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Aiming at the problems of low recognition rate and human intervention in the traditional fault diagnosis of mechanical
equipment, a fault identifcation method based on continuous wavelet transform (CWT) and two-dimensional convolutional
neural network (2DCNN) is proposed. By collecting the vibration signals of four kinds of fault states and normal states of the
worm rotation unit of the CNC machine tool, the data are preprocessed and identifed. Firstly, the vibration signals of each fault
state of the element action unit are CWTtransformed into the corresponding two-dimensional time-frequency diagram; then, the
2DCNN fault identifcation model is established, and the time-frequency diagrams of various faults are input to the network as
characteristic diagrams for training and testing. Trough the adjustment of network parameters, the network performance is
gradually optimized; fnally, the hybrid domain attention module CBAM is added to further improve the network structure, and
the recognition efect is compared with the initial 2DCNN. Te results show that the CWT-2DCNN meta-action unit fault
recognition model with an attention module can recognize the diferent states of meta-action units more efectively, and the fault
recognition efect is better. By using this method, the diferent fault types of mechanical element action units can be accurately
identifed, which has a certain application in the feld of mechanical fault identifcation and diagnosis.

1. Introduction

Temetal action unit is the key movement unit to ensure the
normal operation of mechanical equipment, and the state of
mechanical components in the operation process directly
afects the operation efciency and life of the system [1].
Terefore, the identifcation of the fault state of the metal
action unit is of great signifcance to ensure the safe oper-
ation of mechanical equipment.

Vibration signal analysis is a commonly used mechanical
fault diagnosis method, which extracts valuable features that
provide internal machine information from the collected
chaotic signals [2]. Te vibration signal of the CNCmachine
tool has typical nonlinear and nonstationary characteristics.
A large number of scholars have studied the extraction of its
signal characteristics. Chen et al. [3] and Keshtan and Nouri
Khajavi [4] extracted the fault characteristics of vibration
signals through EMD and EEMD modal decomposition
methods, respectively and diagnosed the fault of rolling

bearings; Zhao et al. [5] proposed a new method of fast ica-
eemd for feature extraction of vibration signals; Zhou et al.
[6] proposed a fault diagnosis method of marine propulsion
shafting based on partial integration of empirical mode
decomposition and support vector machine; Zhao et al. [7]
proposed a fault diagnosis method of VMD, Hilbert
transform, and deep belief network for rolling bearing fault
diagnosis under complex working conditions; He et al. [8]
proposed a fault feature extraction method based on em-
pirical wavelet transform and spectral kurtosis (ewt-sk),
which efectively suppressed the noise and applied it to the
fault diagnosis of ship shafting. Many signal recognition
methods studied by many scholars [8–10] also show their
advantages in signal feature extraction, but the traditional
recognition methods for fault signal extraction still have
certain limitations, and the universality is not high. Te
time-frequency analysis results of continuous wavelet
transform (CWT) signal can refect the two-dimensional
diagram of the energy intensity of the signal at diferent
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times and frequencies and can display the detailed changes
of the signal from multiple angles, to more efectively de-
scribe the subtle fault characteristics of the signal. Terefore,
this paper selects the method of continuous wavelet trans-
form to extract the characteristics of the fault signal of the
element action unit.

Te convolutional neural network is a multilayer per-
ceptron designed to recognize two-dimensional feature
maps. As a popular scheme to study mechanical fault di-
agnosis, the convolutional neural network has been studied
by scholars at home and abroad in recent years. An et al. [11]
proposed an intelligent fault diagnosis framework for
bearing under time-varying working conditions based on
recurrent neural networks; Li et al. [12] proposed a fault
diagnosis method based on multiscale permutation entropy
and multichannel fused convolutional neural network; Chen
et al. [13] realized the diagnosis and identifcation of gearbox
faults through CNN;. Jing et al. [14] used the deep convo-
lution model to adaptively extract the original fault signal
and determine the motor fault; Babu et al. [15] and Li [16]
both used convolutional neural networks to predict the
remaining life of bearings and verifed their efectiveness.
Much literature has proved that convolutional neural net-
work is superior to other mechanical fault recognition
methods.

To sum up, aiming at the problems of low efciency and
human intervention in the fault identifcation of mechanical
element action units of CNC machine tools, this paper
proposes research on the fault identifcation method of
mechanical element action units based on continuous
wavelet transform and two-dimensional convolution neural
network model. CWT is used to generate a two-dimensional
time-frequency diagram of fault vibration signals collected
during the operation of the mechanical element action unit,
and then input it as a characteristic diagram into the built
2DCNN for identifcation.Te built 2DCNN adds the mixed
domain attention mechanism module CBAM to better ex-
tract and recognize the input image features. In the con-
volution neural network, the time-frequency diagram of the
element action unit is trained, and the network parameter
structure is continuously adjusted to optimize the network
model and to realize the fault identifcation of the me-
chanical element action unit.

2. Construction of Meta-Action Unit Test-Bed
and Signal Acquisition

2.1. Construction ofMeta-ActionUnitTest Bed. Te assembly
and working process of the CNC machine tool are com-
pleted by multiple action units. Te “function motion ac-
tion” (FMEA) structural decomposition method [17] is used
to decompose the functional motion of the CNC machine
tool until the minimum motion unit-meta action unit. In
this paper, the worm rotation element action unit of the
CNC machine tool is selected as the research object, and the
worm rotation element action unit test platform is built, as
shown in Figure 1.

According to the assembly relationship of worm rotation
element action unit and the failure forms of various parts,

the four most common failure modes are determined
through many tests. Tey are coupling looseness fault, fat
key wear fault, poor bearing assembly fault, and worm axis
ofset fault. According to the test bench shown in Figure 1,
the speed and vibration signals generated by the worm
rotation element action unit during operation are collected
by the multifunctional data acquisition card through the
sensor. Te speed and vibration fault data generated during
the operation of the element action unit are uploaded to the
data acquisition terminal by the multifunctional data ac-
quisition card. Te vibration signal corresponding to each
fault type is determined by analyzing the variation of vi-
bration and speed with the running time. Finally, the one-
dimensional vibration signal data are input into the built
convolutional neural network fault identifcation model
through the two-dimensional image after continuous
wavelet transform for training and testing.

2.2. Fault Identifcation Process of Element Action Unit.
Te research idea of intelligent fault identifcation method of
mechanical element action unit based on CWT-2DCNN
proposed in this paper is as follows:

(1) Te signal acquisition system collects the vibration
signals in fve diferent states in the test bed built by
the worm rotation element action unit and con-
structs the signal sample set through data
segmentation;

(2) Te vibration signals in the sample set are pre-
processed, that is, the time-frequency map is gen-
erated by CWT, and then the time-frequency map is
compressed to an appropriate size to construct the
feature map sample set. Te purpose of compression
is to reduce the size of each dimension of the CNN
input characteristic map, improve the training speed
of the network, and ensure that the useful infor-
mation in the time-frequency map is not submerged;

(3) Establish the 2DCNNmodel, select a certain number
of wavelet time-frequency characteristic images as
training samples, train CNN, and optimize the pa-
rameters and network in the training process;

(4) Te remaining samples in the time-frequency feature
map sample set are used as test samples to test the
trained CNN and identify the diferent states of
meta-action units.

Te research idea framework is shown in Figure 2.

2.3. Fault Signal Acquisition of Element Action Unit. In this
experiment, the CT1005LC vibration acceleration sensor is
used to test fve states of the worm rotation element action
unit, including the normal operation state, coupling
looseness fault state, fat key wear fault state, poor bearing
assembly fault state, and the worm axis ofset fault state.

Te coupling looseness fault of the worm rotation ele-
ment action unit is usually caused by the wear of the internal
contact surface of the coupling and the deformation of the
plum blossom star elastic key connecting the coupling.
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Terefore, on the premise that the functions and assembly of
other parts of the worm rotation element action unit are in
good condition, the coupling looseness fault in these two
cases is set in the test, as shown in Figures 3(a) and 3(b); Te
wear failure of the fat key is usually caused by the wear of the
fat key surface and the wear of the fat key locating hole.
Terefore, the fat key wear fault in these two cases is shown
in Figures 3(c) and 3(d); bearing assembly failure is usually
caused by excessive bearing assembly clearance and poor
bearing lubrication. Terefore, the bearing assembly failure
in these two cases is shown in Figures 3(e) and 3(f); Te
worm axis ofset fault is usually caused by the axis ofset of
the worm rotation element action unit due to the instability
of the base or bearing support during operation. Te fault
setting is shown in Figure 3(g).

Various types of fault division and signal acquisition
make the data set more diverse and universal, which can
efectively improve the generalization ability of network

identifcation. Te settings of various fault status modes are
shown in Figure 3. In the test, the sampling frequency is set
at 1 kHz, and three diferent motor speeds (n� 1800, 2400,
and 3000 r/min) are used for operating conditions. 1024 data
sampling points are used as a sample to divide the sample
data. Under diferent fault types, there are 140 samples under
diferent working conditions. Finally, 420 samples under the
normal state and worm axis ofset fault state are obtained
and 840 samples under the other three fault states, a total of
3360 samples, Te samples collected for each fault of the
worm rotation element action unit are shown in Table 1.

3. Preprocessing of Fault Signals of Meta-
Action Unit

3.1. Continuous Wavelet Transform of Signals. In the iden-
tifcation and diagnosis technology of mechanical vibration
faults, feature extraction needs to rely on signal processing.
Te analysis methods of signal processing mainly include
time-domain analysis, frequency-domain analysis, and time-
frequency domain analysis [18]. Because the working en-
vironment of the mechanical element action unit is complex
and changeable and is often afected by the background
noise, the features contained in the collected vibration signal
will be impacted by the noise components, so it is difcult to
extract the signal features through the depth learning net-
work. In addition, the vibration signals of mechanical faults
actually measured are nonstationary and nonlinear in most
cases, and their frequency components contain time-varying
characteristics. Although time-frequency analysis is simple
and intuitive, it cannot provide efective fault feature in-
formation, and frequency domain analysis alone cannot
obtain the changing relationship between time and fre-
quency of signals.

Fourier transform, as the most basic time-frequency
transform method, cannot efectively depict the local
characteristics of signals in the time domain. To solve this
problem, windowed Fourier transform is introduced.
However, the size of the window is difcult to select, and this
method still cannot meet the requirements for changing the
frequency of nonstationary signals [19]. Continuous wavelet
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Figure 1: Worm rotation element action unit test bench.
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transform replaces infnite triangular function basis with
fnite attenuated wavelet basis. Tis method can intuitively
observe signals in the time domain and frequency domain
and is widely used in signal denoising, image compression,
mechanical equipment fault detection, and other felds [20].
Terefore, continuous wavelet analysis, an adjustable time-
frequency window analysis method, is selected in this paper,
which can better extract the fault features in the vibration
signal and improve the accuracy of subsequent mechanical
fault identifcation.

Te basic idea of the wavelet transform is similar to that
of the Fourier transform. It also uses a family of functions to
represent signals. Tis family of functions is called the
wavelet function system. Set a function “f(t) ∈ L2(R),” then

CWTf(a, t) � f(T), φa,τ(t) ,

�
1
��
a

√  f(T)φ∗
t − τ

a
 dt.

(1)

In the above formula “φa,τ(t)” is obtained from the
mother wavelet through scaling and translation;

φa,τ(t) �
1
��
a

√ φ
t − τ

a
 , a, τ↑∈ R, a> 0, (2)

where “a” is the size factor, which represents the frequency-
dependent expansion; “τ” is the translation factor; φa,τ(t) is the
wavelet basis function; both “a” and “τ” are continuous var-
iables, so they are called continuous wavelet transforms. Te
continuous wavelet transform method proposed in this paper
can automatically adjust factors a and τ. It makes the vibration
signals of the transformation pair action unit with diferent
time intervals have the characteristics of adaptability and
multiresolution. Te algorithm steps for transforming a vi-
bration signal into a time-frequency diagram are as follows:

Step 1: Let “a” be the scaling factor, “fs” be the sampling
frequency, “FC” be the wavelet center frequency, then
the actual frequency “Fa” corresponding to “a” is as
follows:

(a) (b) (c)

(d) (e) (f )

(g)

Figure 3: Schematic diagram of each fault setting. (a)Te contact surface in the coupling is worn. (b) Deformation of plum star elastic bond.
(c)Wear of fat key surface. (d)Te fat key locating hole is worn. (e) Bearing assembly clearance is too large. (f ) Poor bearing lubrication. (g)
Worm axis ofset.

Table 1: Worm fault sample table.

Working
condition

State type

Normal
state

Worm axis
ofset fault

status
Coupling looseness fault status Flat key wear fault status Poor bearing assembly fault

status

Te contact
surface in the

coupling is worn

Deformation of
quincunx star
elastic bond

Te fat key
locating hole

is worn

Wear of
fat key
surface

Bearing
assembly

clearance is too
large

Poor bearing
lubrication

N� 1800 140 140 140 140 140 140 140 140
N� 2400 140 140 140 140 140 140 140 140
N� 3000 140 140 140 140 140 140 140 140
Total 420 420 840 840 840
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Fa �
Fc × fs

a
. (3)

Step 2: According to the above formula, to make the
converted frequency sequence an equal diference se-
quence, the scale sequence takes the following form:

c
totalscal

, . . . ,
c

(totalscal − 1)
,
c
4
,
c
2
, c, (4)

Where “total scale” is the length of the scale sequence
used in the continuous wavelet transform of the signal
(256 is present in this paper); “c” is a constant.
Step 3: According to the above formula, the actual
frequency corresponding to the scale “c/total scale” is
“fs/2,” so we can get the following:

c � 2 × Fc × totalscal. (5)

By substituting the above formula, the required scale
sequence t can be obtained.
Step 4: After the wavelet base and scale are determined,
the wavelet coefcients “Wf (a, b)” are obtained by
using the principle of continuous wavelet transform.
Ten, the scale sequence is transformed into the actual
frequency sequence “f.” Finally, combined with the
time series “t,” the wavelet time-frequency map is
drawn to obtain the characteristic information.

Te key of CWTis the selection of wavelet basis function,
and the waveform of the selected wavelet basis function
should be similar to the fault characteristics of the signal.
Because the waveform of the Morlet wavelet (morl wavelet)
is similar to the impact characteristics caused by mechanical
faults of CNC machine tools, and the Complex Mor-let
wavelet (cmor wavelet) is the complex form of Morlet
wavelet, and its adaptive performance is better. Terefore,
the CMORwavelet is selected as the wavelet basis function of
CWT. Using continuous wavelet transform, we can clearly
identify the frequency components contained in the original
signal and their corresponding time windows. Te time-
frequency power map efectively contains the relevant fea-
tures of the original vibration signal [21].

3.2.AcquisitionofTime-FrequencyDiagramof Fault Signals of
Meta-ActionUnit. Collect the vibration signals of the worm
rotation element action unit under fve state modes on the
built element action unit test bench. Under the working
condition of n� 1800 r/min, the vibration signal diagrams
and their corresponding time-frequency diagrams obtained
by continuous wavelet transform are shown in Figure 4.

By CWT processing the original vibration signal col-
lected by the element action unit, the one-dimensional
characteristics of the signal can be projected into the two-
dimensional space. While refecting the frequency charac-
teristics of the vibration signal of the element action unit, it
can also show the transformation relationship of the fre-
quency of the signal in the time domain and space. Te
obtained two-dimensional time-frequency image can more

clearly refect its state characteristics and the information
contained in each fault so as to facilitate the identifcation of
various faults.

4. Fault State IdentificationofMeta-ActionUnit

After the CWT continuous wavelet transform of the signals
of the element action units, to further establish the mapping
relationship between the strain signals and various fault
types, this paper selects the convolution neural network
model commonly used in deep learning to map the vibration
signals of the element action units one by one with each state
mode and realizes the identifcation of diferent fault states
of the element action units through the learning and training
of the network.

Compared with ordinary one-dimensional convolu-
tional neural networks, two-dimensional convolutional
neural networks (2DCNN) can generally refect the fault
status of mechanical equipment through fewer data samples
and shorter network training time. Terefore, this paper
adopts the fault identifcation method of meta-action units
based on the 2DCNN model (convolutional neural network
with RGB three-channel two-dimensional images as input
samples). Tis method can make full use of the flter level
and classifcation level structure of CNN and integrate signal
feature extraction and pattern recognition, to realize the
“end-to-end” fault diagnosis of electromechanical equip-
ment and improve the recognition rate of mechanical vi-
bration faults. Te following is the process of building the
2DCNN meta-action unit fault identifcation model de-
scribed in this paper and the function realization and
function explanation of each part of the network.

4.1. Construction and Training of the Initial 2DCNN Recog-
nition Model

(1) Input layer:Te input data of the CNN network built
in this paper are a two-dimensional time-frequency
diagram of the vibration signal of the worm rotation
element action unit processed by CWT. Te input
image is normalized and the image size is 64× 64. To
improve the accuracy of the algorithm and avoid
overftting, data enhancement processing are per-
formed on the training data set, that is, the training
data are processed through random center clipping,
horizontal fipping and image brightness, saturation,
and contrast, and new data are generated from the
existing data set to expand the training data.

(2) Convolution layer: Each convolution layer in the
convolution neural network has several convolution
cores. Te parameters in each convolution core are
optimized by the backpropagation algorithm, and
each convolution core undertakes the task of iden-
tifying diferent features. To obtain the best recog-
nition efect, after repeated debugging, 8 3× 3
convolution cores are set in the frst convolution
layer, 16 3× 3 convolution cores are set in the second
convolution layer, 32 3× 3 convolution cores are set
in the third and fourth convolution layers, and 64
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Figure 4: Continued.
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Figure 4: Vibration signals and corresponding time-frequency diagrams. (a) Normal state vibration image. (b) Normal time-frequency
image. (c) Te contact surface in the coupling is worn. (d) Te contact surface in the coupling is worn. (e) Deformation of plum star elastic
bond. (f ) Deformation of plum star elastic bond. (g) Worm axis ofset vibration image. (h) Worm axis ofset time frequency image. (i) Flat
key surface wear vibration image. (j) Time frequency image of fat key surface wear. (k) Te fat key locating hole is worn. (l) Te fat key
locating hole is worn. (m) Bearing assembly clearance is too large. (n) Bearing assembly clearance is too large. (o) Poor bearing lubrication.
(p) Poor bearing lubrication.
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3× 3 convolution cores are set in the ffth and sixth
convolution layers. Te convolution operation is as
follows:

χl
j � 

i∈Mj

x
l−1
i k

l
ij + b

l
j, (6)

Where “k” represents the convolution kernel; “Mj”
represents the jth characteristic diagram; “l” stands
for layer “l”; and “b” stands for ofset.

(3) Pooling layer: Te pooling layer is mainly used to
compress the input characteristic map. On the one
hand, it makes the characteristic graph smaller and
simplifes the computational complexity of the net-
work; on the other hand, feature compression is used
to extract the main features. Pooling operations are
generally divided into average pooling and maximum
pooling. In this paper, “Maximum Pooling” is se-
lected, that is, the maximum value of the image area is
selected as the pooled value of the area.

(4) Activation function: Te activation layer is responsible
for activating the features extracted from the convo-
lution layer. Since convolution is a linear transfor-
mation of the input image and convolution kernel, it is
necessary to introduce a nonlinear function for non-
linear mapping. Relu function will make the output of
some neurons 0, reduce the interdependence of pa-
rameters, and alleviate the occurrence of ftting
problems.Terefore, this paper adds the relu activation
function after each convolution layer.

(5) Full connection layer: Te function of the full
connection layer is to connect all features and send
the output value to the classifer. In this paper, two
fully connected layers are designed to output features
after the attention module.

(6) Output layer:Te output layer ismainly used to prepare
for the output of the fnal target results. Te common
CNN models have two learning functions: regression
and classifcation.Te network designed in this paper is
a regression model. In the regression analysis, the error
and loss functions are calculated as follows:

Loss �
1
2

yi − yi
′( . (7)

In the backpropagation process of network training, to
obtain the optimal weight, it is necessary to create a cost loss
function for the model, and then select an appropriate
optimization algorithm to obtain theminimum function loss
value. In this paper, the most commonly used cross-entropy
loss function for multiclassifcation problems is selected as
the error cost function to evaluate the diference between the
currently trained probability distribution and the real dis-
tribution. It describes the distance between the actual output
(probability) and the expected output (probability), that is,
the smaller the value of cross-entropy, the closer the two
probability distributions are.Temathematical expression is
as follows:

L � −
1
N



n

i�1
Yi ∗ log yi

′( log 1 − yi( log 1 − yi′(  , (8)

where “N” is the number of Samples, “yi” is the expected
value of the model, and “yi′” is the predicted value of the
model.

Gradient descent algorithm can accelerate the learning
speed of depth network faster and solve the minimum error
of loss function. In this paper, the adaptive moment esti-
mation (Adam) algorithm of the gradient descent algorithm
is used for optimization. Adam algorithm can dynamically
adopt diferent learning rates for diferent parameters to
make the objective function converge faster, increase the
training speed and avoid falling into the local optimum.

Te training method of 2DCNN designed in this paper
adopts the method of batch sample input, and the batch size
is set to 32. Te training of the network includes two parts:
the forward propagation of data and the backpropagation of
error. In order to prevent overftting of the model in the
propagation process and strengthen the generalization
ability of the neural network, a “Dropout Layer” is added
after the full connection layer. Te dropout regularization is
adopted and its parameter size is set to 0.2 so as to strengthen
the robustness of the network nodes.

After collecting the vibration signals of the fve states of
worm rotation on the built worm rotation element action
unit test bed, through continuous wavelet transform and
other pretreatments, a total of 3360 samples of two-di-
mensional time-frequency diagrams of various states under
diferent working conditions were obtained, 80% of which
were selected as training samples and the rest as test samples.
Input data set into the 2DCNN built in the previous chapter
for training and optimization of parameters. To improve the
identifcation stability of the network and eliminate the
interference of uncertain factors to the greatest extent, after
many training iterations, the parameter values are constantly
changed, and fnally, a group of super parameters with the
best network performance, the best iteration efciency, and
the highest accuracy are determined as the parameter set-
tings of the network. Te value settings of each super pa-
rameter are shown in Table 2.

4.2. Improvement and Optimization of 2DCNN Identifcation
Model. To improve the fault identifcation efect of the
network model with the meta-action unit, the attention
mechanism module is added to the model structure. Te
main function of the attention mechanism is to efectively
fuse the fault information collected by sensors by sup-
pressing the information irrelevant to the fault and high-
lighting the information closely related to the fault
information.

4.2.1. Selection of Attention Module. Te attention mecha-
nism is mainly divided into channel attention mechanism
and spatial attention mechanism. Te channel attention
mechanism pays more attention to the characteristic
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information of the input channel of the image, and its
formula is as follows:

MC(F) � σ(MLP(Avg(F))) +(MLP(Max(F)))

� σ W1 W0 F
c
avg    + W1 W0 F

c
Max( ( ( ,

(9)

where “F” is the characteristic diagram of the input network;
“W0” and “W1” are full connection layers; and “σ” represents
the “Sigmoid function.”

Te spatial attention mechanism pays more attention
to the feature information of the input image in the
spatial dimension, and its calculation formula is as
follows:

MS(F) � σ f
7×7

[Avg(F); Max(F)] 

� σ f
7×7

F
S
avg; F

S
Max  .

(10)

Considering the limitations of channel attention and
spatial attention, this paper chooses to add a CBAM
hybrid domain attention module that combines space
and channels to the model [22]. Its principle is shown in
Figure 5. Te specifc operations of adding the CBAM
module are as follows: the input feature maps are, re-
spectively, pooled by global maximum and global av-
erage based on width and height, and then the shared
MLP. Add the MLP output features based on “ele-
mentwise,” and then generate the channel attention
feature map through “sigmoid” activation. Te attention
feature map and input features of the channel are
“elementwise” multiplied to generate the input features
required by the spatial attention module. Ten, take the
characteristic graph output by the channel attention
mechanism module as the input of the spatial attention
mechanism module. First, do a global maximum pool
and a global average pool of the input based on the
channel, and then do a “concat” operation based on the
channel. After a convolution operation, the dimension is
reduced to one channel. Ten, the spatial attention
feature map was generated by “sigmoid.” Finally, the

feature and the input feature of the module are multi-
plied to get the fnal feature.

4.2.2. Construction and Training of the Improved 2DCNN.
In order not to change the network structure of the con-
volutional neural network, this paper adds the channel
spatial attention mechanism module to the convolution of
the last layer of the 2DCNN network, which can ensure the
normal operation of the pretraining parameters. Tat is, the
2DCNN network is composed of the input layer, convo-
lution layer, pooling layer, full connection layer, attention
module layer, and output layer. Among them, there are 6
convolution layers and 3 pooling layers. In order not to
change the original network structure, the CBAM module is
placed after the convolution of the last layer, and fnally, the
classifer is composed of two full connection layers and an
output layer. Te classifer uses “softmax” to output the
status labels of the meta-action units. In this paper, the
2DCNN network regression learning method will be used to
establish the mapping relationship between each state signal
and its label after training the wavelet time-frequency image
data corresponding to fve types of vibration signals in four
types of fault states and normal states of the unit action unit,
to have the ability to identify and output continuous un-
known vibration signals. Te fault identifcation model of
the 2DCNN element action unit built in this paper is shown
in Figure 6.

After the data set is input into the improved meta-action
unit fault identifcation network model with the CBAM
attention module for training, the parameters are consistent
with the initial network model, and then the network
identifcation efect is verifed on the test set.

4.3. Analysis of Fault Identifcation Results of Meta-Action
Unit Based on CWT-2DCNN. After constructing the net-
work, the recognition and prediction results are obtained
after 200 epochs. To describe the improved network per-
formance more clearly, this paper will take the same pa-
rameters and data sets to train and test the initial network
model without the channel spatial attention mechanism
CBAM module and compare it with it. Te training con-
vergence curve of the recognition network without CBAM
module for recognizing the fve states of the worm rotation
element action unit is shown in the following fgure.
Figure 7(a) shows the accuracy curve of the training set and
the test set, and Figure 7(b) shows the loss curve.

It can be seen from Figure 7 that the loss value of the
recognition network model without attention mechanism
reaches 0.12, and the accuracy rate after convergence is
89.5%. Although the network model can accurately identify
the fve state types of worm rotation element action units, the
recognition efect and accuracy are general. Terefore, the
2DCNN with the mixed domain mechanism module is used
to identify the fve states of the worm rotation element action
unit again.

Figures 8(a) and 8(b) are the accuracy and loss curves of
the network on the training set and the test set after adding
the CBAM module. As can be seen from Figure 8, the

Table 2: Value table of network super parameters.

Super parameter name Numerical value
Epoch 200
Learning_rate 0.001
Dropout_rate 0.2
Batch_size 32
Conv1 64× 64× 32
Max Pooling1 32× 32× 64
Conv2 32× 32× 64
Max Pooling2 16×16×128
Conv3 16×16×128
Conv4 16×16×128
Max Pooling3 8× 8× 256
Conv5 8× 8× 256
Conv6 8× 8× 256
FC1 1× 1× 512
FC2 1× 1× 100
Output_units 5
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network error decreases with the increase in epochs. After
about 120 epochs, the network has fully converged. At this
time, the recognition accuracy of the meta-action unit
recognition network for various states has reached the best
accuracy of 97.6%, and the loss value is 0.063.

It can be seen from the above fgure that the 2DCNN
with the mixed domain attention mechanism module has
a certain improvement in convergence speed and accuracy
compared with the initial network. Compared with the
improved network with an average iteration time of

40.25 s, the average iteration time of the improved net-
work is 38.62 s. Tis shows that the addition of the CBAM
module does not cause too much burden on the network,
and the recognition accuracy has been signifcantly im-
proved, which also refects the efectiveness and superi-
ority of the improved network model with the addition of
the CBAM module.

To further analyze the recognition efect and the error of
the two models, the confusion matrix is used to carry out
error classifcation statistics for each type of state data.

Mixed domain
attention mechanism

Input
characteristics

Channel
attention

mechanism

Spatial
attention

mechanism
Refne

features

Figure 5: Schematic diagram of CBAM module of hybrid domain attention mechanism.
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Figure 6: Improved 2DCNN model structure.
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Figure 7: Change curve of the initial network training. (a) Change curve of the network training accuracy before improvement. (b) Change
curve of network training loss value before improvement.
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Taking the state classifcation data of the worm rotation unit
operating at 1800 r/min as an example, the result statistics
are shown in Figure 9.

Figures 9(a) and 9(b) are the confusion matrix obtained
by identifying and classifying the fve states of the worm
rotation element action unit with the improved 2DCNN
network. Te abscissa represents the predicted classifcation
results, and the ordinate represents the real fault status
categories. Among them, A, B, C, D, and E respectively
represent the normal working state of the worm rotation
element action unit, the loose coupling fault state, the fat key
wear fault state, the poor bearing assembly fault state, and
the worm axis ofset fault state. Te color depth represents
the recognition accuracy, and the lighter the color, the closer
the predicted value is to the real value. It can be calculated
from the confusion matrix that in the network recognition

before and after the improvement, the precision rate “P”,
recall rate “R”, and “F1 score” of the above fve states of the
worm rotation element action unit are shown in Table 3.

Te improvement of each evaluation index shows that the
improved 2DCNN network has better recognition and clas-
sifcation efect than the network without an attention module.
Te confusion matrix shows that the error between the pre-
dicted value and the actual value of the improved 2DCNNwith
the mixed domain attention mechanism CBAM module is
signifcantly lower than the recognition error of the improved
2DCNN, and the accuracy is also relatively improved.

To verify the ability of the improved network to extract
features, “t-sne” is used to reduce the dimension of the
improved network feature layer data added to the CBAM
module and output its visualization results. Te output
results are shown in Figure 10. Te abscissa and ordinate,
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Figure 8: Change curve of network training after improvement. (a) Change curve of network training accuracy after improvement.
(b) Change curve of network training loss value after improvement.
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Figure 9: Network classifcation confusion matrix. (a) Confusion matrix of network classifcation before improvement. (b) Improved
network classifcation confusion matrix.
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respectively, represent the horizontal and vertical distance of
data features in the feature space. Under the improved
2DCNN recognition method, each state type of worm ro-
tation element action unit presents a state of clustering by
class, and diferent states have obvious diferentiation. Tis
shows that the fault identifcationmethod of the meta-action
unit designed in this paper, which combines 2DCNN and
CWT with the hybrid domain attention mechanism, has
greatly improved the accuracy and classifcation efciency of
the worm rotation meta-action unit and can play a certain
reference role in the fault identifcation and diagnosis of
mechanical equipment.

5. Conclusions

Aiming at the problems of low recognition rate and too
much human intervention in the traditional mechanical
fault diagnosis methods, this paper presents a CWT-2DCNN
fault identifcation method of mechanical element action
unit based on the worm rotation element action unit of CNC
machine tool. Te conclusions of this paper are as follows:

(1) In this paper, a mechanical fault identifcation
method based on CWT and 2DCNN is used to
identify the fve state types of worm rotation element
action units. Trough CWT, the vibration signals of
each state of the element action unit are converted
into two-dimensional time-frequency diagrams as
the input characteristic diagram of the two-dimen-
sional convolutional neural network. Compared with
the one-dimensional original vibration signal, the
transformed time-frequency diagram of each state
can better refect the time-frequency characteristics
of the signal. Combined with the 2DCNN, each state
type can be better identifed;

(2) Te 2DCNN designed in this paper adds the hybrid
domain attention module CBAM to the network
structure for improvement, and the recognition
accuracy of each state type of worm rotation element
action unit reaches 97.6%. Compared with the
original network without the attention module with
the same structural parameters, this network can
extract the internal features of diferent states more
efciently, and the recognition efect is better.
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