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+e fault vibration signal of a bearing has nonstationary and nonlinear characteristics and can be regarded as the combination of
multiple amplitude- and frequency-modulation components. +e envelope of a single component contains the fault charac-
teristics of a bearing. Local characteristic-scale decomposition (LCD) can decompose the vibration signal into a series of multiple
intrinsic scale components. Some components can clearly reflect the running state of a bearing, and fault diagnosis is conducted
according to the envelope spectrum. However, the conventional LCD takes a single-channel signal as the research object, which
cannot fully reflect the characteristic information of the rotor, and the analysis results based on different channel signals of the
same section will be inconsistent. To solve this problem, based on full vector spectrum technology, the homologous dual-channel
information is fused. A vector LCDmethod based on cross-correlation coefficient component selection is given, and a simulation
analysis is completed. +e effectiveness of the proposed method is verified by simulated signals and experimental signals of a
bearing, which provides a method for bearing feature extraction and fault diagnosis.

1. Introduction

Rotating machinery is developing in the direction of high
speeds, heavy loads, and high reliability, which places higher
requirements on mechanical transmission equipment [1].
+e operational state of mechanical equipment is changing,
and its safe, stable, and reliable operation must be ensured.
Rolling bearings are widely used in mechanical equipment,
and their working condition greatly affects its operation [2].
Owing to complex operating conditions and changing ex-
ternal environment, rolling bearings are prone to failure [3].
It is of great significance to monitor their working status and
diagnose their fault degree [4, 5]. Some studies have focused
on the fault features of rotating machinery through modern
signal processing methods [6–8].

Fault vibration signals of bearings are usually weak
nonstationary signals with complex frequency components.
+e key to fault diagnosis of rolling bearings is to extract
effective feature information from vibration signals con-
taining complex frequencies [9]. Vibration analysis and fault
diagnosis have received considerable attention [10–14] and

have been adopted to process nonstationary and nonlinear
vibration signals. Among them, signal decomposition
methods contribute much. Tiwari [15] described a self-
adaptive signal decomposition technique, concealed com-
ponent decomposition (CCD), as the basis of a precise
bearing fault diagnosis model. Ying [16] introduced a novel
permutation entropy-based improved uniform phase em-
pirical mode decomposition (PEUPEMD) method and
obtained better analysis than comparative methods about
empirical mode decomposition (EMD) in decomposing
accuracy and mode mixing suppression. Patel [17] applied
variational mode decomposition (VMD) to filter out non-
stationarities due to variable speed conditions and provided
a complete diagnostic solution for the spur gear systems. Li
[18] presented a local mean decomposition (LMD) method
based on an improved compound interpolation envelope,
whose effect was comparable to or slightly better than that of
other methods. Zheng [19] proposed local characteristic-
scale decomposition (LCD), a nonstationary signal analysis
method that adaptively decomposes a signal to a series of
intrinsic scale components in different scales. With good
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compatibility, LCD methods have seen new applications,
such as the local characteristic-scale decomposition-Teager
energy operator (LCD-TEO) [20], improved local charac-
teristic-scale decomposition (ILCD) [21], and piecewise
cubic Hermite interpolating polynomial-local characteristic-
scale decomposition (PCHIP-LCD) [22].

However, the conventional LCDmethods focus on single-
channel signals, which probably cause incomplete fault fea-
ture extraction. In the fault diagnosis of rotating machinery,
the sensor information collected by a multi-sensor system is
related to the same or different sides of rotating machinery in
the same environment. +ere is an inevitable connection
between various types of information, which are different in
time, space, credibility, and expression, whose focuses and
uses are not exactly the same, and whose requirements for
information processing and management are different. If the
information collected by each source is considered in isola-
tion, then their internal connections and characteristics are
lost. Multi-source information fusion can solve this problem
[23]. Multi-sensor data fusion methodologies include the
holospectrum [24–27], full spectrum [28–31], and full vector
spectrum [32]. Proposed byHan [32], the full vector spectrum
has been widely studied and applied in engineering [33–35]
and has formed the basis of many compound methods. Chen
[36] applied full-vector signal acquisition and information
fusion to fault prediction. Gong [37] combined the full vector
spectrum with ensemble empirical decomposition and ap-
plied it to the diagnosis of gear faults. Yu [38] introduced the
empirical wavelet transform and variance contribution rate to
the full vector spectrum, which improved the adaptability and
accuracy of full vector information fusion.

Based on the above analysis, the main contributions of
this paper are as follows:

(1) A signal processing method, vector LCD, is pro-
posed, which fully considers homologous signals and
intrinsic scale components (ISCs)

(2) Vector LCD can simplify the analysis of ISCs by taking
the cross-correlation coefficient in screening components

(3) +e fusion of optimal components can obtain more
complete and accurate fault features

+e remainder of this article is arranged as follows.
Section 2 shows the calculation of LCD, presents the theory
of the cross-correlation coefficient, describes the principles
of the conventional full vector spectrum, and introduces a
method for bearing feature extraction and fault diagnosis
based on the correlation coefficient vector LCD. In Section 3,
the proposed methodology is verified through application to
the homologous simulation signals of a rolling bearing. In
Section 4, the rolling bearing experimental data from two
directions of sensors are used to validate vector LCD.
Conclusions are given in Section 5.

2. Theoretical Description of Vector LCD

+e proposed fault diagnosis method using vector local
characteristic-scale decomposition (Vector LCD) is
presented in Figure 1. Vibration signals were obtained

from a test stand by a signal acquisition module. +en, the
vector LCD method was used to compute and analyze the
data. Next, the fusion data were enveloped into the
spectrum. Lastly, the fault frequency features were
matched with the specific fault type and the failure reason
was located.

2.1. Local Characteristic-Scale Decomposition. According to
the extreme value of a signal, the LCD can adaptively de-
compose nonlinear and nonstationary signals to a series of
ISCs satisfying the following conditions:

(1) +e length between any two adjacent extreme points
of the data sample is monotonic

(2) If the extreme point in a data sample is Xk (k� 1, 2,
..., M) and τk is the corresponding time, then any two
maximum (or minimum) value points (τk, Xk),
(τk+2, Xk+2) can be connected to form a line segment.
τk+1 is the corresponding time of the maximum (or
minimum) value point (τk+1, Xk+1) in the middle of
the line segment. +e corresponding function value
at this moment is

Ak � Xk +
τk+1 − τk

τk+2 − τk

Xk+2 − Xk( . (1)

+e ratio of the function value to the maximum (or
minimum)

a Xk +
τk+1 − τk

τk+2 − τk

Xk+2 − Xk(   +(1 − a)Xk+1 � 0, (2)

remains unchanged, where a ∈ (0, 1) is a constant, and
a � 1/2 for frequency modulated, amplitude modulated,
amplitude-frequency modulated, and sine-cosine signals.

On the basis of the ISC, LCD can decompose any signal
x(t) to a series of ISCs, as follows [39]:

(1) Find all extreme points of x(t) and their corre-
sponding moments τk (k� 1, 2, ..., M), set a � 1/2,
and make a linear transformation for x(t) between
any two extreme points,

P1 � Lk +
Lk+1 − Lk

Xk+1 − Xk

xt − Xk( ,

Lk+1 � a Xk +
τk+1 − τk

τk+2 − τk

Xk+2 − Xk(   +(1 − a)Xk+1,

(3)

where t ∈ (τk, τk+1).
(2) Subtract P1(t) from the original signal x(t) to get a

new signal,

I1(t) � x(t) − P1(t). (4)

(3) Ideally, I1(t) can be used as the first ISC. At this
moment Lk+1 is equal to zero; in practice, assuming a
variable △e, the iteration ends when |Lk+1|≤△e. If
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I1(t) does not meet the two conditions of ISC, the
above steps are repeated k times until Ik(t) satisfies
the conditions and denote Ik(t) as the first ISC c1(t)

of x(t).
(4) Subtract c1(t) from x(t) to get a new signal, r1. Take

r1 as the original data and repeat steps 1–3 to get the
second ISC component, c2(t), of x(t). Repeat n times
to get n ISCs of the signal x(t). +e function does not
terminate until rn is monotonic:

x(t) � 
n

p�1
cp(t) + rn(t). (5)

It can be seen from equation (5) that the signal x(t) can
be reconstructed by n ISCs and a monotonic signal.

2.2. Correlation Coefficient. Correlation is a kind of non-
deterministic relationship, and the correlation coefficient
measures the degree of linear correlation between variables.
+e correlation coefficient between sequences
x � (x1, x2, . . . , xn) and y � (y1, y2, . . . , yn) can be calcu-
lated as

r �


n
i�1 xi − x(  yi − y( 

������������


n
i�1 xi − x( 

2



n
i�1 yi − y( 

2
, (6)

where x and y are the mean values of sequences x-and y,
respectively.

Suppose xnor and ynor are normal operating signals
perpendicular to each other, and xabn, yabn are the homol-
ogous signals when faults occur. After the decomposition of
LCD, we obtain four ISCs, ISCxnork, ISCynork, ISCyabnk, and
ISCxabnk, where k� 1, 2, . . ., N is the order of an ISC. +e
cross-correlation coefficient is calculated as follows:

(1) Calculate the correlation coefficients between
ISCxnork and xnor, ISCynork, and ynor, and find their
average, Uk;

(2) Calculate the correlation coefficients between
ISCxabnk and xabn, ISCyabnk, and ISCyabnk, and find
their average, Vk;

(3) Calculate the correlation coefficients between
ISCxnork and ISCynork, ISCxabnk, and ISCyabnk, and find
their average, Wk;

(4) Calculate the sensitivity factor,

Signal acquisition 
module

Fault frequency 
matching

Fault diagnosis

Vector LCD

Vibration signalsX signal Y signal

Envelop spectrum

A test stand

Figure 1: Block diagram of the proposed fault diagnosis method using vector LCD.
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Sk �
Uk + Vk

2
− Wk, (7)

where Uk and Vk indicate the degree of correlation between
the decomposed ISC and the initial signal. +e larger the
value, the more similar are ISC and the initial signal. +e Wk

indicates the correlation between ISCs of the same order.
+e smaller the value, the greater the change in the ISC.
Overall, the larger the Sk, the more sensitive the ISC of this
order, and the more it can reflect spectral changes.

2.3. Full Vector Spectrum. To overcome limitations due to
incomplete and inaccurate sensor information, two or-
thogonal sensors are usually fixed on the same section of the
rotor in the field test of large rotating machinery. +e full
vector spectrum technology meets the accuracy and reli-
ability requirements of condition monitoring and fault di-
agnosis. +e vortex phenomenon of the rotor is the
combined effect of each harmonic frequency, and the vortex
intensity at each harmonic frequency is the basis for fault
judgment and identification. +e space rotation trajectory of
each harmonic is an ellipse, and the maximum vibration
vector is in its long-axis direction [40].

Suppose the cross section channel signals ( xk  and yk )
are perpendicular to each other and form them into a
complex signal ( zk  � xk  + j yk ), only a single Fourier
transform (FT) of the complex signal is needed to obtain the
characteristic information required by the full vector
spectrum under each harmonic frequency. +e algorithm is
robust, it greatly reduces calculation, and it is compatible
with conventional analysis methods. When processing a
single-channel signal, the algorithm is still valid and can
meet real-time requirements. +e characteristic information
includes the main vibration vector RLk, assistant vibration
vector Rsk, angle∅αk between the main vibration vector and
the x-axis, and the elliptical trajectory’s initial phase angle αk,
which are described by

RLk �
1
2N

Zk


 + ZN−k


 ,

Rsk �
1
2N

Zk


 − ZN−k


 ,

tan 2∅αk �
ZIkZR(N−k) − ZRkZI(N−k)

ZIkZI(N−k) + ZRkZR(N−k)

,

tan αk �
ZIk + ZI(N−k)

ZRk + ZR(N−k)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where k� 1, 2, . . ., N/2–1. +e characteristic information of
each harmonic trace from equation (8) is the main char-
acteristic information under each harmonic trace of full
vector spectrum technology.

Figure 2 is a flowchart of the proposed method. At first,
the LCD is applied to the homology information acquired
from two orthogonal sensors. +e cross-correlation coeffi-
cient is selected to choose the ISCs of orthogonal signals, the

next optimal ISC of orthogonal signals can be obtained, the
vector ISCs are formed through the optimal ISC component
fusion, and the vector ISCs are enveloped and demodulated.
+e proposed method can identify the nonlinear charac-
teristics of fault signals for fault diagnosis.

3. Simulation Analysis

Analog signals were analyzed to validate the effectiveness of
vector local characteristic-scale decomposition in processing
homologous signals. For the rolling bearing signal, the vi-
bration signal at the time of failure presents a modulation
phenomenon. +e vibration signal of a rolling bearing with
an outer ring fixed structure is

x(t) � α sin 2πfb(  1 + β sin 2πfrt( ( , (9)

where fb is the passing frequency of the inner ring of the
rolling bearing and fr is the rotation frequency of the rotor.

Based on this, the following analog acceleration signal is
constructed:

xnor(t) � sin(40πt) + sin(600πt),

ynor(t) � cos(40πt) + cos(600πt),

xabn(t) � sin(40πt) + 0.8 sin(600πt) + 0.9(1 + sin(40πt))

sin(200πt),

yabn(t) � cos(40πt) + 1.2 cos(600πt) +(1 + sin(40πt))

cos(200πt),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where xnor(t) and ynor(t) are two initial vibration signals
that are perpendicular to each other under normal operating
conditions, xabn(t) and yabn(t) are two initial vibration
signals that are perpendicular to each other under abnormal
operating conditions, the sampling frequency fs � 1024Hz,
and there are N � 2048 sampling points.

+e LCD is applied to decompose the two-channel
signals corresponding to normal operating conditions. +e
time-domain waveforms and the ISCs are shown in Figure 3
for x-channel signals and Figure 4 for y-channel signals.

+e LCD is then applied to decompose the two-channel
signals corresponding to abnormal operating conditions, for
which the time-domain waveforms and the ISCs of x- and
y-channel signals are shown in Figures 5 and 6, respectively.

+e correlation coefficients between ISCs and initial
signals can be calculated, i.e., between ISCxnori and xnor,
ISCynori and ynor, ISCxabni and xabn, and ISCyabni and yabn, as
shown in Table 1.

Figures 5 and 6 show that the initial signals are
decomposed to six ISCs with different frequency bands.
+ere is a great difference in amplitude between the x- and
y-directions. If the signal is analyzed in a certain direction
alone, the analysis results will also be quite different.
+erefore, information fusion is necessary. +e full vector
fusion is introduced. Considering the value of the correla-
tion coefficient, the first-order ISCxnor and third-order
ISCynor are closer to the initial signals than the others. +e
second-order ISCxabn and second-order ISCyabn have more
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Figure 2: Flowchart of vector LCD.
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Figure 3: LCD decomposition results of x-channel under normal conditions.
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Figure 4: LCD decomposition results of y-channel under normal conditions.
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Figure 5: LCD decomposition results of x-channel under abnormal conditions.
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fault information than others. +us, we apply full vector
fusion to the first-order ISCxnor, third-order ISCynor, second-
order ISCxabn, and second-order ISCyabn. However, the fault
frequency information cannot be acquired just from time-
domain waveforms. Finally, envelope and demodulation are
applied to fusion signals, as shown in Figure 7. It is clear in
Figure 7(a) that the rotation frequencies (20Hz and 300Hz)
are consistent with the preset value under the normal op-
erating condition. In Figure 7(b), the amplitudes of the fault
frequency (100Hz) and sidebands (20Hz) show the exis-
tence of modulation under the abnormal operating
condition.

From the simulation analysis, the vector LCD has a good
analysis result when applied to fault signals with frequency
or amplitude modulation, which can enhance the accuracy
of fault diagnosis. +e adoption of the cross-correlation
coefficient avoids repeated analysis between multiple com-
ponents and simplifies the analysis, for a unique and ac-
curate conclusion.

4. Application

+e validity and advantage of vector LCD in fault diagnosis
of a rolling bearing were examined through experimental
data from the Case Western Reserve University bearing data
center. Figure 8 shows the layout of the test stand, which
consisted of a 2-hp motor, torque transducer/encoder, dy-
namometer, and control electronics. +e test bearings
supported the motor shaft, and they had single-point faults
from electro-discharge machining. Accelerometers collected
vibration data and were attached to the support of the drive
end bearing, fan end bearing, and motor supporting base.
+e technical parameters of fault diagnosis are listed in
Table 2.

Normal baseline data, outer race fault data, and inner
race fault data were adopted from the experimental signals.
+e ball fault data frequency is not matched with the usual
value for the slip adjusting to lock onto a dominant fre-
quency [41]. +erefore, ball fault data are not discussed here.
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Figure 6: LCD decomposition results of y-channel under abnormal conditions.

Table 1: Correlation coefficients of ISCs of each order between two channel signals under two conditions.

ISC order 1 2 3 4 5 6

Correlation coefficient

xnor 0.7035 0.1648 0.6998 0.0869 0.0032 0.0062
ynor 0.6983 0.1851 0.7045 −0.1065 0.11 −0.0203
xabn 0.5308 0.6293 0.4658 0.6119 0.0043 −0.0628
yabn 0.6385 0.6576 0.5345 0.0147 −0.0027 0.0125

+e bold value is the maximum value of all ISCs (between the order 1 to 6).
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4.1. Normal Baseline Data Analysis. Because the normal
baseline data only have one channel of drive end section,
processing the single-sensor data is just a special case of a full
vector spectrum. According to the flowchart of vector LCD,
we first applied LCD to the drive-end single-channel signal
to obtain 10 ISCs. Considering that the higher the order of
ISC, the smaller the amplitude, only the first six orders of
ISCs are displayed in Figure 9. We compare the values of ISC
cross-correlation coefficients in Table 3, where the first is the
optimal component. Finally, the envelope and demodulation
are applied to the first ISC. From Figure 10, the rotation
frequency fr (29.95Hz) and 2fr (59.9Hz) account for the
main components without other fault frequencies, which is a
normal operating condition.

4.2. Outer Race Fault Data Analysis. Outer race fault data
were obtained by three homologous sensors in the same
section, and channels of centered 6 : 00 clock and or-
thogonal 3 : 00 clocks were employed to vector LCD

analysis. Similar to normal baseline data processing, ISC
components were acquired after LCD. +e ISC components
of the x-and y-channels are shown in Figures 11 and 12,
respectively. As seen in Table 4, the first ISC components of
the x-and y-signals are optimal. From Figures 11 and 12, the
time-domain waves of the first ISC components of the x- and
y-signals have different amplitudes and frequencies. If only
one direction of the x- or y-signal is analyzed, then different
results will be obtained, which is contrary to fault diagnosis.
+erefore, we apply full vector fusion to the two optimal ISC
components to obtain a new combined signal. Finally, the
envelope and demodulation are applied to the combined
signal. +e outer race fault frequency fOR (107.3Hz) can be
easily distinguished from other spectra, and the amplitude of
fOR is the highest among all spectra (as seen in Figure 13).

4.3. InnerRaceFaultDataAnalysis. Inner race fault data were
recorded in a single channel for the drive end, and the inner
race fault signal was treated in the same way as normal
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Figure 7: Vector LCD spectra of simulation signals: (a) normal condition; (b) abnormal condition.

Figure 8: Case Western Reserve University bearing test stand.

Table 2: Technical parameters.

Fault location Fault diameter (inches) Fault depth (inches) Motor load (hp) Sampling frequency (Hz)
Normal 0 0 0 12000
Outer race 0.007 0.011 0 12000
Inner race 0.007 0.011 0 12000
Fault location Motor speed (rpm) Defect frequencies (Hz) Sample points Data file name
Normal 1797 — 8192 97.mat
Outer race 1797 107.3 8192 130.mat/144.mat
Inner race 1797 162.1 8192 105.mat
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baseline data. +e vector LCD spectra can be displayed after
the optimal ISC is screened out, with decomposition results as
shown in Figure 14. From Table 5, the optimal ISC (the first
ISC component) can be easily obtained. From the vector LCD
spectra in Figure 15, the inner race fault frequency fIR
(162.1Hz) and rotation frequency harmonics fr (29.95Hz), 2fr
(59.9Hz), and 4fr (119.8Hz) can be acquired from the spectra,
which agrees with the inner race fault features.

+is bearing experimental application shows that the
proposed method can be applied to rolling bearing fault
diagnosis. +e screening of the optimal ISC can simplify
fault diagnosis and clearly display the typical features. +e
full vector fusion between optimal ISCs of the x- and
y-signals gives an accurate and unique conclusion for fault
diagnosis. +e vector LCD provides an easy way to extract
fault features.
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Figure 9: LCD decomposition results of x-channel under normal conditions.

Table 3: Correlation coefficients of ISCs of each order under normal conditions.

ISC order 1 2 3 4 5
Correlation coefficient 0.7994 0.5678 0.3904 0.4009 0.3037
ISC order 6 7 8 9 10
Correlation coefficient 0.1167 0.0773 0.0052 0.0077 0.0042
+e bold value is the maximum value of all ISCs (between the order 1 to 10).
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Figure 10: Vector LCD spectra of x-channel under normal conditions.

Shock and Vibration 9



0 0.2 0.4 0.6
-0.5

0

0.5

0 0.2 0.4 0.6
-0.2

0

0.2

0 0.2 0.4 0.6
-0.2

0

0.2

0 0.2 0.4 0.6
-0.1

0

0.1

0 0.2 0.4 0.6
-0.1

0

0.1

0 0.2 0.4 0.6
-0.1

0

0.1

0 0.2 0.4 0.6
Time (s)

-0.1

0

0.1

0 0.2 0.4 0.6
Time (s)

0

0.5

x O
R

IS
C 1

IS
C 2

IS
C 3

IS
C 4

IS
C 6

IS
C 5

A
m

pl
itu

de
 (g

)

re
s.

A
m

pl
itu

de
 (g

)

Figure 11: LCD decomposition results of x-channel under outer race fault condition.
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Figure 12: LCD decomposition results of y-channel under outer race fault condition.
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Table 4: Correlation coefficient of ISCs of each order under outer race fault condition.

ISC order Direction 1 2 3 4 5 6
Correlation
coefficient

x 0.8375 0.5643 0.2833 0.2490 0.1737 0.1280
y 0.7529 0.6911 0.3957 0.2071 0.1321 0.0858

ISC order Direction 7 8 9 10 11 12
Correlation
coefficient

x 0.0712 0.0243 0.0089 0.0001 0.002 —
y 0.0426 −0.001 0.0054 0.0017 0.0004 0.0008
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Figure 13: Vector LCD spectra of vector signal under outer race fault condition.
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Figure 14: LCD decomposition results of x-channel under inner race fault condition.

Table 5: Correlation coefficient of ISCs of each order under inner race fault condition.

ISC order 1 2 3 4 5 6
Correlation coefficient 0.7563 0.7399 0.4803 0.3197 0.1993 0.1183
ISC order 7 8 9 10 11 12
Correlation coefficient 0.0300 0.0230 0.0005 0.0005 0.0013 0.0005
+e bold value is the maximum value of all ISCs (between the order 1 to 12).
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5. Conclusion

A multiple signal processing method of rolling bearing fault
diagnosis was described in this paper. By combining the full
vector spectrum with local characteristic-scale decomposi-
tion, the vector LCD can fully consider homologous signals
and ISCs. +is method is used to synchronously handle
multiple signals. +e cross-correlation coefficient was in-
troduced to choose ISCs, which simplifies the analysis of
ISCs. +e vector ISC displays a more complete and precise
fault frequency than a single ISC. +e simulation analysis
and rolling bearing experimental fault diagnosis verified the
effectiveness of vector LCD. With the good compatibility of
vector LCD, various types of faults and machines could be
diagnosed in our future work. Moreover, the signals from
different types of sensors will be combined to improve the
accuracy of fault diagnosis.
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