rotating
machinery using long-range dependence and particle filter
approach,” Algorithms, vol. 11, no. 7, p. 89, 2018.

[24] A. Jimenez-Cortadi, F. Boto, I. Irigoien, B. Sierra, and
G. Rodriguez, “Time series forecasting in turning processes
using ARIMA model,” in Intelligent Distributed Computing
XII, J. Del Ser, E. Osaba, M. N. Bilbao, J. J. Sanchez-Medina,
M. Vecchio, and X.-S. Yang, Eds., Springer International
Publishing, New York, NY, USA, 2018.

[25] Q. Li, S. Liang, J. Yang, and B. Li, “Long range dependence
prognostics for bearing vibration intensity chaotic time se-
ries,” Entropy, vol. 18, no. 1, p. 23, 2016.

[26] G. Qiu, Y. Gu, and J. Chen, “Selective health indicator for
bearings ensemble remaining useful life prediction with ge-
netic algorithm and Weibull proportional hazards model,”
Measurement, vol. 150, Article ID 107097, 2020.

[27] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural
networks and robust time series prediction,” IEEE Transac-
tions on Neural Networks, vol. 5, no. 2, pp. 240–254, 1994.

[28] R. Taherdangkoo, A. Tatomir, M. Taherdangkoo, P. Qiu, and
M. Sauter, “Nonlinear autoregressive neural networks to
predict hydraulic fracturing fluid leakage into shallow
groundwater,” Water, vol. 12, no. 3, p. 841, 2020.

[29] F. Pereira, F. Bezerra, S. Junior et al., “Nonlinear autore-
gressive neural network models for prediction of transformer
oil-dissolved gas concentrations,” Energies, vol. 11, no. 7,
p. 1691, 2018.

[30] A. Fentis, L. Bahatti, M. Tabaa, and M. Mestari, “Short-term
nonlinear autoregressive photovoltaic power forecasting us-
ing statistical learning approaches and in-situ observations,”
International Journal of Energy and Environmental Engi-
neering, vol. 10, no. 2, pp. 189–206, 2019.
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