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Detection of early-stage misalignment of the ball screw in feed drive systems is the topic addressed in this study. Te triaxial
vibration amplitudes and phases of a rotating ball screw at the ball screw nut were extracted using the Vold–Kalman fltering order
tracking (VKFOT).Te rotating ball screw locus at the rotation speed and its multiplier in the time domain were then constructed
to obtain corresponding holospectra. By using a self-organizing map, the features corresponding to various holospectra were
extracted and quantifed into metrices as a measure signifying the severity of ball screw misalignment. Experimental results
indicated that the proposed method efectively detected the ball screw misalignment even though this misalignment was less than
30 μm in size. Te experiments conducted in this study demonstrated the high sensitivity and efectiveness of the proposed
method, which also has a clear advantage due to its simpler instrumentation compared with traditional accelerometry.

1. Introduction

Shaft misalignment is commonly seen in rotor systems such
as feed drive systems, gear sets, and propellers. Shaft mis-
alignment can be divided into two types (Figure 1): angle
misalignment, which involves two axes intersecting at an
angle, and parallel misalignment, which involves two axes
being parallel yet having an ofset [1]. In reality, these two
types can occur simultaneously. When shaft misalignment
occurs in a rotor system, components such as rotors and
bearings generate additional vibrations and stresses as they
are pulled during their backward and forward movement
within the system. After being operated on for a long time,
the rotor system experiences fatigue and eventually becomes
damaged. For example, when shaft misalignment occurs in
the universal joints of a high-speed train, alternating
loadings are generated as the system moves back and forth,
and these loadings damage the screws [2]. Additionally, shaft
misalignment and sliding friction cause vibrations in gear
sets and afect gear mesh stifness, further destabilizing the
gear mesh [3]. To prevent shaft misalignment from dam-
aging components and leading to casualties, scholars have

generally employed vibration analysis via the rotor dynamics
theoretical model and the fnite element method (FEM) to
study the resulting abnormalities induced by shaft mis-
alignments. For example, Wang ad Gong [4] solved the
nonlinear equation derived aiming for a double coupler
rotor system using the Newmark-beta method and showed
that when parallel misalignment occurred, 2× was obvious in
the force spectrum, and 1× and 2× were also obvious in
acceleration spectrum. On the other hand, 2× was induced
obviously in the displacement spectrum and moment
spectrum when the angular misalignment occurred. Nezirić
et al. [5] studied diferent scenarios of misalignments from a
rotor system using FEM to reveal that the vibration energy
corresponding to multifrequency components and rotor
locus increased proportionally to the severity of
misalignment.

In 70% of systems with shaft misalignment, the mis-
alignment afects vibration [6, 7]; thus, to diagnose ab-
normalities in a rotor system, sensors such as
accelerometers, displacement sensors, and acoustic emission
sensors are typically installed at the ball screw, bearing, gas
turbine of the combined cycle power plant, or nut of the

Hindawi
Shock and Vibration
Volume 2023, Article ID 1168991, 13 pages
https://doi.org/10.1155/2023/1168991

mailto:imeccc@ccu.edu.tw
https://orcid.org/0000-0003-1990-3966
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1168991


system to obtain vibration signals [7]. Te fast Fourier
transform (FFT) is often used to obtain the vibration
spectrum of the system.Te spectrum is then analyzed to see
whether it difers from a normal spectrum [8]. Relevant
diagnoses can then be made. In the conventional analysis of
spectra obtained using FFT, amplitudes and phases corre-
sponding to the speed of the rotor and its multiplier, i.e., 1×,
2×, and 3×, namely, fundamental frequency order (1×), 2nd
frequency order (2×), and 3nd frequency order (3×), are
most commonly discussed. Tis is because when shaft
misalignment occurs (either parallel or angle misalignment),
the amplitudes and phases change substantially [1, 9].
Moreover, when shaft misalignment occurs, the natural
frequency of the shaft may be excited, and side bands near
the natural frequency are generated. However, when the
conventional vibration-based frequency domain method is
used to detect abnormalities, the integral transform must be
performed, and this transformation is strongly afected by
the form and length of the windows in the signals. Addi-
tionally, when the rotation speed is not constant, the fre-
quency spectrum is smeared, further lowering the accuracy
of measurements of the amplitude and phase of rotor vi-
bration [10]. To overcome this problem, the general ap-
proach is to use order tracking, in which the sampling rate is
changed according to the change in rotation speed [11].
However, this approach still relies on the FFT using the
integral transform and the length of the window still afects
the fnal frequency spectrum analysis result [10].

Other than detecting shaft misalignment by using the
conventional FFT frequency spectrum or FFT-based order
tracking, researchers have also proposed using the shaft
rotating locus to determine the severity of misalignment.
Te shaft rotating locus can be analyzed using two accel-
erometers placed perpendicular to each other to measure
the vibration of the rotor. Next, order tracking can be
employed to extract the amplitudes and phases from the
shaft rotational frequency and its frequency multiplier [11].
Ten, the amplitudes and phases were used to depict the
trajectory of the rotor (similar to an ellipse) at each ro-
tational frequency order, which is called the holospectrum
[12]. When the shaft of a feed drive system rotates, coupling
occurs and generates lateral vibration called sub-
synchronous pseudovibration, which reduces the accuracy
when assessing shaft misalignment. Tus, when making
assessments, in addition to installing displacement sensors
in the X and Y directions, a sensor should be installed in the
axial direction to increase the accuracy of the holospectrum
[13]. Signals of the encoder are used to establish order
tracking that is unafected by rotation speed. Order
tracking can increase the accuracy of the holospectrum,

which is higher than when using raw vibration signals for
diagnosis [14]. A time-domain order-tracking method
called multivariate complex variational mode decompo-
sition (MCVMD) has been proposed. In MCVMD, the
Hilbert transform and FFT are used to reconstruct the
vibration signals in the X and Y directions to reduce the
impact of an unsteady-state complex signal. Tis method
can also be used to decompose the forward and reverse
rotation frequency signals. Te holospectrum constructed
using MCVMD has been verifed to be more accurate than
that obtained through conventional FFT [15].

In recent years, data-driven diagnostic methods [16],
such as traditional machine learning, deep learning, and
transfer learning have been employed to diagnose faulty
rotodynamic problems. Traditional machine learning such
as artifcial neural networks (ANN), support vector machine
(SVM), and deep neural networks (DNN) have been widely
used in mechanical abnormal diagnosis since the 1950s
[17, 18]. Te vibration, current, acoustic, and temperature
signals were collected frst [19–22]. Moreover, these methods
require features of the time domain or frequency domain.
Time-domain features include skewness, standard deviation,
mean, and median [23]. Frequency-domain features ob-
tained through FFT or wavelet transform include multiscale
entropy and kurtosis [24, 25]. Ten, the screening method
was used to flter out those features unrelated to machine
anomaly. However, the machine health diagnosis relied on
engineers’ domain knowledge to manually extract the ab-
normal features. For example, discrete wavelet transform
and relief feature screening to normalize vibration signals
were employed to increase the accuracy when using an
artifcial neural network and support vector machine (SVM)
to detect misalignment [25]. After using correlation based
on feature selection (CFS), adapted correlation based on
feature selection (A-CFS), and autoencoder (AE) to screen
features, SVM and one-class SVM were also used to detect
shaft misalignment [26]. Moreover, feature fusion tech-
nology was used to increase the accuracy when using a
decision tree classifer, correlation coefcient, and tree re-
gression model to identify shaft misalignment [23]. After a
normalized shaft-bearing ellipse orbit has been transformed
into two-dimensional images, a multibranch convolutional
neural network is suitable for detecting application scenarios
of shaft misalignment, which is afected by rotation speed
and measurement length [27]. With the advent of deep
learning, researchers no longer needed mechanical domain
knowledge in machine health diagnosis, which further
fourishing intelligent diagnosis techniques [28]. Never-
theless, such an intelligent diagnosis technique based on
deep learning requires huge data quantity.

θ

(a) (b)

Figure 1: Types of misalignment: (a) angle misalignments and (b) parallel misalignments.
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A difcult task in employing machine learning methods
is the collection of labelled data, which is either time-con-
suming or expensive in instrumentation.Terefore, machine
health diagnosis using unsupervised algorithms attracted
more attention [29–31]. For example, Yan et al. [32] de-
veloped an unsupervised online anomaly detection method
called hybrid robust convolutional autoencoder (HRCAE),
where a fused directional distance (FDD) loss function was
calculated with data from multiple sensors to obtain a better
ability of detection when the environment had diferent
levels of noise. For an out-of-distribution (OOD) problem
that often occurs in practical abnormality diagnosis, Han
and Li [33] developed a new detection-assisted fault diag-
nosis approach for reliable fault diagnosis based on the
integration of multiple deep learning networks, i.e., deep
ensembles for alerting potentially untrustworthy diagnosis.

Te machine health monitoring and diagnosis based on
data-driven and deep learning-based methods have achieved
convincing results; however, they were often criticized for
being accurate for a specifc machine or the same type of
machine, i.e., lack of generalization. Terefore, researchers
have begun to use transfer learning to address this issue. For
a more generalized fault feature classifer for rotor fault
pattern recognition and diagnosis, the vibration signal
feature vector transfer learning was proposed, and the
weighted k-nearest neighbor method was presented [34].
For RUL prediction of bearings under multiple operating
conditions, the prognostic sensitive features were extracted
by a using transfer learning-based bidirectional long short
term memory (TBiLSTM) network, and multikernel max-
imum mean discrepancy (MK-MMD) was proposed [35].
On the other hand, this study proposed that the features are
more physically related to the shaft misalignment. Tat is,
the severity of misalignment of the ball screw is quantifed
according to the features with physical interpretations, i.e.,
domain knowledge on rotor dynamics.

According to the aforementioned studies, frequency-
domain methods involving integral transforms, such as
conventional FFT and FFT-based order tracking, are easily
limited by the measurement conditions, such as the win-
dowing type of acquired signal and the diagnosis object.
Also, although time-frequency domain tacholess order
tracking is a method of order tracking in which tachometers
are not required, a longer measurement time is typically
needed [36]. Te research subject of this study was a ball
screw feed drive system of which the degree of misalignment
is no more than 30 μm. If we need a higher signal-to-noise
ratio of the measured vibration signal, the faster recipro-
cating speed of the working table is required. However, the
travel of the working table was limited (approximately
400mm); the reciprocal motion of the working table at high-
speed thus resulted in vibration signals that were too short. If
the ball screw was operated at 1,000 rpm, for the working
table to move from 0 to 400mm took only approximately
1.5 s. When conventional FFT or FFT-based order tracking
was applied, the resolution of the frequency spectrum would
be low. Tis was the challenge of this research. Tus, this
study adopted VKFOT, which can directly conduct order
tracking in the time domain [37]. Without the use of

tachometers, we tracked the amplitude and phase of the ball
screw shaft at the rotational frequency and its frequency
multiplier.

Tat is, the severity of misalignment of the ball screw is
quantifed according to the features with physical inter-
pretations, i.e., domain knowledge on rotor dynamics. Te
Lissajous curve [13] was utilized to depict the rotor locus at
each rotational frequency order. When the ball screw of the
feed drive system is misaligned, changes in the rotor locus
occur. Tis study used the features extracted from the rotor
trajectory to quantify the severity of the misalignment of a
ball screw. In particular, compared with general machine
learning methods which mainly rely on statistical features
extracted in time or frequency domains, this study proposed
the features of ball screw rotational trajectories represented
using holospectrum which is more physically related to the
shaft misalignment. Tat is, the severity of misalignment of
the ball screw is quantifed according to the features with
physical interpretations, i.e., domain knowledge on rotor
dynamics.

2. Brief Introduction of VKFOT

When the rotor system, such as the bearing, motor mount,
or nut, of a feed drive system malfunctions, the amplitude
and phase of the rotating shaft at 1× and its frequency
multiplier difer from normal, thus, obtaining the vibration
features corresponding to the rotation frequency and its
frequency multiplier are critical to diagnosing the severity of
shaft misalignment. Tis study employed VKFOT to extract
the vibration signal at the rotating shaft frequency and its
frequency multiplier in the time domain [37]. Te VKFOT
approach uses a structure equation and a data equation, both
of which assume that noise and the signal for observation are
uncorrelated.Te least-square method was used to minimize
the combined error of the structure equation and data
equation, thereby tracking the 1×, 2×, and 3× signals that
this study wanted to observe. Te structure equation and
data equation of VKFOT can be expressed as follows:

xn[k] � qn[k]bn[k], (1)

y[k] � xn[k] + ηn[k], (2)

where n is the number of orders; xn[k] is discretized
structural equation consisting of a complex envelope wave of
the nth order qn[k] that we wish to observe; bn[k] is a carrier
wave modulated by the envelope wave qn[k]; and y[k] is the
discretized measurement data equation, which is the com-
bination of the discretized structural equation xk[k] and
noise ηk[k]. Because the carrier wave bn[k] consists of an
order signal, the correlation between the complex carrier
wave and each order frequency can be expressed as follows:

bn[k] � e
2πin

k

u�1

f[u]∆T 
,

(3)

where k= 1, 2, . . ., N; N is the total number of data points;
∆T= 1/fs is the sampling period; and fs is the sampling
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frequency. Te complex envelope wave qn(k) is expanded by
the second-order diference equation as follows:
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where εn(k) is the expanded error item. Equation (4) can be
organized into the form of a matrix as follows:

Φqn � En, (5)

where Φ is the coefcient matrix of the second-order dif-
ference equation, qn is the vector of the envelope wave
discrete sequence, and En is the vector of the error discrete
sequence. When equation (5) is substituted into equations
(1) and (2), the data equation y[k] in the matrix form is as
follows:

y � qnbn + ηn, (6)

where qn is a diagonal matrix, the content of which is the
angular displacement of that order, and ηn is the error vector
of the data equation. Te norm of the error vector of the
structure equation and the error vector of the data equation
are calculated. Tey are combined using their weights to
indicate the total error as follows:

Γ � r
2Γ1 + Γ2, (7)

where r denotes the weighting factor, which represents the
ability of the order-tracking flter to flter out noise, and Γ1
and Γ2 are the norm values of the data equation and
structure equation, respectively:

Γ1 � En
HEn � qn

HΦTΦqn,

Γ2 � ηn
Hηn � yT − qn

Hbn
H

  y − bnqn( ,
(8)

where En and ηn are the error vectors of the structure
equation and the data equation, respectively. To obtain the
complex envelope wave qn that we want to observe, the total
error is minimized during the order-tracking process. Te
necessary condition is to make the frst-order derivative of
equation (7) with respect to qn

H equal to 0:

qn � r
2ΦTΦ + bn

Hbn 
− 1
bn

Hy. (9)

Tis study designed a simulated signal to verify the
accuracy of VKFOT with a sampling rate of 1000Hz and a
duration time of 5 s. Te relevant parameters are shown in
Table 1. Tis signal consisted of the frequency components
corresponding to the rotational frequency and its frst four
frequency multiplier. Among them, the signal component at
1× was stationary with a fxed amplitude of 10 (the am-
plitude and phase were both constant); the signal component
at 2× was nonstationary with a phase of 20° and amplitude

that linearly increased from 0 to 10 over time; the signal
component at 3× was also stationary with a fxed amplitude
of 15 but its phase linearly increased from 0° to 90° over time;
and the signal component at 4× was a step function with an
amplitude of 20 starting from the time at 2.5 sec and with a
constant phase of 0°. By using VKFOT, the resulting time-
order diagram was obtained (Figure 2) with r= 1.068×107.
Te diagram reveals that except for the frst 0.1 s after the
signal had begun and the 0.1 s before the signal ended,
during which all the signal components could be accurately
analyzed. At frst glance, from the diagram, we may de-
termine that the 1× and 3× signal components had fxed
amplitude from 0–5 s; the amplitude of 2× increased over
time; and the signal of 4× started at 2.5 s and lasted until the
end. However, in the time–order graph of order tracking, the
changes in amplitude and phase of 1× and 2× could not be
easily observed; thus, a more detailed examination was re-
quired. We isolated and extracted the amplitudes and phases
of each signal component, as illustrated in Figures 3 and 4.

Te amplitude waves from 1× to 3× are the same as
shown in the parameters in Table 1. As for 4×, its simulation
signal was a step function beginning at 2.5 s. However,
VKFOT identifed the 4× signal as a quasi-step signal
starting at 2.1 s. An additional 0.4 s was required for the
amplitude of this signal to increase to 20.Te reason was that
a combination of a few sine functions could not reconstruct
the discontinuity of a signal. Regarding the phase, as il-
lustrated in Figure 4, the 1× and 2× signals had a phase error
of approximately 6° compared with the simulated signal. Te
phase result for 3×, although it had an error compared with
the simulated parameters, accurately indicated that its phase
increased linearly over time. On the other hand, the phase of
4× exhibited an error of approximately 23.7° compared with
the simulated signal. Te cause of this large error may have
been that the basic function of VKFOTcould not easily track
signals with discontinuities. In sum, VKFOT was relatively
accurate in tracking the amplitude of stationary and non-
stationary signals. Regarding phases, because of the flter
phase delay and the tracked signal being discontinuous, the
results were less accurate.Te issue of correcting the phase is
explored in the next section.

2.1. Discussion of the Weighting Factor in VKFOT. Te
weighting factor r in VKFOTnot only adjusts the proportion
of the structure equation in the overall error Γ, thereby
increasing the efciency of the calculation of convergence,
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but also afects the accuracy of VKFOT. Tus, how to de-
termine an optimal r should be addressed frst. Because r
afects the frequency response of the flter in VKFTO, the
polynomial of the frequency response of the energy of the
flter can be presented as follows:

H e
jΩ

 



2

�
1

u0 + u1e
− jΩ + · · · + upe− pjΩ





2

, (10)

where u0, u1, . . . , up are all variables dependent on r; Ω∈
(−π, π) is the normalized frequency; and p is the order of the
polynomial expansion. Equation (10) shows that adjusting r
changes the response of the transfer function. Te transfer
function corresponding to the efective 3 dB bandwidth is
given by the following expression:

H e
jΩb 




2

�
1

u0 + u1e
− jΩb + · · · + upe− pjΩb





2

�
1
�
2

√ ,

(11)

where Ωb = 2π(fb/fs), and fb is the pass bandwidth. Equation
(11) can be reorganized into an equation for r [37]as follows:

r �

���������������
2

√
− 1

2 − 2 cos Ωb( ( 
2



. (12)

Assuming that the VKFOT is a second-order diference
equation, the sampling frequency is 1,000Hz, and the cutof
frequency fb is 1Hz; the transfer function, calculated using
equation (10), is then as shown in Figure 5. It is a low-pass
flter with narrow bandwidth; in addition to fltering out
high-frequency signals, it generates a phase delay (Figure 6).
Tus, the phase delay at 1×, 2×, 3×, and 4× of the simulated
signal of the transfer function of VKFOT is −174°, −168°,

Table 1: Relevant parameter setting for the simulated signal.

Order (k) Amplitude (αk) Phase (φk)
1 10 0°
2 Linear increasing from 0 to 10 20°
3 15 Linear increasing from 0° to 90°

4 20 · u(t − 2.5) �
0, if t< 2.5s,

20, if t≥ 2.5s,
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−162°, and −156°, respectively. Now, the phase delay of the
order signals can be compensated using Figure 6.

It is worth noting that the cutof frequency fb of VKFOT
should be determined in accordance with the characteristics
of the rotor system to be tested. If the selected fb is too large,
the order-tracking process includes a high percentage of
noise. If it is too small, the required multiplied frequencies
are fltered out by VKFOT. In both situations, the accuracy
of VKFOT is low. Tis study hereby proposed a method for
determining whether fb is determined appropriately. Te
mean square error (MSE) of the amplitude of the simulated
signal and amplitude of VKFOT is defned as follows:

MSE fb(  �
‖y − y‖

2

N
, (13)

where y and y are the simulated signal and VKFOT tracked
signal, respectively, and N is the number of data points. By
using equation (13) to minimize the MSE, an appropriate
value of fb can be determined.

As mentioned previously, the cutof frequency fb of
VKFOT should be determined according to the character-
istics of the targeted rotor system. Tus, a set of simulation
signals were established that were similar to the vibration

signals of an actual ball screw feed system (the targeted rotor
system introduced in Section 3). Te parameters of the
simulated signals are shown in Table 2. Te 1× signal was a
stationary signal with constant amplitude (0.5 g) and phase
(0°).Te 2× signal was a nonstationary signal with amplitude
increasing linearly from 0 to 0.5 g and a phase of 20°. Te 3×

signal was a nonstationary signal with amplitude fxed at
0.5 g and a phase increasing linearly from 0° to 90°. Te 4×

signal was a step function (with an amplitude of 0.5 g) that
started at 0.5 s. When fb was gradually increased from 0.1 to
5Hz, by using equation (13), we obtained the value of the
MSE at diferent shaft rotational frequency orders. As shown
in Figure 7, the four orders of rotational frequency signals
had their individual minimum MSE. When the MSE values
were averaged (Figure 8), it shows that the smallest mean
MSE occurs when fb= 1.16Hz. After the calculation using
equation (12), the corresponding optimal r= 12115 in this
specifc example.

3. Ball Screw Holospectrum Construction and
Its Trajectory Feature Extraction

Te conventional method of detecting rotor misalignment is
to analyze the rotation speed of the frequency domain and
changes in amplitude of its multiplied frequencies. However,
as stated in [38], this method involves large uncertainties.
Tis study, therefore, explored the detection of the rotor’s
trajectory in the time domain to quantify the severity of rotor
misalignment. Te proposed method involves extraction of
the holospectrum of each rotation frequency, such as
quantifying an elliptical trajectory. As illustrated in
Figure 9(a), a dual-axial accelerometer was installed on the
nut of a multirotor system to obtain vibration signals in two
directions simultaneously. By using VKFOT, the amplitudes
and phases of the frst three multiplied frequencies were
extracted. Coupled with the Lissajous curve, the holospec-
trum of the motion trajectory of the rotating shaft could be
drawn as shown in Figure 9(b) [12]. If the vibration signals
along x, y, and z directions were acquired simultaneously by
using a triaxial accelerometer, it is worthy of note that the
holospectra could be constructed in X–Y plane, Y–Z plane,
and X–Z plane, respectively. Each holospectrum represents
the motion trajectory of the rotating shaft projected on a
specifc plane.

Tis study used these trajectory features to measure and
quantify the severity of the misalignment of a ball screw.Te
Lissajous curve equation can be expressed as follows [13]:

x � X sin (at + δ), (14)

y � Y sin (bt), (15)

where x and y are the trajectories in two perpendicular
directions; t is the time sequence; X and Y are the amplitude
of the vibration signals in the two perpendicular directions; a
and b are the frequencies of the vibration signals in the two
perpendicular directions; and δ is the phase diference in the
vibration signals between the two orthogonal directions.
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When a= b, equations (14) and (15) can be rewritten as
follows:

x � X sin (2πft + δ), (16)

y � Y sin (2πft), (17)

where f is the shaft rotational frequency established by the
holospectrum. Te Lissajous elliptic equation of equations
(16) and (17) can be converted into a standard elliptic
equation represented as follows:

x
2

X
2 +

y
2

Y
2 − 2

xy

XY
cos δ � sin2 δ. (18)

Equation (18) is organized into the matrix as follows:

x y 1 Aq

x

y

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, (19)

where Aq �

A B 0
B C 0
0 0 D

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, A � 1/X2, B � −cos δ/XY,

C � 1/Y2, andD � −sin2 δ. Te relationship between the
major and minor axes of the ellipse and eigenvalues of Aq is
as follows:

λ1, λ2 �

−

������������������������������������

2 B
2

− 4AC D (A + C) ±
�����������

(A − C)
2

+ B
2



 



B
2

− 4AC
,

(20)

where λ1 and λ2 are the semimajor and semiminor axes of
the ellipse. Te relationship of the angle between the major
axis of the ellipse and x-axis (i.e., θ, the angle of inclination of
the ellipse) with the eigenvector of the ellipse is as follows:

θ � tan−1 v1y

v1x

 , (21)

whereV1x andV1y are the projections of the frst eigenvector
in the x and y directions, respectively. When λ1 and λ2 have
been obtained, the eccentricity of the trajectory of the ellipse
e can be determined as follows:

e �

��������

1 −
λ2
λ1

 

2




. (22)

When the ball screw of the feed system is misaligned,
changes occur in λ1, λ2, θ, e, and the area of the ellipse. Tis
study used these trajectory features to measure and quantify
the severity of the misalignment of a ball screw.
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Figure 8: Relationship between fb of the simulated signal and the
average MSE.

Table 2: Parameter setting for the simulated signal of the verifed r value.

Order (k) Amplitude (αk) Phase (φk)
1 0.5 0°
2 Linear increasing from 0 to 0.5 20°
3 0.5 Linear increasing from 0° to 90°

4 0.5 · u(t − 2.5) �
0, if t< 2.5s,

0.5, if t≥ 2.5s,
 

0°

Order 1
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Order 4
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Figure 7: Change in the MSE of diferent orders of the simulated
signal under diferent values of fb.
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4. Experimental Verification of Ball Screw
Misalignment Detection

4.1. Experimental Setup of Ball ScrewMisalignment. To verify
the efectiveness of the method proposed by this study for
detecting misalignment in the ball screw in a feed drive system,
this study created a customized ball screw feed drive system
(Figure 10). Te system comprised a ball screw, a nut, a linear
guide way, a working table, front and rear bearings, a motor,
and a coupling. Te bearing housing located away from the

motor end had a device allowing horizontal shifts, which
generatedmisalignment between the bearing housings closer to
and further away from the motor and caused the ball screw to
bend and shift. Te bearing housing located away from the
motor was adjusted to have four types of shift—0, 10, 20, and
30 μm—to enable the detection of shaft misalignment of
varying severity under the condition of the ball screw shifting
no more than 30μm. Te shaft misalignment for the bearing
housing adjustment was confrmed using a laser displacement
sensor (model: Keyence LK-H025) so that the bearing housing
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Figure 9: Construction of the holospectrum. (a) Vibration signals from accelerometers on bearing. (b) Constructing holospectrum after
using VKFOT.
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was displaced within ±3μm when the table moved toward it.
To achieve the optimal cost-beneft for diagnosis and to reduce
the complexity of the experimental setting, only a triaxial
accelerometer (model: PCB 356A02) was installed on the nut.
Te accelerator both detected ball screw misalignment and
diagnosed whether the preload of the nut had disappeared [39].

A rotation speed was set for the working table of this feed
drive system. Te table automatically moved from 0 to
400mm back and forth for 15min. A sampling frequency of
25,600Hz was adopted to obtain the vibration signal of the
three axes at the nut of the feed drive system when it was
moving away from the motor at uniform velocity. Notably,
when the ball screw was rotated at low speed, a favorable
signal-noise ratio could not be obtained.Tus, a high rotation
speed was desirable. However, because the travel of the
working table was only 0–400mm, high rotation speed would
reduce the measurement length of the vibration signals. Tus,
this study found a compromise, with the ball screw made to
rotate at 1,000 rpm. Consequently, when the working table
moved from 0 to 400mm, it took approximately 1.5 s. When
the durations for acceleration and deceleration were removed,
constant-velocity sections of duration 0.78125 s were obtained
for measuring signals. Next, by using VKFOT to obtain
signals for each order of rotation frequency, the trajectory of
ellipses and corresponding holospectra could be established.
In addition, features quantifying the trajectories of the

ellipses-such as eccentricity, major and minor axes of the
ellipse, the angle of inclination of the ellipse, and the area of
the ellipse were calculated.

It is worth noting that changes in temperature cause the
deformation of a ball screw. Te deformation mainly occurs
along the axial direction. However, the thrust efect of the
bearing causes the ball screw to bend, which may lead to
exacerbated misalignment in the ball screw of the feed drive
system. Terefore, this study used the nut temperature as a
basis. During each subsequent shift experiment, we used this
temperature as the basis for measuring relevant signals,
thereby preventing the shift caused by a temperature change
from afecting accuracy.

4.2. Detecting Rotor Abnormality Using Self-Organizing Map
(SOM). To compare the diagnosis abilities of VKFOT and
conventional FFT-based method regarding the holospectra
of shaft misalignment, this study frst used 25,600Hz as the
sampling frequency to measure the vibration signal during
the work table moving with a constant velocity when the
system was under a shift of 0, 10, 20, and 30 μm, respectively.
Te vibration was measured at the nut when the work table
was moving away from the motor, which leads to a signal
length of 0.78125 s, defned as a data set hereafter. After
incorporating the Hanning window, this study used the FFT

MotorBearing housingmisalignment adjuster

Bearing housing AccelerometerWorking table

(a)

Be
ar

in
g

ho
us

e

Ba
ll 

sc
re

w

Be
ar

in
g 

ho
us

eWorking 
table motor

misalignment 
adjuster

Accelerometer

D
ev

ia
tio

n 
(μ

m
)

0
10
20
30
40
50

(b)

Figure 10: Experimental layout of the ball screw shift experiment. (a) Ball screw feed system. (b) Schematic of sensor installation.
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to transform the vibration signal into the frequency domain.
After the 60 data sets of vibration frequency spectra of each
setting had been averaged, the 1× to 3× signals could be
extracted (Figures 11–13, respectively). From Figures 11–13,
it shows that the vibration amplitudes corresponding to the
frst three rotational frequency orders along x, y, and z axes,
respectively, distributed randomly for diferent magnitudes
of misalignment, which is difcult to correlate the vibration
amplitude and level of severity of rotor misalignments. Tat
is, aiming for detecting ball screw misalignment less than
30 μm with an information collected only using vibration
amplitude at diferent rotational frequency orders based on
FFT from a signal length of less than 1 second may lead the
diagnosis to inconsistent results. From the signal processing
point of view, the VKFOT is proposed to detect the ball
screw misalignment for a feed drive system with such a
limited travel distance of the work table, i.e., travel distance
is less than 1.2m. Te focus of this study lies on signal
processing and the associated feature extractions using vi-
bration holospectrum which is more physically related to the
shaft misalignment before adopting unsupervised machine
learning. Te model generalization is believed to be better as
compared to those diagnosis methods based on conventional
machine learning.

By using VKFOT, the frst three rotational frequency
orders of vibration signals during the uniform velocity
segment lasting 0.78125 s on the nut under the four shift
states 0, 10, 20, and 30 μm-in the time domain were ob-
tained. Next, from the holospectra constructed using the
signal extracted using VKFOT, features of the resulting
trajectory of the ellipse were extracted. A total of 30 data sets
at a 0 μm shift were used as the training set, whereas under
the shifts of 10, 20, and 30 μm, 10 data sets each were
collected as the testing set. Because a holospectrum of
multiplied frequency can be projected onto the X–Y plane,
Y–Z plane, and X–Z plane and because each plane can yield
fve features—namely the major and minor axes of the el-
lipse, eccentricity, the angle of inclination of the ellipse, and
area of the ellipse—we could obtain 900,000 features (20,000
(holospectrum)× 3 (plane)× 1 (accelerometer)× 3 (rota-
tional frequency orders)× 5 (features)). A SOMwas used for
model training [40]. To prevent overftting, 707 neurons in
the SOMwere set as a two-dimensional matrix of size 27× 27
according to the relationship between the data length L and
neuron number [41]:

Z≃ 5
��
L

√
, (23)

where Z is the number of neurons. K-fold cross-validation (in
this research,K= 10) was used formodel training, i.e., only for
0 μm data sets in this study. After the diagnosis model had
been trained, the minimum quantization error (MQE) was
used for quantifying the degree of severity of the shift [42]:

MQE � D − wbmu
����

����, (24)

where D is the input vector and wbmu is the best matching
unit (BMU)—closest to the set of 0-μm shift. After K-fold
cross-validation, equation (24) was applied to the training
set to calculate the MQE. As illustrated in Figure 14, the

MQE of the 0 μm shift was steady and approached
MQE= 60, which were used as the baseline. Te features of
the 10 data set each for the 10, 20, and 30 μm shifts were used
as the testing set. Te MQE of each shift showed a
monotonic increase, which exhibits a positive correlation
between MQE and the magnitude of the shift. Utilizing the
moving average, we could clearly determine that the ball
screw using 10 μm as the shift interval (i.e., 0, 10, 20, then
30 μm) had diferent shift sets. Te MQE trend sets of the
four groups of shift data were depicted in a box-and-whisker
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plot (Figure 15). Tis plot revealed that when the shift was
0 μm, the median MQE was approximately 59.25. When the
shift was increased to 10 μm, the median substantially in-
creased to 1340.02. When the shift was increased to 20 and
30 μm, the median increased to 1706.16 and 1835.2, re-
spectively. Te distance between the frst (Q1) and third
(Q3) quartiles did not increase as the ball screw misalign-
ment increased. Terefore, when monitoring the severity of
ball screw shifts in a feed drive system, the approach of using
VKFOT, the features of the ellipse in a holospectrum, the
MQE trend in the SOM, the moving average of the MQE
shift, and the median of the MQE in the box-and-whisker
plot can be employed as a reference to identify misalignment
of ball screw under a shift as small as 30 μm.

Te proposed method can be used not only to sense the
occurrence of shaft misalignment with high sensitivity but
also to quantify the level of misalignment based on simi-
larities and diferences between healthy and faulty ball
screws, i.e., unsupervised learning. Te severity of ball screw
misalignment is quantifed according to the MQE calculated
through SOM. Te greater the MQE value is, the more
serious shaft misalignment is. As a precautionary measure in
monitoring shaft misalignment, thresholds can be defned
using the value of MQE according to the severity of shaft
misalignment. However, the proposed method after all is an
indirect method in detecting the ball screw misalignment as
compared to the conventional method to measure the true
misalignment directly, such as the dial indicator. Never-
theless, the proposed method has the advantage of easy
instrumentation and automated collection of recorded in-
formation, which is crucial in the Internet of things (IoT) for
daily machine health monitoring.

5. Conclusions

VKFOT was employed to accurately obtain vibration am-
plitude and phase in the time domain, which provided
crucial information for the later construction of vibration
holospectra. Simulations using fctitious signals revealed that
the vibration amplitude and phase of a time-varying signal
could be extracted to sufciently high accuracy by using
VKFOT; however, the associated efectiveness was strongly
dependent on the weighting factor r, which was responsible
for the phase compensation. Moreover, a fctitious signal
that simulated the vibration response of a ball screw nut in a
targeted feed drive system was employed to determine the
appropriate value of the weighting factor before performing
VKFOT for a targeted feed drive system. Te features of the
corresponding holospectra at the ball screw nut and bearing
housings were quantifed as metrices to signify in the SOM
the level of severity of ball screw misalignment.

Experimental results demonstrated that the proposed
method could efectively detect ball screw misalignment
when the misalignment caused by the bearing housing was a
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shift of 10, 20, or 30 μm, respectively. More specifcally,
aiming for detecting ball screwmisalignment less than 30 μm
with a signal length of less than 1 second, the proposed
method proved to be efective in reaching a consistent di-
agnosis. For such small misalignment, it is worth noting that
the experimental validation of the proposed method was
conducted when the temperature of the ball screw nut was a
specifc temperature to prevent the infuence of temperature
on shaft misalignment.

Te experimental validations conducted in this study
involved only one type of misalignment; however, the
fndings demonstrate that the proposed method is more
sensitive and efective than traditional spectral analysis in the
frequency domain when using traditional accelerometry.
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