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A machine learning-based prognostic strategy is developed in this paper for predicting the remaining useful life (RUL) of high-
pressure packing in plunger-type hypercompressors. Te proposed strategy applies principal component analysis (PCA) to
identify the three most important sensors out of 33 possible options which seem relevant to the subject of high-pressure packing.
Singular-value decomposition (SVD) is then performed with respect to chronological Hankel matrices reconstructed from one of
these three pieces of sensor data, namely, leakage fow. Te normalised correlation coefcient between SVD eigenvalue vectors of
chronological data is defned with a view to formulate health state assessment measurement. In order to enhance the prediction
accuracy of the RUL of high-pressure packing, a linear regression algorithm and a two-term power series regression algorithm are
both integrated into the NN (neural network) model. Te efectiveness of the method is examined using the averaged diference
(over 13 data sets) between predicted and real failure events. Te results showed that the maximum prediction RUL error of the
model is less than 15 days, and an averaged prediction RUL error is 7.23 days for 13 run-to-failure events. Additionally, a more
recent test was performed using online data to examine the health states of four identical types of packing.

1. Introduction

Machine condition monitoring is important in
manufacturing factories, especially those involved in
chemical reaction processes. To prevent important equip-
ment from failing unexpectedly, an increasing amount of
attention has been paid to engineering prognostics in
practice. Although traditional equipment prognostics is
based on the experience of personnel who are familiar with
equipment, its feasibility has been diminishing due to im-
proved asset reliability and equipment complexity. On the
other hand, the implementation of machine monitoring
takes the analysis of the relevant information acquired from
various sensors and uses it to determine the health condition
of the system, or, in some circumstances, one of the im-
portant components. Beneftting from the progress of
computational ability, prognostics, as an advanced

maintenance technique, has been a popular topic of re-
search. Nevertheless, reliable prognostics remains as the
state-of-the-art technology in most cases due to many dif-
fculties involved in attacking real problems. One of the
primary difculties in implementing efective machine
health prognostics lies in the fact that the nature of defect
growth is highly stochastic. Terefore, it is challenging to
come up with an efective health indicator for the online
quantifcation of machine health degradation. Recently,
certain methods have been recommended for machine
health assessment and prediction to prevent unexpected
machine downtime [1–3]. Jianbo suggested that the hybrid
feature selection strategy is capable of choosing the repre-
sentation feature for machine health assessment without
human intervention [4]. Moreover, Atamuradov et al.
constructed a machine health predictor framework for
failure diagnostics and prognostics [5].
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Te predictor approaches are generally categorised into
three types, including model-based, data-driven, and hybrid
methods. Since most engineering systems are complicated, it
is difcult to establish an accurate model of the system or the
component degradation process. In contrast, data-driven
approaches model the degradation characteristics of the
system based on historical run-to-failure sensor data. Tese
approaches can infer correlations and causalities hidden in
data while learning underlying trends. Most current sensor-
based, data-drivenmethods for RUL prediction are rooted in
statistics and fall into two categories, namely, stochastic
process techniques [6, 7] and artifcial intelligence tools such
as neural networks [8], recurrent neural networks [9], and
long short-term memory (LSTM) networks [10]. Te former
rely on statistical models to determine the RUL in a
probabilistic way, whereas the latter rely on machine
learning tools and are nonprobabilistic in nature.

In the current study, a data-driven and stochastic-based
prognostic strategy was developed to predict the RUL of
milling machine cutting tools [6], which involved the ap-
plication of the autoregressive-integrated moving average
(ARIMA) method. Te RUL prediction indicated that 25%
(approximately) extra tool usage can be achieved. On the
other hand, Li et al. [7] developed a systematic methodology
focusing on ball screw failure. Te approach consisted of
fault diagnosis, early diagnosis, health assessment, and RUL
prediction. Gaussian process regression was adopted to
predict the trend of degradation behaviour, while principal
component analysis (PCA) was utilised to determine the
optimal feature sets of ball screw failures in [5]. Te results
indicated that the built-in sensor data were valuable in
implementing fault diagnosis, whereas additional sensor
data seemed to be needed to address the RUL prediction
problems given the complex behaviour involved in ball
screw failures. Zhang et al. proposed a multiobjective deep
belief networks ensemble (MODBNE) method [8]. Te
method employed a multiobjective evolutionary algorithm
integrated into traditional DBN training techniques. Te
resultant DBNs were combined in order to formulate an
ensemble model used for RUL estimation. Te combination
weights in the ensemble model were optimised via a single-
objective diferential evolution algorithm using a task-ori-
ented objective function. Yu et al. [9] proposed a sensor-
based data-driven algorithm combined with a deep learning
tool and the similarity oriented matching technique to es-
timate the RUL of a system. Te approach can be divided
into two steps.Te frst step applied a bidirectional recurrent
neural network-based autoencoder to convert multisensor
readings collected from historical run-to-failure instances to
low-dimensional embedding; in contrast, the latter were
used to construct the one-dimensional health index (HI)
values to refect diferent health degradation patterns of run-
to-failure instances. In the second step, the online HI curve
obtained from sensor readings in real-time data was com-
pared with the degradation patterns built in the ofine
phase. Te similarity-based curve matching technique was
adopted in this stage, from which the real-time RUL of the
test unit can be obtained. Galli et al. [10] proposed an LSTM-
based model combining self-monitoring analysis and

reporting technology (SMART) attributes and temporal
analysis for estimating health status of a hard disk drive
(HDD) according to its time to failure.Temethodology was
grounded in three main steps: health degree defnition,
sequence extraction, and health status assessment through
LSTM. Indeed, LSTM networks were interesting in the
context of HDD failure prediction, as they took advantage of
the highly sequential nature of the information available to
the model. Te experimental results showed that the pro-
posed method can predict hard drive health status up to
45 days before failure. Ding et al. [11] addressed the in-depth
study of autoregression-based prognostics and proposed the
stationary subspaces-vector autoregressive with exogenous
terms (SSVARX) methodology to estimate the degradation
trend estimation (DTE) of rotating machinery. Te authors
selected the multichannel vibration signals and converted
nonstationary signals into time and frequency domain-
based weak-stationary degradation indicators. Subsequently,
they adopted the proposed DTE models to evaluate domain
variables after the stationarity test, order determination, and
impulse response analysis. Following two run-to-failure life
tests of rolling and slewing bearings, it was clear that the
SSVARX produced highly accurate prediction results. Te
data recorded from real industrial scenes may not be suf-
fcient and could lead to negative impacts, such as overftting
problems. Peng proposed [12] the unsupervised meta gated
recurrent unit (UMGRU) containing a dual-cycle learning
architecture with the designed clustering assignment
module to estimate the few-shot prognostics under unla-
belled historical data. Te UMGRU provided reliable RUL
predictions for both experimental and industrial scenarios.
Roughly speaking, in numerous data-driven RUL prediction
studies, either statistical approaches [6, 7, 13–16] or artifcial
intelligence methods [8–12, 17–19] were applied.

Although various prognostic approaches have been
proposed for diferent applications, few existing schemes
provide promising performance across these applications.
Te current study combined PCA-based order reduction,
singular-value decomposition (SVD)-based health state
assessment, neural network (NN)-based prediction models,
and regression algorithms to predict the RUL of high-
pressure packing in hypercompressors. Due to the impor-
tance of the equipment, more than 190 sensors, including
those for pressure, temperature, vibration, and leakage fow,
were used to monitor the operation conditions of the
plunger-type high-pressure compressor. To simplify the
problem, domain expertise knowledge was frst applied to
reduce the number of relevant sensors to 33. Subsequently,
PCA, a common method used by researchers for order
reduction [20–23], was adopted to further reduce the
number of relevant sensors to three. Te analysis conducted
using PCA indicated that the leakage fow rate through the
high-pressure packing set and the X- and Y-directional
vibrations measured on the plunger were the three most
critical pieces of data related to the failure events observed in
high-pressure packing. Following this, raw signals obtained
from the leakage fow were used to conduct phase-space
reconstruction and obtain the so-called Hankel matrix
[17, 18]. SVD-based analysis was conducted with respect to
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the chronological Hankel matrices, from which the SVD-
normalised correlation coefcients were determined [15]. A
total of 37 features, including 11 associated with each of the
three relevant sensors and four other features obtained from
the actual health degradation curve, were chosen as inputs to
a feedforward neural network scheme to develop a packing
health state assessment model. Features associated with
leakage fow and vibration data included mean, skewness,
standard deviation, and RMS. Te health degradation curve
of packing was defned by using the SVD-normalised cor-
relation coefcients obtained from the leakage data. Te
resultant neural network model consisted of two hidden
layers, with ten and fve hidden nodes, while the linear and
two-term power series algorithms were both applied to
regress degradation trends. Te model was verifed by using
13 run-to-failure data sets to illustrate its efectiveness in
predicting the RUL of high-pressure packing.

Te motivation of this study lies mainly in the fact that
the plunger-type high-pressure compressor is an extremely
crucial machine in the ethylene-vinyl acetate (EVA) pro-
duction line such that any unscheduled downtime would
result in signifcant fnancial loss [24]. To avoid this, an
overly conservative maintenance strategy has long been
applied. Terefore, an accurate RUL algorithm applicable to
this compressor would be cost-efective and benefcial to the
petrochemical industry.

Regarding the diference between our derivation and
most data-driven approaches, the derived packing RUL
algorithm in the current paper is a combination of data-
driven knowledge and domain knowledge, and this appears
to be necessary and crucial. For instance, because packing is
composed of six sealing rings, low readings of the leakage
sensor by no means imply healthy status, since some rings
may change their orientations during operation and seal the
leakage temporarily.Terefore, knowledge-based techniques
for failure criterion setup, feature selection, etc., are very
helpful. To this end, the algorithm has been tested online and
proven to be efective on the real compressor.

2. Methodology

Tis study combines PCA, SVD, NN, and regression algo-
rithms to develop a health prognostic method for predicting
the RUL of high-pressure packing in a plunger-type
hypercompressor. Te fowchart of the proposed method is
shown in Figure 1. Details regarding the diferent algorithms
involved in Figure 1 are elaborated in the following
subsections.

2.1. Principal Component Analysis (PCA). Te most popular
technique for dimensionality reduction in machines is PCA
[20–23]. PCA is an unsupervised linear transformation
method, the aim of which is to fnd the directions of
maximum variance in high-dimensional data and project
that variance into a new subspace with fewer dimensions.
Teminimum set of the largest principal components (PCs),
which accounts for at least some predefned variance
threshold (usually in the range of 80%–95% of original data

variance), is considered for further analyses [25]. Teoret-
ically, PCA can identify (from a black box containing many
uncorrelated measured variables) the related sensors that
have a strong correlation with normal and abnormal op-
eration conditions in a complicated system such as the high-
pressure packing facility.

Details regarding the processing of PCA and the pro-
cedures involved are elaborated as follows:

(a) Normalisation of raw data: Suppose we have raw
data matrixX comprising a set of n observations of p

variables. A standard deviation normalisation pro-
cess can be applied to the raw data matrix to acquire
resultant data matrix B, which possesses unit vari-
ance and zero mean [26].

(b) We obtain p × p empirical covariance matrix C from
normalised matrix B, which is achieved in step A as
follows:

C �
1

n − 1
BTB, (1)

where n is the number of observations.
(c) We fnd the eigenvectors and eigenvalues of the

covariance matrix. Matrix V of the eigenvectors can
be used to diagonalise covariance matrix C as
follows:

V− 1CV � D, (2)

where D is the diagonal matrix of the eigenvalues of C.
Matrix D takes the form of a p × p diagonal matrix as
follows:

Dkl �
λk, k � l,

0, k≠ l,
 (3)

where λk is the jth eigenvalue of covariance matrix C. Matrix
V, also of dimension p × p, contains p column vectors. Te
aforementioned vectors are the eigenvectors of covariance
matrix C.

2.2. Singular Value Decomposition (SVD)-Normalised Cor-
relation Coefcient. Te SVD-normalised correlation coef-
fcient is the method used to automatically assess the health
state [18]. Te theory behind the SVD-normalised corre-
lation coefcient is that the correlation between the singular-
value vector and the normal state data is higher than the
correlation which exists between the normal state and fault
state data. Te procedures adopted to calculate the SVD-
normalised correlation coefcient, Rj, for health state as-
sessment are as follows:

(a) Normalisation of the selected imported raw data:Te
selected imported raw data are normalised by min-
max normalisation within the range of [−1, 1].

(b) Calculate the singular-value matrix of each subse-
quence by using SVD: In the current study, the
window size of each subsequence is 1024 points,
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which is equivalent to one-day operation. In other
words, the 1024-point-normalised data, yi, corre-
sponding to one-day operation, are adopted to carry
out phase-space reconstruction so as to obtain the
so-called Hankel matrix as follows:

H �

y1 y2 · · · yn

y2 y3 · · · yn+1

⋮
ym

⋮
ym+1

⋮ ⋮
· · · yN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where n � 720, m � 305, andN � 1024 in this study.
By using SVD, H � Um×kΛk×kWT

k×n is obtained,
where U and Ware both orthogonal matrices, while

Λ �
S 0
0 0 , 1< n<N and S � diag(σ1, σ2, . . . , σq).

In this study, the value of q is 720.
σ1 ≥ σ2 ≥ . . . ≥ σq ≥ 0 are nonzero singular values of
H. Ten, singular-value matrix M of each subse-
quence is defned as follows:

M �

σ11 σ21 · · · σd
1

σ12 σ22 · · · σd
2

⋮
σ1q

⋮
σ2q

⋮ ⋮

· · · σd
q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where d is the total number of subsequences and q is
the number of nonzero singular values in the Hankel
matrix of each subsequence.

(c) Calculation of correlation coefcient Rj from sin-
gular-value matrix M: Te correlation coefcient
with the singular value associated with each subse-
quence is calculated using Pearson’s linear correla-
tion coefcient formula as follows:

Rj �


q

i�1 xi − x(  yj,i − yj 
����


q
i�1



xi − x( 
2


q
i�1

yj,i − yj 
2
, (6)

where x and y are the singular-value vectors corresponding
to diferent operating days. Vector R is the SVD-normalised
correlation coefcient. When the system had high numerical
stability, the change in the singular value Rj was small
because there was slight perturbation of the signal.

2.3. Regression Model. A regression model describes the
relationship between dependent variable (response variable)
Y and one or more independent variables (explanatory or
predictor variables) X. Te regression model adopts a
straight line to approximate n data points, while it makes the
sum of the squared residuals of the model minimal [27]. Te
simple linear regression model can be described by the
following polynomial equation:

Y � α1 + β1X, (7)

where β1 is the coefcient and α1 is the constant term in the
model.

In contrast, the two-term power series algorithm ap-
proximates the relationship amongst a variety of pieces of
data using the following analytical expression:

Y � α2X
β2 + c2, (8)

where α2 is the coefcient, β2 is the power, and α1 is the
constant term in the model.

2.4. Feature Extraction and Selection Method. In order to
construct an efective feedforward neural network (FNN)
model, relevant features are required. Many previous studies
have suggested that deep learning techniques could be good
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Figure 1: Te fowchart of the proposed method.
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candidates when it comes to extracting discriminative features
directly from raw data [28, 29]. It is known that feature rep-
resentation or engineering can be used to transform raw data
into features that better represent the underlying problem of
predictive models. Tis could also result in improved model
accuracy when it comes to unseen data. However, selecting
appropriate features is mainly problem-oriented. Te ReliefF
algorithm is a flter-based feature selection method that helps
choose a subset of features from the original feature set [30].
ReliefF is employed for classifcation and fnds the weights of
predictors in the case where y is amulticlass categorical variable.
Similar to ReliefF, RReliefF (relief for regression) is utilised for
regression andworkswith continuousy [30]. RReliefF penalises
the predictors that give diferent values to neighbours with the
same response values and rewards predictors that give diferent
values to neighbours with diferent response values. RReliefF
obtains the predictor weights based on intermediate weights as
follows:

(a) We set weights Wdy,Wdj. Wdyvdj, and Wj equal to 0.
(b) We select random observation xr iteratively and fnd

the k-nearest observations to xr and update Wdy,
Wdj, and Wdyvdj for each nearest neighbour xq:

W
i
dy � W

i−1
dy + ∆y xr, xq  × drq,

W
i
dj � W

i−1
dj + ∆j xr, xq  × drq,

W
i
dyvdj � W

i−1
dyvdj + ∆y xr, xq  × ∆j xr, xq ×drq,

(9)

where Wdy is the weight of diferent values for re-
sponse y, Wdj is the weight of diferent values for
predictor Fj, Wdyvdj is the weight of diferent re-
sponse values y and diferent values for predictor Fj,
i is the iteration step number, and ∆y(xr, xq) is the
diference in the value of continuous response y

between observations xr and xq.
(c) Let yr be the value of the response for observation xr

and yq be the value of the response for observation xq:

∆y xr, xq  �
yr − yq





max(y) − min (y)
,

∆j xr, xq  �

0, xr � xq,

1, xr ≠xq,

⎧⎪⎨

⎪⎩

drq �
drq


k
l�1

drl

.

(10)

(d) We calculate predictor weight Wj after updating all
the intermediate weights as follows:

Wj �
Wdyvdj

Wdy

�
Wdj − Wdyvdj

m − Wdy

. (11)

2.5. Neural Network. Te FNN consists of an input layer,
one or several hidden layers, and an output layer, as shown
in Figure 2.Te frst layer has a connection from the network

input. Each subsequent layer has a connection from the
previous layer. Te fnal layer produces the network’s out-
put. A feedforward network with one hidden layer and
enough neurons in the hidden layers can ft any fnite input-
output mapping problem [19].

In the FNN, the output can be expressed for neuron k as
follows:

Ok � g2 

M

j�1
Wkjg1 

N

i�1
Wijxi + Wj0

⎛⎝ ⎞⎠ + Wk0
⎛⎝ ⎞⎠, (12)

where xi is the input value to input node i, Ok is the output at
output node k, j is the number of hidden nodes, g1 is the
nonlinear activation function for the hidden layer and g2 is
the linear activation function for the output layer, N and M
are the number of neurons in the input and hidden layers,
respectively, Wj0 and Wk0 are the biases of the jth neuron in
the hidden layer and the kth neuron in the output layer,
respectively, and Wij and Wkj represent the weight between
diferent layers.

3. Proposed Method for Prediction of the
Remaining Useful Life of Packing Sets in
Plunger-Type High-Pressure Compressors

3.1. Selecting Relevant Sensors Using Principal Component
Analysis (PCA). It is challenging to predict the RUL of high-
pressure packing using 33 sensors due to the fact that the
prediction model might be easily disrupted by irrelevant
sensors. With regard to implementation, the recorded signals
collected from 33 sensors under normal and abnormal op-
eration conditions of packing were included in two data sets,
which were then merged into one. With PCA, the raw data of
33 sensors can be reduced to three important PCs. Te
aforementioned PCs can be used to approximately describe
the normal and abnormal operation conditions of packing.

In the current study, the eigenvector and eigenvalue were
determined via the MATLAB function “pca” (MATLAB
statistics and machine learning toolbox). By default, the
“pca” command centres the data and uses the SVD algo-
rithm to deal with the eigenvalue analysis (function “svd” in
the MATLAB symbolic math toolbox). SVD is a more
general solution than PCA [31, 32].

3.2. Health State Assessment Using Singular Value Decom-
position (SVD)-Normalised Correlation Coefcient. To pre-
dict the remaining life of high-pressure packing accurately,
the SVD-based health state assessment criterion [10, 12, 13]
was applied in this study. Te method frst divides the
packing’s life into several subsequences. For each of these
subsequences, a phase-reconstruction process is adopted to
construct the so-called Hankel matrix, which, in most cases,
is a real symmetric matrix. Subsequently, SVD analysis is
performed with respect to these sequential Hankel matrices
to come up with the health state of packing. Due to the
robustness associated with the SVD vectors, when data
contain a small amount of perturbation, it is believed that the
normalised correlation coefcient of the SVD vectors
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between normal conditions is higher than that between
normal and fault conditions. Based on the criterion de-
scribed above, when packing is in good condition, the
changes in the signal are small and the changes in singular
values are also small. Along the course of the packing op-
eration, greater variance appears between signals related to
packing conditions, and the singular value and the value of
the SVD correlation coefcient will scale up accordingly.
With this defnition of the SVD-normalised correlation
coefcient, the negative efect of local noise and small
perturbation on health state assessment can be avoided. In
this study, the SVD was determined by the MATLAB
function “svd” (MATLAB symbolic math toolbox).

In Equation (6), x represents the starting part of the raw
signal, especially those few days immediately after the new
packing component was installed in machinery. Terefore, x
can be considered the base value (or normal state) of in-
trinsic system characteristics. On the other hand,
j � 1, . . . , d represents the day-count index. In that regard, y
denotes the nonzero singular-value vector corresponding to
operating days other than the reference period. Each Rj

implies that a new 1024-point raw data set is included in the
computation process involving Equations (4)–(6). Wear
takes place along the course of operation, and one can
therefore observe that the Rj values of high-pressure packing
decrease in the long-time base. Tus, vector R consisting of
Rj can be obtained to represent the health state over the
operation time of high-pressure packing.

3.3. A Novel Energy-Based Health Index (HI). Due to the
uncertainty of the operation process, the actual health
degradation curve of packing will never resemble a
monotonically decreasing function. To that end, a novel
criterion is proposed here to assess the health index of
packing using the SVD correlation coefcient defned in
Equation (6). Te steps involved in calculating this new
criterion are illustrated in Figure 3 and are as follows:

(1) According to the procedures adopted to perform
SVD and compute Pearson’s linear correlation co-
efcient, correlation coefcient vector R can be
obtained from the chronological Hankel matrix.

(2) We calculate the sum energy as follows:

sum energy � 
n

i�1
1 − Ri( 

2
, (13)

where n is the last day. Referring to the red area
indicated in Figure 3, the “sum energy” represents
the squared area between the R curve and constant 1.
Here, the sum energy is more like the total degra-
dation of the high-pressure packing in a run-to-
failure event.

(3) We accumulate the energy of each day as follows
(Figure 3):

Energym � 
m

i�1
1 − Ri( 

2
. (14)

For any specifc day count, this term denotes the
accumulated degradation or the partial sum of
energy.

(4) We calculate the health index using the sum energy
and accumulated energy as follows (Figure 3):

HIm(%) �
sum energy − energym

sum energy
∗ 100, (15)

where m is the day count.

3.4. Feature Extraction and Selection of Neural Networks.
It is worth noting that, in the current study, only 13 data sets
of packing with the abnormal operation were observed,
while the sampling rate involved in relevant sensors was far
too low. As a result of this, deep learning may be inefective
in fnding, selecting, or extracting relevant features related to
the health state of packing [33]. As the time resolution of
data is one minute in this study, the sample rate is very low,
and therefore, extraction of frequency features is unavail-
able. Considering the feasibility and computational burden,
traditional statistical features in the time domain, such as the
mean, peak-to-peak, and root mean square, are adopted in
this study [18]. However, not all-time features are responsive
to HI. Tus, the current study ranks the importance of
predictors for HI using the RReliefF algorithm [30]. Te
weights of predictors are determined by the MATLAB
function “relief,” with 10 nearest neighbours (MATLAB
statistics and machine learning toolbox).

3.5. HI Prediction by Neural Networks. Tis paper proposes
an FNN to build an HI-predicted model that describes the
relationship between HI or the ftted HI curve using a linear
regression model and the two-term power series algorithm
in Equations (7) and (8), as well as the temporal information
hidden in the selected feature after the RReliefF algorithm
[34]. Te FNN model uses the selected feature of packing
after the RReliefF algorithm as an input. Meanwhile,
amongst HI and two ftted HI curves, one of them will be
selected as the output of FNN.Tis study designs one or two

Input layer hidden layer Output layer

Figure 2: Structure of the FNN model.

6 Shock and Vibration



hidden layers with diferent nodes to evaluate which
structure is suitable for developing an HI-predicted model.
In the current study, the FNN can be constructed by the
MATLAB function “train” with “feedforwardnet” (MAT-
LAB deep learning toolbox, Levenberg–Marquardt algo-
rithm is the default training function).

A leave-one-out cross-validation scheme (LOOCV) was
applied to examine the efectiveness of the HI-predicted
model [35]. Te LOOCV was used to make predictions on
data not used to train the model, which utilises each indi-
vidual data set as a “test” set. After satisfactory results were
achieved, the linear regression algorithm and the two-term
power series algorithm were integrated into the FNN model
in order to predict the RUL of high-pressure packing.

3.6. HI-Based RUL Prediction of High-Pressure Packing.
When it comes to deriving data-driven, RUL-predicting
techniques, approaches can be divided into two strategies,
depending on whether an HI is used: (1) direct RUL pre-
dictions that model the relationship between input signals
and RUL and (2) HI-based RUL predictions that build the
model of input signals against HI and then map the

estimated HI to RUL [36]. Te relationship between HI and
RUL is as follows: RUL is equal to 0 when HI is 0. In this
study, the “HI-based prognostic” method was adopted to
predict RUL. In step 4, shown in Figure 3, the characteristic
of HI depends on the degradation features of the mechanical
wearing process and seems nonlinear and involved. Tus, it
is difcult to estimate the last day where HI� 0 using a
universal nonlinear function. To that end, the current study
adopted a linear regression algorithm and a two-term power
series algorithm to ft the HI and thenmapped the HI to RUL
easily, as shown in Figure 4.

Based on Figure 4,Y andX refer to the health index and
elapsed operation time, respectively. To that end, Yi,Xi 

denote data points involved in the calculations of Equations
(7) and (8). Meanwhile, regression coefcients α1 and β1 are
determined by the MATLAB function “regress” (MATLAB
statistics toolbox), and in the two-term power series algo-
rithm, α2, β2, and c2 are determined by the MATLAB
function “ft with option power 1” (MATLAB curve ftting
toolbox), which minimises the sum of squared residuals of
the model.

In the current work, the ftting target, namely, HI curves,
can be the predicted or responding output of the NN model.

R

R

Step1: SVD Correlation coefficient (R) 
estimates from selected import raw data

Step 2: Obtain the sum energy after 
R <1

Step3: Accumulate the energy each day 
(example: 1-70) Step4 : Calculate the health index
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Figure 3: Steps related to the assessment of the health index.
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Te latter is used to mimic the global behaviour between the
elapsed operation time and the health index of high-pressure
packing. Te word “global” means that many run-to-failure
data sets obtained from diferent (but identical) plunger-type
compressors were used to train the NN model. Te resultant
NN model can be applied to input new raw data and obtain a
predicted HI value. Te predicted HI values obtained from
the NN model are short-term predictions; namely, the pre-
dicted HI is close to the instant current time in this case. In
order to forecast the HI and RUL values in the longer future
time, we introduce the predicted HI into Equations (7) and
(8) to obtain related parameters (α1 and β1 and α2, β2, and c2).
Ten, one can forecast the future HI values by using the
analytical expressions shown in Equations (7) and (8), from
which RUL can be obtained accordingly.

4. Case Study and Results

4.1. Plunger-Type Hypercompressor. Te plunger-type hyper-
compressor is an important piece of equipment and is
adopted in chemical processes involving ethylene gas used in
continuous fow procedures. Because the plunger-type high-
pressure compressor (red square in Figure 5) was considered
a critical item of equipment in the reaction process of a local
chemical factory, a total of 192 sensors were set up to record
and monitor real-time operation conditions. However, the
sample rate of these sensors was one per minute, which is far
too low if frequency features of the data are to be considered
for use in machining learning approaches. When the
compressor is subject to abnormal signal or operation
conditions, a shutdown is needed. According to mainte-
nance reports, high-pressure packing is the component that
is responsible for most abnormal shutdown events. Te
packing cost is high enough to motivate the factory to fund
this investigation.Te aim of the current study is to come up
with a machine learning-based prognostic strategy.

By ruling out sensors that do not correlate to packing or
are outliers in the eyes of domain experts, the number of
sensors considered for deriving the machine learning-based
prognostic approach was reduced from 192 to 33. Te latter
includes the leakage fow rate through the high-pressure
packing set, X- and Y-directional vibrations measured on the
plunger, and the diference in temperature between the gas
inlet and outlet.

In addition, a total of 13 abnormal operation data sets of
high-pressure packing in plunger-type hypercompressors
were observed and collected by the local chemical factory.
Tese constituted run-to-failure data, which were applied to
train and verify the NN model.

4.2. Selecting Important Sensors Using PCA. Despite the fact
that domain expert knowledge was applied to reduce the
sensor number from 192 to 33, the remaining sensor number
was still too large to cope with. As such, the PCAmethod was
applied here to further reduce the order of the problem. To
achieve this, the recorded signals from the 33 sensors under
normal and abnormal operation conditions in packing were
merged. By using PCA, the raw data of 33 sensors were

reduced to three important principal components (PCs), as
shown in Table 1. Tese components, originating from
important sensors, can be used to approximately describe
the normal and abnormal operation conditions of packing.
Te features of these operation conditions are illustrated in
Figure 6. Indeed, Figure 6 shows that the normal and failure
operation data sets can be well discriminated in three PCs.
Te developmental sequences of PCA change in response to
operating time. Meanwhile, Table 1 shows that PC1 can
largely explain the total variability because it has a high
explained variance ratio. Te variance ratio represents the
percentage of variance that is attributed by each of the se-
lected components. It can be observed, in Table 1, that with
three PCs, the cumulative variance can reach 99.85%. In
addition, according to the value of the eigenvector of PC1, it
can be observed that the leakage fow rate and the X/Y
vibrations, which relate to the plunger motion, have higher
values than those of other 30 sensors. It turns out that the
eigenvalue of leakage fow is greater than 75% of the total
value. Tus, leakage fow is the most important of the 33
sensors when the abnormal operation of high-pressure
packing is considered. Figure 7 shows time-domain features
in the raw data of the leakage fow rate and the X/Y vi-
brations under abnormal operations.

4.3. Health Index (HI) Assessment Using the SVD Correlation
Coefcient Estimates, Linear Regression Algorithm, and Two-
Term Power Series Algorithm. A total of 13 abnormal op-
eration data sets were obtained from eight identical plunger-
type hypercompressors installed in a local chemical factory.
Te results of the PCA showed that leakage fow is the most
important sensor. Tus, leakage fow data are suitable for
being used for assessing the HI of high-pressure packing in
plunger-type hypercompressors. In order to obtain the run-
to-failure data on leakage fow, failure criteria were defned;
the frst of which was if the three conditions shown in Table 2
happen simultaneously, the packing failure will be declared
and a termination of operation will be needed. Figure 8
illustrates four sets of run-to-failure raw data of leakage fow.
As mentioned in the previous sections, this study adopted
leakage fow to assess HI using SVD correlation coefcient
estimates and obtained ftted HI curves using the linear
regression algorithm and the two-term power series algo-
rithm, as shown in Figure 9. Amongst HI and the two ftted
HI curves, one of them will be adopted as the output of NN,
and this will be followed by evaluation of which is suitable
for the output.

4.4. Feature Extraction and Selection Using the RReliefF
Algorithm. Te results of the PCA showed that the leakage
fow rate and theX/Y vibrations are sensors that possess high
values in eigenvectors. Tus, the current study picked time-
domain statistics such as the mean, peak-to-peak, and root
mean square of the three sensors as problem features. In
total, 13 time-domain features are selected in this study and
are listed in Table 3, where xi can be referred to as the
readings of the leakage fow rate and the X/Y vibrations.
Indeed, 37 features were defned, including 11 features
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associated with each of the three relevant sensors, three SVD
correlation coefcient estimates (Ri, Ri−1, Ri−2), and sum
energy of Ri. Te result of the RReliefF algorithm analysis
showed that the sum energy of all leakage fow rates, the X/Y
vibrations, and Ri were all related to HI. Tus, those four
features are the inputs of NN.Te present study defned one
hidden layer with ten hidden nodes and two diferent layers
with ten and fve hidden nodes to evaluate which structure is

suitable for predictingHI. Finally, we introduce predicted HI
into Equations (7) and (8) to obtain related parameters (α1
and β1 and α2, β2, and c2) so that long-term forecasting is
possible. Te latter can be achieved by introducing future
day (i) into Equations (10) and (11) to obtain the future HI
and to forecast the time when HI� 0, from which RUL is
obtained. Supplementary Tables 1–3 show the performances
of RUL amongst the diferent outputs of NN, the diferent
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structures of hidden layers, the number of nodes, and dif-
ferent prediction methods for the RUL of high-pressure
packing. When the FNN had one hidden layer, the number
of hidden nodes was ten. When the FNN had two hidden
layers, the numbers of hidden nodes were ten and fve,
respectively.

In Supplementary Tables 1 and 2, in order to ft HI,
which is ftted by using Equations (10) or (11), as the NN
output (yellow line and red line in Figure 9), the adopted
method is the same as that used for predicting the rela-
tionship between predicted HI and RUL. Ten, the FNN has
one (Supplementary Table 1) or two hidden layers with
diferent nodes (Supplementary Table 2) to evaluate which
structure is suitable for developing the HI-predicted model.
In Supplementary Table 3, the NN output is real HI, which is
not ftted by using Equations (10) or (11) (blue line in
Figure 9). Ten, the FNN has two hidden layers with dif-
ferent nodes to develop the HI-predicted model. Te
fndings showed the performance of the testing results, while
the other 12 data sets served as the training data.

After comparing the results in Supplementary
Tables 1–3, it was found that better performance is shown in
Supplementary Table 2. Of note, many data sets provide
accurate prediction of RUL. Indeed, RUL can estimate the
time of HI� 0 using (8), while the value of HI is still 60.Tus,
the current study suggested that FNN had “two” hidden
layers and that the numbers of hidden nodes were ten and
fve, respectively. Ten, ftting HI was used as the NN output

to predict RUL by also using Equation (8).Tis structure will
be suitable for predicting the RUL of high-pressure packing
in plunger-type hypercompressors.

In order to prove the validity of the proposed method in
this study, we compared the proposed method using long
short-term memory (LSTM) [37, 38], linear regression [39],
robust linear regression [40], linear support vector machine
(SVM), and quadratic SVM [41, 42]. Table 4 shows the
structure and hyperparameter settings of all the above-
mentioned methods. Te optimal parameters of the algo-
rithms could be selected from the MATLAB function. LSTM
used the training options for the Adam (adaptive moment
estimation) optimiser, including learning rate information,
L2 regularisation factor, and minibatch size. Robust linear
regression turned on the robust option, which adopted
robust ftting using the “bisquare” weight function with the
default tuning constant. SVM set the related options, in-
cluding kernel scale, box constraint, and epsilon, to
automatic.

Tis study also calculated the sum of absolute errors
(SAEs) between the predicted HI and the actual HI, as shown
in Figure 10.Te results of Figures 10(a)–10(d) show that the
predicted HI of the proposed FNN, which consisted of two
hidden layers, with the numbers of hidden nodes being ten
and fve, respectively, was similar to the actual HI because of
the lowest SAE. In Figure 10(a), robust linear regression is
the second best. In Figure 10(b), LSTM is the second best. In
Figure 10(c), the Quadratic SVM is the second best. In

Table 1: Eigenvalue, explained variance, and cumulative variance of three important PCs.

Number of components Eigenvalue Explained variance % Cumulative variance %
PC1 206.5608 98.7937 98.7937
PC2 1.911 0.95228 99.746
PC3 0.2311 0.11053 99.8566

Normal operation 

Operation during day 30-31, time:12:00-09:00 

Operation during day 31, time:09:01-10:00 

Operation during day 31, time:10:01-10:50

End 10:50 (Failure data)
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Figure 6: Tree PC results after PCA and developmental sequences in PCA change in response to operating time.
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Figure 10(d), robust linear regression is the second best.
Tus, the results of Figure 10 show that the proposed FNN
structure can more accurately predict HI and RUL than
other methods. Compared with other methods, the results of
LSTM had greater variation. Te reason was the small
number of trained data sets in this study. Indeed, there were
only 13 run-to-failure data sets obtained from eight identical
hypercompressors installed in a local chemical factory, with

an average run-to-failure life of 233 days. In addition, the
results of Figure 10 show that most algorithms cannot
predict the zero HI, while the actual HI reached zero. It was
found that the proposed HI-based RUL prediction of high-
pressure packing in this study could solve the above-
mentioned issues, and subsequently, the follow-up-pre-
dicted HI is estimated using the two-term power series
algorithm in Equation (8).

5. The Proposed Model for Predicting RUL in
the Real Case

Te proposed model was further tested using online data to
examine the health states of four identical kinds of packing
(2A1, 2A2, 2B1, and 2B2). Since these online data never
appeared in the training or verifcation processes of the
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Figure 7: Raw data of the leakage fow rate and the X/Y vibrations under abnormal operations.

Table 2: Tree conditions for failure criteria.

Conditions Value of leakage fow Occupation ratio
within 7 days

1 >300 >40%
2 >400 >30%
3 >500 >20%
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Table 4: Te structure and hyperparameter settings of proposed FNN, LSTM, linear regression, robust linear regression, linear SVM, and
quadratic SVM.

Method Set parameters Structure

FNN in this
study

HI predicted:
Function: feedforwardnet

Hidden size: [10 5]
Data division: random

Training: Levenberg–Marquardt
Performance: mean squared error

Output: ftting HI using Equation (11)
(deep learning toolbox)

In
pu

t
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w
b

w
b

w
bH
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id
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ut
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1

Activation function of hidden layers: hyperbolic tangent sigmoid
transfer function (tansig)

Activation function of output layers: linear transfer function (purelin)
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Fitted HI using two-term power series algorithm
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Figure 9: Real HI (blud line) using SVD correlation coefcient estimates and ftted HI curve using linear regression algorithm (red line) and
two-term power series algorithm(orange line) from four datasets (a–d) in Figure 8.

Table 3: Time-domain features applied in this study.

Feature Formula
Mean value 1/n 

n
i�1 xi

Standard deviation (SD)
��������������

1/ 
n
i�1 (xi − x)2



Skewness (1/n) 
n
i�1 (xi − x)3/((1/n) 

n
i�1 (xi − x)2)3/2

Kurtosis (1/n) 
n
i�1 (xi − x)4/((1/n) 

n
i�1 (xi − x)2)2

Peak-to-peak max(x) − min (x)

Root mean square (RMS)
���������
1/n 

n
i�1 x2

i



Crest factor (peak-to-average ratio) max(x)/xrms

Shape factor xrms/(1/n) 
n
i�1 |xi|

Impulse factor max(x)/(1/n) 
n
i�1 |xi|

Margin factor max(x)/((1/n) 
n
i�1 |xi|)

2

Sum energy 
n
i�1 (xi)

2

Ri (SVD correlation coefcient estimates) Calculate from Equation (6)
Sum energy of Ri Calculate from Equation (8)
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Table 4: Continued.

Method Set parameters Structure

LSTM

(Deep learning toolbox)

Linear regression

Function: ftlm
Preset: linear
Terms: linear

Robust option: of
(Statistics and machine learning toolbox)

Robust linear
regression

Function: ftlm
Preset: linear
Terms: linear

Robust option: on
(Statistics and machine learning toolbox)

Linear SVM

Function: ftrsvm
Preset: linear SVM

Kernel function: linear
Kernel scale: automatic

Box constraint: automatic
Epsilon: auto

Standardize data: yes
(Statistics and machine learning toolbox)

Quadratic SVM

Function: ftrsvm
Preset: quadratic SVM
Kernel function: linear
Kernel scale: automatic

Box constraint: automatic
Epsilon: auto

Standardize data: yes
(Statistics and machine learning toolbox)
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proposed scheme, the results roughly indicate the efec-
tiveness and reliability of the method. Figure 11 shows these
four sets of online leakage fow data. In the fgure, the
number of days represents the elapsed operation time of

high-pressure packing, while the ordinate value indicates the
leakage fow rate. After the proposed scheme is applied to
Figure 11, the predicted results of HI and RUL are shown in
Figure 12. It can be seen that, in Figure 12, the packing in
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Figure 10: Te predicted HI by diferent methods (FNN in this study, LSTM, linear regression, robust linear, linear SVM, and quadratic
SVM), actual HI (black line), and predicted RUL (blue line) using equation (11).
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Figure 11: Four datasets (a–d) of run-to-failure data of leakage fow in real case. Diferent colour lines in (a–d) denote leakage fow on
diferent days. Te title is the name of high-pressure packing and the number of day is the duration of run-to-failure data.
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2A1 can operate for 14 more days, while the corresponding
packing components in 2B1 and 2B2 can run for 58 and 13
more days, respectively. In contrast with these three cases,
the results obtained in the 2A2 machine indicate that the
predicted RUL reached 0 at 305 operation days. Tus,
suspected failure was predicted. Tis prediction of failure
was later confrmed by the factory maintenance team when
the equipment was disassembled, as shown in Figure 13.

6. Conclusion

Some popular machine and deep learning architectures
(linear and robust linear regression, linear and quadratic
SVM, and LSTM) are presented in this study. As the amount
of data surpasses a certain size, deep learning accuracy in-
creases incrementally with respect to the amount of data.

However, there were only 13 run-to-failure data sets ob-
tained from eight identical hypercompressors installed in a
local chemical factory, with an average run-to-failure life of
233 days. Tis study proposed a machine learning-based
prognostic strategy for predicting the RUL of high-pressure
packing in plunger-type hypercompressors when the
number of data sets was small. According to the results, the
best performance can be achieved when the NN has two
hidden layers and the numbers of hidden nodes are ten and
fve, respectively. Te proposed NN scheme is combined
with a two-term power series algorithm to regress the
degradation trends. Te maximum prediction RUL error is
less than 15 days, and the average prediction RUL error is
less than 7.23 days by using the proposed scheme. Based on
the results, the proposed approach can provide sufcient
information to the manufacturer, thus allowing the
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Figure 12: Predicted HI (blue line) and predicted RUL (red line) of four high-pressure packing (a–d) in Figure 11. If title is HI��0 and
RUL�predicted value of RUL, the meaning is that the high-pressure packing still can work predicted value of RUL day. Tat is, predicted
value of RUL occurs after the current data. If title is HI��0 and Stop=Stop day of operating high-pressure packing, the meaning is that the
high-pressure packing should stop because of failure. Tat is, predicted value of RUL occurs before the current data.

Figure 13: Te failure in packing of 2A2.
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manufacturer to plan maintenance in advance. Finally, the
proposed model was used to predict HI and RUL in real
cases where the online data were never involved in the
training and verifcation process. Te predicted RUL of one
high-pressure packing was 0. After disassembling the
equipment, the failure of packing was found and confrmed.
Tis real-test result further proves the efectiveness of the
proposed method.
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Supplementary Materials

Tere were three supplementary Tables in this study to
show the performances of RUL amongst the diferent
outputs of NN, the diferent structures of hidden layers,
and the number of nodes and diferent prediction
methods for the RUL of high-pressure packing. When the
FNN had one hidden layer, the number of hidden nodes
was ten. When the FNN had two hidden layers, the
numbers of hidden nodes were ten and fve, respectively.
Supplementary Table 1 shows that NN output is used as
the target HI curve and ftted by using equations (10) or
(11) (yellow line and red line in Figure 9), and RUL
prediction is done accordingly with equations (10) or (11)
when NN has one hidden layer and the number of hidden
node is 10. Supplementary Table 2 shows that NN output
is used as the target HI curve and ftted by using equations
(10) or (11) (yellow line and red line in Figure 9), and RUL
prediction is done accordingly with equations (10) or (11)
when NN has two hidden layers and the number of
hidden nodes are 10 and 5, respectively. Supplementary
Table 3 shows that NN output is real HI which did not ft
by using equations (10) or (11) (blue line in Figure 9), and
RUL prediction is done with equations (10) or (11)
when NN has two hidden layers and the number of
hidden nodes are 10 and 5, respectively. (Supplementary
Materials)
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