
Research Article
Multiscale Time-Frequency Sparse Transformer Based on Partly
Interpretable Method for Bearing Fault Diagnosis

Shouquan Che ,1 Jianfeng Lu,2 Congwang Bao,1,3 Caihong Zhang,1 and Yongzhi Liu 1

1College of Mining and Mechanical Engineering, Liupanshui Normal University, Liupanshui 553000, China
2College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
3College of Mechanical Engineering, China University of Mining and Technology, Xuzhou 100083, China

Correspondence should be addressed to Shouquan Che; chesq_njtu@163.com

Received 11 June 2023; Revised 6 July 2023; Accepted 15 July 2023; Published 4 August 2023

Academic Editor: Xingxing Jiang

Copyright © 2023 ShouquanChe et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Transformer model is being gradually studied and applied in bearing fault diagnosis tasks, which can overcome the feature
extraction defects caused by long-term dependencies in convolution neural network (CNN) and recurrent neural network (RNN).
To optimize the structure of existing transformer-like methods and improve the diagnostic accuracy, we proposed a novel method
based on the multiscale time-frequency sparse transformer (MTFST) in this paper. First, a novel tokenizer based on shot-time
Fourier transform (STFT) is designed, which processes the 1D format raw signals into 2D format discrete time-frequency
sequences in the embedding space. Second, a sparse self-attention mechanism is designed to eliminate the feature mapping defect
in naive self-attention mechanism.Ten, the novel encoder-decoder structure is presented, the multiple encoders are employed to
extract the hidden feature of diferent time-frequency sequences obtained by STFTwith diferent window widths, and the decoder
is used to remap the deep information and connect to the classifer for discriminating fault types.Te proposedmethod is tested in
the XJTU-SY bearing dataset and self-made experiment rig dataset, and the following work is conducted. Te infuences of
hyperparameters on diagnosis accuracy and number of parameters are analysed in detail. Te weights of the attention mechanism
(AM) are visualized and analysed to study the interpretability, which explains the partly working pattern of the network. In the
comparison test with other existing CNN, RNN, and transformer models, the diagnosis accuracy of diferent methods is sta-
tistically analysed, feature vectors are presented via the t-distributed stochastic neighbor embedding (t-SNE) method, and the
proposed MTFST obtains the best accuracy and feature distribution form. Te results demonstrate the efectiveness and su-
periority of the proposed method in bearing fault diagnosis.

1. Introduction

Te rotating machinery plays a pivotal role in modern in-
dustrial systems, which are widely used in aerospace engi-
neering, motor industry, manufacturing industry, and other
important felds [1]. Bearing, as the core component of
rotating machinery, its failure mechanism, especially the
monitoring and identifcation of the faults, has become
a research hotspot.Te study of compact and efective online
conditionmonitoring and fault diagnosis method is essential
and necessary for the operation of complex mechanical
systems [2, 3].

Generally, bearing faults diagnosis approaches consist of
two categories: model-based [4] and data-driven methods

[5]. Model-based methods established fault feature detection
and classifcation model through a large amount of prior
knowledge, but the diagnosis accuracy is not satisfactory
under complex conditions. Data-driven methods aim to
establish complex nonlinear projection relationships be-
tween the sensor data and fault types, and they are becoming
more and more attractive with the development of big data
and the various bearing fault diagnosis algorithms in ma-
chine learning (ML). Currently, the most common ML
methods utilized in the bearing fault diagnosis include K-
nearest neighbor (KNN), support vector machine (SVM)
[6], multilayer perceptron (MLP) [7], hidden Markov model
(HMM) [8], and variational mode decomposition (VMD)
[9, 10]. However, the traditional ML methods can no longer
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meet the requirements due to its shallow feature extraction
and presentation framework. Recently, deep learning (DL)
has achieved great success in bearing fault diagnosis owing
to its strong model-ftting ability and generalization ability.

On the other hand, deep learning network can conve-
niently stack and combine learning layers to handle the
diagnosis under diferent equipment and work conditions.
Commonly, deep learning approach includes auto-encoder
(AE) [11], deep belief network (DBN) [12], convolutional
neural network (CNN), and recurrent neural network
(RNN). Among these methods, CNNs have attracted more
researchers’ attention because it is more suitable for pro-
cessing periodic signals and have a stronger ability to learn
features from mechanical vibration signals [13]. Te CNN-
based frameworks extract and connect local features of
interspaces by sharing convolutional kernels in the deep
layers, which guarantees the efectiveness of bearing fault
diagnosis. Gao et al. [14] proposed a method based on
parameter optimization maximum correlated kurtosis
deconvolution (MCKD) and CNN for bearing fault di-
agnosis, and MCKD is used to flter and denoise the raw
signals and then input the results to the CNNmodel for fault
classifcation. Liu et al. [15] proposed a two-stage framework
for rolling bearing fault severity recognition via data mining
integrated with CNN, which introduced matrix profle (MP)
to mine the impulse from the raw vibration signals and then
conducted a CNN that combined with softmax regression
for fault recognition.Te current relevant works of CNN are
carried out in the direction of model structure optimization
and combination with traditional ML methods. Researchers
attempt to learn more efective features with a more compact
and efective structure to avoid problems such as gradient
failure in the algorithms [16]. For instance, Wang et al. [17]
proposed a squeeze-and-excitation-enabled CNN (SECNN)
that can assign a certain weight to each channel and enforce
the model focusing on the major features. Xu et al. [18]
combined the variational mode decomposition (VMD)
method and a deep CNN to develop a bearings fault clas-
sifcation network.

As an efective model in sequence data processing, the
RNN network is widely used in bearing fault diagnosis.
Researchers proposed the gated recurrent unit (GRU) and
long short-term memory unit (LSTM) to solve the problems
such as long-term dependencies and gradient vanishing in
the vanilla RNN model. Te improved RNN models achieve
more attractive results than the baseline approach. An et al.
[19] employed an RNN framework with LSTM by the idea of
an infnitesimal method to realize the intelligent fault di-
agnosis under time-varying working conditions. Zhang et al.
[20] proposed a method based on RNN with GRU and MLP
to implement fault recognition, which achieves excellent
diagnosis results and exhibits the robustness against the
noise. Zhao et al. [21] proposed a complex deep learning
model by combing CNN and LSTM, which is denoted as
a bidirectional long short-term memory network
(CBLSTM). CBLSTM adopted CNN to learn local features
and then input the results into a bidirectional LSTM to
extract global features. Te emerging bearing diagnosis
methods based on CNN and RNN continue to mature.

However, there are still some inherent defects such as in-
formation loss, the receptive fled is too small, and the lack of
long-term dependencies in CNN and RNN.

Recently, attention mechanism (AM) is introduced to
solve the problems mentioned previously. AM can associate
diferent positions or channel features of a sequence and pay
more attention to the informative data, which is designed as
a component combined with CNN or RNN and widely
applied in various tasks such as natural language processing
(NLP), computer vision (CV), and fault diagnosis [22]. AM
enhanced the performance of the backbone of CNN or RNN
but failed to completely avoid the shortcoming of these
classical models. Furthermore, in 2017, Vaswani et al. [23]
came up with a new architecture called a transformer, which
abandons all the convolutional and recurrent modules and is
based only on the attention mechanism and fully connected
layers. Transformer attained the best performance in the task
of machine translation at that time. Te framework BERT
based on a transformer proposed by Devlin et al. [24], which
is developed to generate word vectors, achieved excellent
results in NLP tasks. In the feld of NLP, transformer broke
new ground and almost entirely replaced RNN at present. In
2021, a pioneering framework based on transformer-named
vision transformer (ViT) [25] employed in computer vision
(CV) has achieved encouraging performance in image
classifcation tasks. Te test results indicate that ViT out-
performs other state-of-the-art methods in condition of
pretraining on a larger dataset. Meanwhile, ViT showed
a strong data extensibility. Its performance continues to
improve even as the data amount and model scale increase.
Furthermore, the powerful parallelism in the computing of
ViTmeans a greater advantage in large-scale data processing.
A variety of modifed models that diverge around ViT have
been proposed and achieved excellent performance in CV
tasks, such as CrossViT [26] and PVT [27]. Clearly,
transformer model has been an important branch of deep
learning besides CNN and RNN.

Te outstanding performance in encoding and
extracting hidden features of sequences, which makes the
transformer neural network, has been a promising method
in the feld of bearing fault diagnosis where the vibration
data are the main judgment input. Ding et al. [28] proposed
a transformer framework named TFT for bearing fault di-
agnosis, which designed a tokenizer and encoder module to
extract abstractions from the input time-frequency repre-
sentations (TFRs) of vibration signals. BAFT [29] proposed
by Jiao et al. developed a partly interpretable network based
on transformer and a binary arborescent flter to classify the
bearings faults efectively and visually presented the partly
hidden features inside the model, which achieved a superior
performance and excellent antinoise validity. Jin et al. [30]
proposed a time-series transformer (TST) to recognize the
bearing fault modes, which designed a sequence generation
method that handles raw vibration signals in a 1D format
time series segment.Te series is then input into the encoder
of transformer to learn the features. Te test results show
that TST has a better fault identifcation capability than
traditional CNN and RNN models. Du et al. [31] proposed
a transformer-like framework for fault diagnosis under
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complex conditions, which extracted the features from the
high-dimensional raw signals with noise by a stacked
denoising auto-encoders (SDAE) module and obtained the
target features by the self-attention mechanism of trans-
former deep neural network.

Te most common data-driven works for bearing fault
diagnosis are conducted through the analysis of vibration
signals. However, the data that are input into the deep
learning model are preprocessed by diferent approaches in
diferent frameworks. Te preprocess methods can be
roughly divided into three categories: (1) sampling raw
signals or its simple processing results [32]. In time-series
transformer (TST) [30], the input vibration time series is
trimmed into several subsequences with the given length.
Huang et al. [16] proposed a work that applied maximum
pooling and average pooling layers to extract diferent scale
information as the input of AM module in transformer; (2)
preprocessing by the feature-based model [33]. Du et al. [31]
proposed a work that established a stacked denoising auto-
encoder (SDAE) module to generate low-dimensional fea-
tures of input signals. Jiao et al. [29] proposed a framework
that developed a binary arborescent flter to extract the
statistical feature and then input the encoder module of
transformer network; (3) preprocessing by domain trans-
formation. Te time-series signals are transformed into
frequency representation (FR) [34, 35] or time-frequency
representation (TFR) [36, 37]. In TCN [38], the FR that is
transformed by a fast Fourier transform (FFT) module from
vibration signals is input into transformer network. In TFT
[28], the input signals are frst processed to 2D TFR by
synchrosqueezed wavelet transform (SWT) and then fat-
tened and mapped as the tokenizer of transformer module.
In general, the methods based on domain transformation
have better performance.

As mentioned previously, the transformer-like ap-
proaches have achieved excellent performance in bearing
fault diagnosis due to the powerful modelling and feature
extraction ability of the self-attention mechanism in
transformer. However, there are some limitations in the
existing transformer-like bearing fault diagnosis models:

(1) Almost all methods only use part components of the
transformer framework, which weakens the model’s
ability to sequence information

(2) Ignoring the interference of secondary information
in self-attention weights can reduce the performance
for fault diagnosis of transformer

Te motivation of this paper is to develop a new
transformer-based method that can extract more efective
hidden representations for bearing fault diagnosis in
a simple and generalized way.Te proposed new end-to-end
approach named multiscale time-frequency sparse trans-
former (MTFST), which established the diagnosis model
between the TFRs and bearing fault types. MTFST achieves
good results in evaluation; furthermore, its superiority over
the other deep learning models is proved on the test datasets.

Te main contributions of this paper are summarized as
follows:

(1) Te STFT method is employed to obtain the mul-
tiscale TFRs of raw vibration signals by varying the
window width, and the novel tokenizer based on the
diferent scale TFRs is designed to present the dis-
criminant feature in multilevel.

(2) A sparse self-attention mechanism (SSAM) is
studied to focus on the primary information of self-
attention, enabling the hidden features to be more
discriminative.

(3) A novel encoder-decoder structure is developed to
extract the hidden features and long-term de-
pendence of multiscale TFRs. Te proposed frame-
work is more compatible with the vanilla
transformer than the existing models and better at
fault diagnosis. And the visualization analysis of
model weights solves the problem that traditional
deep learning fails to interpret to some extent.

Te rest of the paper is arranged as follows. Te theo-
retical foundations of transformer are introduced in the
second section. Structural framework and algorithmic fow
of the proposed MTFST are introduced in the third section.
Te fourth section includes the introduction of the dataset,
experiment setting, and the ablation analysis of hyper-
parameters, and bearing fault diagnosis results under two
datasets are also evaluated and analysed in this section. Te
conclusions of the paper and future research plan are given
out in the last section.

2. Preliminaries

Tis section will introduce the basic structure and core
components of the vanilla transformer.

2.1. Transformer. Te transformer framework was proposed
by Vaswani et al. [23] to optimize the traditional patterns of
Seq2Seq. Te novel structure is entirely based on the at-
tention mechanism to draw global dependencies between
the input sequence and output results, which solves the
problems of difculty to model the global relationships
between local information in traditional convolution op-
eration. Furthermore, this model increased parallel ef-
ciency and reduced computing consumption. Te overall
architecture of the transformer is shown in Figure 1, which
consists of encoder and decoder modules, and those two
components are stacked by multiple basic transformer
blocks. Te basic transformer blocks include multihead self-
attention mechanism, position-wise feed-forward network,
layer normalization module, and residual connector. Te
embedding layers before the encoder and decoder convert
the one-hot tokens into a new tensor, and the tensor is added
to a sinusoidal position encoding. Te encoder in the
transformer receives the input sequences, and the decoder
remaps the output of encoder to obtain the results.
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In encoder, N blocks are stacked, and those blocks are
taking same structure but diferent parameters. Te block
consists of two layers, and the frst layer includes a multihead
attention module and a residual network. Te second layer
includes a positionwise fully connected feed-forward net-
work and a residual network.Te output of each layer can be
presented as follows:

Xo � LayerNorm Xi + F(A/FC) Xi( 􏼁􏼐 􏼑, (1)

where Xo and Xi denote the output and input of each layer,
respectively. F(A/FC) denotes multihead self-attention or
positionwise forward network. LayerNorm is the layer
normalization.

Tere are three layers in decoder, and they consist of the
basic transformer blocks presented before. Te frst layer is
masked multihead attention that is used to extract the
hidden feature of the input sequence with AM and attached
mask coding, which can prevent label leakage in the Seq2Seq
task [29]. Te second layer is employed to map the output
from the frst layer of decoder and encoder.Te positionwise
forward network and residual operation are used in the third
layer to extract the local and global deep information. Fi-
nally, the output of the decoder inputs into a linear layer and
a softmax activation function to obtain the probabilities.

2.2. Multihead Self-Attention Mechanism. Te multihead
self-attention mechanism (MSA) is built based on self-
attention mechanism, which is the core component of
transformer model and employed to gather the information
from input sequence and learn the hidden features. Self-
attention mechanism can be regarded as a method that maps
the diferent weight information of input sequence, which
obtains the output from a query (Q), a set of key (K), and
a value (V) vector. As shown in equation (2), the output of
self-attention mechanism is a weighted sum of V, and the
weight matrix is related to the dot product of K and V.

It can be seen that the self-attention extracts information
in V based on the similarity between K and Q.

As(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (2)

where dk denotes the scaled factor, it is the dimension of Q
and K, and softmax denotes an activation function.

In order to obtain diferent subspaces of hidden in-
formation rather than only one nonlinear transformation
result, the multihead self-attention is proposed to concat-
enate and map the input tokens’ diferent projections that
are parallel computed by multiple independent self-
attention mechanisms. Te calculation process is shown
as follows:
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Figure 1: Architecture of the vanilla transformer.
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FA(X) � cocat head1, . . . , headn( 􏼁W
O

,

where headi � As XW
q
i , XW

k
i , XW

v
i􏼐 􏼑,

(3)

where n denotes the number of heads that is the number of
self-attention module. W

q
i ∈ R

dmode l ∗ dk , Wk
i ∈ R

dmode l ∗dk ,
and Wv

i ∈ R
dmode l ∗ dv denote the weight matrix ofQ, K, and V

in ith self-attention module, respectively, and dk � dv �

(dmode l/n). X denotes the embeddings. cocat designed as
a concatenate function. WO ∈ Rn∗dk ∗dmode l denotes the
weight matrix of linear projection on concatenated multi-
head.

2.3. Positionwise Forward Network. Te feed-forward net-
work is a fully connected layer, and it includes two linear
transformations and a ReLU activation, which is expressed
as follows:

FFC � ReLU 0, xw1 + b1( 􏼁w2 + b2, (4)

where w1 ∈ Rdmode l ∗ dff , b1 ∈ Rdff , w2 ∈ Rdff ∗ dmode l , and
b2 ∈ Rdmode l denote the weights and bias of two linear
transformations, respectively.

2.4. Te Transformer-Like Methods for Bearing Fault
Diagnosis. Te vanilla transformer employed an encoder-
decoder structure to solve the Seq2Seq tasks as mentioned
above. Te encoder in the framework receives the embed-
ding information for feature learning. Te decoder is
employed to generate a new sequence through the encoder
output and the last layer’s result of the decoder itself.
Generally, transformers divided into three categories include
(1) encoder-decoder (e.g., for Seq2Seq), encoder only (e.g.,
for classifcation), and decoder only (e.g., for language
modelling) [28]. Existing transformer-like approaches
usually adopt the encoder-only model for the fault diagnosis
tasks, such as the TST [30], TFT [28], and BAFT [29]
mentioned previously, the series are embedded to token
sequence with class information and then input to the en-
coder, and the hidden features with category information are
mapped by the classifer to obtain the fault types. In PRT
[32], the framework adopts an enhanced encoder network
that includes an embedding patch encoder and a class in-
formation encoder to learn the hidden features and de-
pendencies. In the framework proposed by Du et al. [31],
which remapped the forward eigenmatrix by a position
transformation to obtain a backward eigenmatrix, two
featurematrixes are input into the pair attention-mechanism
neural networks to better learn the essential characteristics
of the fault data. And the network is closer to the vanilla
transformer in structure, but the diferent attention-based
neural modules lack feature interaction. In essence, for this
network, the encoder that is used to extract the features of
the backward eigenmatrix can be considered as a learning
enhancement module of another one.

3. Multiscale Time-Frequency Transformer

In this section, the proposed multiscale time-frequency
transformer (MTFST) will be introduced in detail. Te
core components include tokenizer, encoder, decoder, and
classifer.

3.1. Tokenizer

3.1.1. Raw Signal Preprocessing. Vibration signals that are
sampled from sensors are 1D time series; in our work, the
input raw signals will be processed to 2D format TFRs.Tus,
a specifc tokenizer based on shot-time Fourier transform
(STFT) was designed. STFT is a domain transform method
based on the windowed Fourier transform algorithm, which
assumed that the signals to be processed are stationary for
short intervals in the analysis window. By moving the
window function along the time axis, STFT analyzes the
signal segments to obtain the local spectrum [39]. STFT is
defned as follows:

STFT(t, f) � 􏽚
+∞

−∞
x(τ)h(τ − t)e

−j2πfτdτ. (5)

Given a certain TFR x ∈ RNt ∗Nf , where Nt and Nf

denote the length along the time and frequency axis, rep-
resenting it as a patch sequences [x1

f, x2
f, . . . , x

Nt

f ], where the
subsequence xi

f ∈ R
Nf . For consistency of subsequent op-

erations, the token embeddings are obtained by projecting
the TFR sequences to another x ∈ Rdm ∗Nf by a linear
transformation. Te process is expressed as follows:

x′ � Wembx, (6)

where x′ ∈ Rdmode l ∗Nf , which represents the learnable linear
mapping of TFR along the time axis, and Wemb ∈ Rdmode l ∗Nt .

Finally, the TFRs are discretely represented as temporal
sequences of the instantaneous frequency spectrum. As
mentioned above, processing such a sequence is the strength
of a transformer-like structure [28].

3.1.2. Position Encoding. Te vanilla transformer framework
designed position encoding to represent the relative or
absolute position information of the embedding sequence.

Tere are two methods including 1D and 2D format
position encoding [30], and the results in reference [25]
show that the two methods have no signifcant performance
gaps. In our proposed work, a kind of sinusoid encoding
method was adopted only to mark the location information
of the sequence, which is expressed as follows:

Epos(pos, 2i) � sin
pos

1000(2i/N)
􏼠 􏼡,

Epos(pos, 2i + 1) � cos
pos

1000(2i/N)
􏼠 􏼡,

(7)
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where pos denotes the position of the patch among the
sequence. N and i denote the dimension of the position
vector and the current dimension, respectively.

Finally, the tokens sequence is defned as

xseq � Wemb x
1
f, x

2
f, . . . , x

Nt

f􏼔 􏼕 + Epos, (8)

where Epos ∈ Rdmode l ∗Nt .
On the other hand, there are two main ways to represent

the deep features extracted from the tokens sequence, in-
cluding obtaining the information of the last transformer
layer or learning the feature by adding a class token into the
sequence [30]. Te comparison results in reference [40]
show that the class tokens are nonessential. Terefore, the
class tokens are abandoned, and another method of
expressing characteristics is employed in our work.

3.2. Sparse Self-Attention Mechanism. Sparse self-attention
mechanism (SSAM) is designed to eliminate the reduction of
feature discrimination caused by focusing on the secondary
information. Inspired by the authors in reference [41], in the
SSAM, each attention feature of TFRs is determined by the
top P input information that is most similar to it, which
difers from the naive SAM that calculates features by all
input information. As shown in the middle of Figure 2, the
similarities of input K and Q are calculated frst, and the
indices matrix of P largest elements are selected to mask the
softmax results. Te calculation examples are shown in right
in Figure 2. Te sparse self-attention is defned as follows to
replace equation (2).

As(Q, K, V) � mask softmax
QK

T

��
dk

􏽰􏼠 􏼡V􏼠 􏼡. (9)

And the sparse ratio rs is defned as follows:

rs �
P

W∗H
, (10)

where W and H denote the size of the attention weight
matrix.

3.3. Encoder and Decoder. Te proposed MTFST employed
three encoders to extract the multiple perspective deep
features from the multiscale TFR embeddings, and the
encoders share the same structure as the one in vanilla
transformer described in Section 2 but are diferent in pa-
rameters. Encoder consists of the basic blocks that include
a multihead self-attention module, feed-forward layer, and
normalization layer with residual connector.

Te decoder is used to extract the dependencies and fuse
the corresponding information from the outputs of the
diferent encoders. Te structure of the proposed decoder is
diferent from the vanilla transformer and similar to the
encoder. Note that the decoder takes the output of diferent
encoders as the input.

3.4. Training of MTFST. As a general deep learning scheme,
the proposed MTFST framework adopts labelled fault
datasets for supervisory training, and an error back-
propagation (BP) algorithm is employed to minimize the
loss. For a given training dataset D � xi, yi􏼈 􏼉

n
i�1, which

contains n samples, the loss function is defned as follows:

J(θ) �
1
n

􏽘

n

i�1
LC−E 􏽢yi, yi( 􏼁, (11)

where 􏽢yi and yi denote the prediction output and the ground
truth of sample xi, respectively. θ denotes the trainable
parameters of the network, and LC−E presents the cross-
entropy loss function.

Additionally, the Adam optimizer [42] is employed to
train MTFST, which adopts an adaptive and exponential
smoothing gradient strategy to accelerate the loss conver-
gence. As similar with the vanilla transformer, the dropout
training manner [43] is employed in the network, which
randomly masks the connections of some neurons to reduce
overftting. Algorithm 1 shows the training step of MTFST,
and the architecture is shown in Figure 3.

4. Case Study and Analysis

In this section, two case studies are implemented to verify
and analyze the efectiveness of the proposed MTFST in
rolling bearing fault diagnosis. Te data collected from
XJTU-SY open dataset and self-made mine motor traction
dataset are employed for testing and comparison with other
state-of-the-art methods. All the validation experiments are
conducted on a computer with a Intel 10700F CPU,
a NVIDIA RTX 3080 GPU with 32GB RAM. Besides,
Ubuntu 18.06, Python 3.6, TensorFlow 2.6, and CUDA 11.02
are adopted for the whole network construction.

4.1. Case 1: XJTU-SY Bearing Dataset

4.1.1. Dataset Description and Experiment
Settings. XJTU-SY bearing datasets are provided by Xi’an
Jiaotong University (XJTU) and the Changxing Sumyoung
Technology Co., Ltd. (SY). Te datasets contain complete
run-to-failure data of 15 rolling element bearings that were
acquired by conducting many accelerated degradation ex-
periments [44]. Te testbed of rolling element bearings is
shown in Figure 4, and the vibration signals collected by 5
bearings under three operating conditions include (1)
2100 rpm (35Hz) and load rating of 12 kN; (2) 2250 rpm
(37.5Hz) and 11 kN; (3) 2400 rpm (40Hz) and 10 kN. Te
sampling frequency is set to 25.6 kHz, and a total of 32768
points are recoded for each sampling. In our work, the
recoded data of Bearing 2_1, Bearing 2_5, Bearing 3_3,
Bearing 3_4, Bearing 1_4, Bearing 2_3, Bearing 3_1, Bearing
3_4, and Bearing 3_2 are employed in the experiment, which
includes four fault types: inner race (IR), cage, out race (OR),
and inner race, ball, cage and out race (IBCO). In addition,
the batch size is set to 40, and the Hanning window is used
for STFT.
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4.1.2. Ablation Study. In this section, we will discuss the
infuences of the hyperparameters settings on the diagnosis
performance of the proposed model. Te hyperparameters
contain three STFTwindow widths w1, w2, w3 for obtaining
multiscale TFRs, token embedding dimension dmode l, and
also indicate self-nonlinear transformation dimension of
self-attention module, hidden layer dimension dff of feed-
forward network, number of attention head n, block number
of encoder Ne, block number of decoder Nd, dropout rate
rd, and sparse ration of sparse self-attentionrs. Each model
with diferent parameters trained for 5 runs and the test
performance is displayed in Table 1, where the baseline row
denotes the model used in the following experiments. It can
be seen from the table that the STFT window width can
signifcantly afect the performance of MTFST. Excessive
emphasis on the precise scale of the TFRs in time or fre-
quency will reduce the performance of the model. It is worth
noting that the input order of the TFRs with diferent
window scale can greatly afect the model’s performance.

Te test shows that the TFR features corresponding to
small window width have better efectiveness as the input of
Q in decoder. Dimension dmode l and dff can obviously afect
the number of parameters in the network. Tere is a con-
sistent trend that a number of attention head and block
number of encoder and decoder have a strong impact on the
model performance, which means too small number leads to
learning insufcient features, while overftting is occurred in
a too large value.Te appropriate setting value of sparse ratio
rs can avoid the interference of secondary features and ef-
fectively improve model performance, while overftting has
occurred in a too small rs. Te corresponding accuracy
statistics under diferent hyperparameters are shown in
Figure 5.

4.1.3. Diagnosis Results Based onMTFST. In this section, the
model established based on the hyperparameters selected in
the previous section is trained and tested on the XJTU-SY
bearing dataset.Te dataset is divided randomly to 80% train
data and 20% test data. In each batch, the data with diferent
fault labels used for training and testing are evenly dis-
tributed but randomly shufed, and the data in the fault

datasets with small samples were repeatedly used during
training. Te proposed MTFST is trained 30 epochs to learn
a robust diagnosis model, and the training process is re-
peated 10 runs under the same condition to eliminate the
efects of the random initialization.

Te variation of loss and accuracy under the XJTU-SY
dataset during the training process is shown in Figure 6. It
can be seen from the boxplot results of the training set that
some of the wobbles occurred in both loss function value and
diagnosis accuracy in the early training stages, while the
performance improves signifcantly after 5 epochs and be-
comes stable after 20 epochs. It indicates the good con-
vergence of the model under the strategy of gradient back-
propagation. With the iteration of training, the performance
in the test set is improving. Although some fuctuations still
occurred in the accuracy, there is no great gap between the
top accuracy and minimum accuracy, and the high and
stable average accuracy presents the efectiveness of MTFST.
Tese analysis results indicate that the proposed MTFST has
strong and robust model ftting ability and generalization. To
further analyze the model performance, the fault diagnosis
of the confusion matrix of top accuracy and minimum
accuracy is presented in Figure 7, which is sorted from the
results of 10 rounds of repetitive training process. Te rows
denote the ground truth of the samples, and the columns
represent the predicted fault labels of the MTFST.

4.1.4. Visualization of Network. In this section, frst, the
attention weights are visualized to attain a further un-
derstanding of howMTFSTworks. Instead of the class token
in conventional transformer architecture, the deep hidden
features extracted by the attention mechanism are mapped
directly to the diagnosis results in MTFST. Tus, the at-
tention weights could refect the relationships of the deep
TFRs patches in each attention mechanism-based layer;
furthermore, these relationships can represent which fea-
tures are considered valid and which are redundant. Te
attention weights, i.e., the results of softmax((QKT)/

��
dk

􏽰
),

are calculated and concatenated in the multihead self-
attention network, and the weight matrixes are averaged
to show the attention level. We list the partly weights

K VQ

scale

softmax

output

Scaled dot-product
self attention

(a)

V

softmax

output

K Q

scale

topP

scatter

indices
0 … 0

… … …
0 … 0

Mask matric

Sparse scaled dot-product
self attention

(b)

0.85 0.74 0.27
0.41 0.17 0.51
0.13 0.93 0.01

topP

softmax

softmax

mask

scatter

0.46 0.28 0.26
0.34 0.27 0.38
0.24 0.54 0.22

0.85 0.74 0.27
0.41 0.17 0.51
0.13 0.93 0.01

0.46 0.28 0.26
0.34 0.27 0.38
0.24 0.54 0.22

1 1 0
0 0 1
0 1 0

0.46 0.28 0
0 0 0.38
0 0.54 0

Naive softmax example

topP-mask-softmax example

(c)

Figure 2: Self-attention mechanism. (a)Te scaled dot-product self-attention used in MSA, (b) the sparse scaled dot-product self-attention
used in MTFST, and (c) the examples of diferent attention mechanisms.
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representation in encoders and decoders of diferent fault
labels in Figure 8. As seen from all the frst layers of en-
coders, there is sparse attention in certain areas and little
attention weights between patches. However, the network
gradually assigns more attention weights to patches with
signifcant characteristics layer by layer. In the last layer,

there are strong weights between diferent patches and the
attention focus on fxed regional deep features. Furthermore,
the encoders with diferent scale TFRs input work into
distinctive areas to grasp the complementary information.
Tere are the same trends regardless of the diferent labels
that the tokens around 40 in encoder1, tokens between 1 and

Input 
Embedding

Position 
Embedding

N

Encoder_1

Input 
Embedding

Position 
Embedding

K VQ

N

Encoder_2

Input 
Embedding

Position 
Embedding

N

Encoder_3

K Q V

Multi-head 
Attention

Flatten

Add&Norm

Decoder

N

softmax

Feed 
Forward

Fault Types

Classifier

Multi-scale TRFs

Raw Signal

TFR

…

TFR Patches

Input Embedding
Output Patches

K VQ K VQ
Sparse 

Multi-head 
Attention

x´ = Wembx

Figure 3: Te structure of the proposed MTFST.
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Input: Tree multiscale TFRs Xs1 � xi, yi􏼈 􏼉
n

i�1, Xs2 � xj, yj􏽮 􏽯
n

j�1, Xs3 � xk, yk􏼈 􏼉
n

k�1 where xi ∈ R
Ni

t ∗Ni
f , xj ∈ R

N
j

t ∗N
j

f ,
xk ∈ R

Nk
t ∗Nk

f , and yi � yj � yk, which denote the fault types.
(1) Set training batch Nb, training epoch max_epoch, token embedding dimension dm, self-attention weight matrix size dmode l,

number of head n, positionwise forward network weight matrix size dff, block number of encoder Ne, block number of decoder
Nd, and number of fault types Nf.

(2) Initialize trainable parameters W, b{ } of MSTFT
(3) for epoch in 1, 2, . . ., max_epoch do
(4) for step in 1, 2, . . ., max_step do
(5) //Tokenizer
(6) for each xi in xi􏼈 􏼉

Nb

i�1, xj in xj􏽮 􏽯
Nb

j�1 and xk in xk􏼈 􏼉
Nb

k�1 do
(7) Reshape xi, xj,xk to xi

′� Wi
embxi, xj

′� W
j

embxj and xk
′� Wk

embxk then slice into patches sequence [x′,1i , x′,2i , . . . , x
′,Nt

i ],
[x′,1j , x′,2j , . . . , x

′,Nt

j ], [x′,1k , x′,2k , . . . , x
′,Nt

k ];
(8) Add position encoding, obtain xi

seq � xi
′ + Ei

pos, x
j
seq � xj
′ + E

j
pos, xk

seq � xk
′ + Ek

pos;
(9) end Stack batches, obtain sequences Xi

0, X
j
0, Xk

0.
(10) //Encoders
(11) forblock in 1, 2, . . ., Ne do
(12) Xi,t

block � LayerNorm(Xi
block−1 + FA(Xi

block−1)),
(13) Xi

block � LayerNorm(Xi,t
block + FFC(Xi,t

block));
(14) X

j,t

block � LayerNorm(X
j

block−1 + FA(X
j

block−1)),
(15) X

j

block � LayerNorm(X
j,t

block + FFC(X
j,t

block));
(16) Xk,t

block � LayerNorm(Xk
block−1 + FA(Xk

block−1)),
(17) Xk

block � LayerNorm(Xk,t
block + FFC(Xk,t

block)).
(18) end
(19) //Decoder
(20) forblock in 0, 1, 2, . . ., Nd do
(21) If (block� � 0)
(22) Xd,t

block � LayerNorm(Xk
Ne

+ FA(Xi
Ne

, X
j
Ne

, Xk
Ne

)),
(23) Xd

block � LayerNorm(Xi,t
block + FFC(Xi,t

block));
(24) else
(25) Xd,t

block � LayerNorm(Xk
Ne

+ FA(Xd
block)),

(26) Xd
block � LayerNorm(Xi,t

block + FFC(Xi,t
block));

(27) end
(28) //Classifer
(29) Obtain feature matrix Xd

Nd
∈ RNb ∗dm ∗dmode l ;

(30) flatten(Xd
Nd

)⟶ X
df

Nd
∈ RNb ∗ (dm ∗dmode l);

(31) 􏽢y � CLA � sofmax(ReLU(0, X
df
Nd

w1′ + b1′)w2′ + b2′);
(32) Batch loss J � (1/Nb)􏽐

Nb

p�1LC−E(􏽢yp, yp);
(33) Calculate gradients (zJ/zW), (zJ/zb);
(34) Update parameters W←W − η(zJ/zW), b⟵ b − η(zJ/zb);
(35) end
(36) end

Output: Weights and biases W, b{ }

ALGORITHM 1: Training of MTFST.

Digital force display Motor speed controller

Support shaft

AC motor Support bearings Hydraulic loading Horizontal accelerometer

Vertical accelerometer Tested bearing

Figure 4: Testbed of XJTU-SY datasets.
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22 in encoder2, and tokens between 35 and 80 in encoder3
are the most active. Tis removes the suspicion that the
multiple encoders in the network would generate redundant
features. In the decoder module, a multilayer attention
mechanism is employed to remap the deep features and
connect the classifer. As shown in Figure 8, the tokens
between 1 and 15 are themost active in the frst layer, and the
strong weights can fuse the output information of diferent
encoders and focus on the relationships between the feature
patches corresponding to the diferent window widths while
the active attention tokens between 35 and 60 in the last layer
can extract the distinct components on which classifcation
decisions are made. It should be noted that, since it is

a compound fault type, the larger span of the salient tokens is
presented in the decoder attentionmap of IBCO than others,
which is similar to the human reasoning logic.

Second, the distribution form of the feature vectors in
the embedding space also presents the working pattern of
MTFST. In Figure 9, the feature vectors extracted from
encoders and decoders are visualized via t-SNE, which
nonlinearized high-dimensional features to two-
dimensional vectors to visualize the clustering degree of
fault types. It can be seen that the visualization results of raw
signals lack clear boundaries for fault type identifcation,
resulting in classifcation failure. Figure 9(b) presents the
results of TFRs possessing linear separability, but there is

Table 1: Te ablation study of diferent hyperparameters.

Label w1 w2 w3 dmode l dff n Ne Nd rd rs

Parameters
number
(M)

Average
accuracy

(%)

Baseline 512 256 128 64 128 8 6 6 0.1 0.5 1.53 99.34

A
A1 256 128 64 1.57 94.23
A2 1024 512 256 1.53 92.15
A3 128 256 512 2.07 88.16

B
B1 128 128 4.87 99.46
B2 64 64 1.27 97.13
B3 128 64 4.51 98.74

C C1 16 1.53 95.77
C2 4 1.53 83.12

D
D1 8 1.68 99.42
D2 10 1.90 99.17
D3 4 1.23 94.14

E
E1 8 1.60 98.34
E2 10 1.68 94.12
E3 4 1.45 97.76

F F1 0.01 1.53 92.72
F2 0.3 1.53 96.22

G
G1 0.3 1.53 97.32
G2 0.7 1.53 98.67
G3 1 1.53 98.46

100

98

96

94

92

90

88

86

84

82

Ac
cu

ra
cy

 (%
)

A1 A3A2 B1 B3B2 D1 D3D2 E1 E3E2 G1 G3G2F1 F2C1 C2Baseline
Hyperparameter Labels

Figure 5: Te accuracy boxplot of diferent hyperparameters.
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a large number of overlapping areas in features; hence, it is
hard to make classifcation with high accuracy.Te results of
encoders in MTFST are shown in Figures 9(c)–9(e), and we
can observe that there are obvious decision boundaries

between diferent fault types in the features generated by
multiscale TFR encoders, which presents the efectiveness of
encoders in coding discriminative class tokens. Nevertheless,
many tokens in the encoders are still inevitably misclassifed,
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Figure 6: Loss function value and accuracy of training process under XJTU-SY dataset: (a) boxplot of loss function value, (b) boxplot of
accuracy, and (c) average accuracy and loss throughout the training process.
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Figure 8: Te attention weights of each fault label. From top to bottom, odd rows present the weights map of the frst attention layer in
encoder1, encoder2, encoder3, and decoder, respectively, and even rows correspond to the last layer. And the most active patches are in the
dashed white box.

12 Shock and Vibration



400
300
200
100

0
–100

di
m

-2

0 200 400 600 800
dim-1

IR
OR

Cage
IBCO

(a)

di
m

-2

dim-1

80

60

40

0

20

–20

–40 –20 0 20 40

IR
OR

Cage
IBCO

(b)

di
m

-2

dim-1

40

20

0

–20

–40

–50 –25 0 25 50 75 100

IR
OR

Cage
IBCO

(c)

di
m

-2

40

20

0

–20

–40

–40 –20 0 20 40 60
dim-1

IR
OR

Cage
IBCO

(d)

di
m

-2

–50 –25 0 25 50 75 100 125
dim-1

40
30
20
10

0
–10
–20
–30

IR
OR

Cage
IBCO

(e)

di
m

-2

–50 0 50 100
dim-1

60
40
20

0
–20
–40
–60

IR
OR

Cage
IBCO

(f )

Figure 9: Visualization of the feature vector in diferent modules via t-SNE: (a) raw signals, (b) TFT, (c–e) 1st–3rd encoders, and (f) decoder.

Table 2: Te performance of diferent methods under the XJTU-SY dataset.

Method Signal processing Average accuracy (%)
CNN Raw vibration signal 90.42
CNN-LSTM Raw vibration signal 88.79
Bi-LSTM TFR (SWT) 89.47
WRN-16-2 TFR (STFT) 90.53
TST Raw vibration signal 93.37
TFT TFR (SWT) 96.43
BAFT Raw vibration signal 97.29
MTFST (proposed) TFR (STFT) 99.34
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Figure 10: Continued.
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Figure 10: Visualization of the learned features in diferent methods via t-SNE: (a) CNN, (b) CNN-LSTM, (c) Bi-LSTM, (d) WRN-16-2, (e)
TST, (f ) TFT, (g) BAFT, and (h) MTFST (proposed).
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Figure 11: Uniaxial rolling bearing experimental platform.
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and the distribution discreteness in the same fault type is
needed to be improved.Te class tokens in decoder, which is
the fnal output of MTFST, are shown in Figure 9(f ). It is
obvious that the distribution has well-defned interclass
boundaries and compact intraclass distance, which illus-
trates that the decoder fuses the information of each encoder
and further improves the ability in extracting and expressing
hidden features of MTFST.

4.1.5. Comparison with Other Methods. In this section, the
proposed network is compared with other deep learning
methods to demonstrate the MTFST’s efectiveness further.
Among these methods, raw signals and TFR-based networks
are adopted, including CNN [45], CNN-LSTM [46], Bi-
LSTM [47], and WRN-16-2 [48]. Furthermore, the up-
to-date transformer-like methods TST [30], TFT [28], and

BAFT [29] are employed for the comparison. Te param-
eters of the above methods are set as in the original papers.

Te dataset is randomly divided into training set and test
set, and the train/test ratio is set to 0.8/0.2. Te diagnosis
results of diferent methods are listed in Table 2. In general,
TFR-based methods obtain better performance than vi-
bration signals-based methods.

Te proposed MTFSTachieves the best average accuracy
with 99.34%. In addition, t-SNE is also used to investigate
the efects of fault feature extraction and the representation
ability of diferent models.Te tests are closest to the average
accuracy of each network as an example. As shown in
Figure 10, the hidden features extracted by MTFST possess
the best intraclass compactness and interclass separability.
Te results denote that MTFST achieves prime fault di-
agnosis performance in the XJTU-SY dataset.

Table 3: Description of self-made experimental rig dataset.

Defect mode Fault type

Single defect

Inner race (IR)
Out race (OR)

Cage
Ball

Compound defect Out race and ball (OB)
Inner race, ball, and cage (IBC)

(a) (b) (c)

(d) (e) (f )

Figure 12: Diferent defect types in the experiment rig: (a) inner race (IR), (b) out race (OR), (c) cage, (d) ball, (e) out race and ball (OB), and
(f) inner race, ball and cage (IBC).

Table 4: Te hyperparameters of MTFST.

Parameter
name w1 w2 w3 dmode l dff n Ne Nd rd rs

Batch
size Epoch

Value 1024 512 256 64 128 8 6 6 0.1 0.5 50 40
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Figure 13: Te boxplot of accuracy in diferent models.
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Figure 14: Continued.
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4.2. Case 2: Self-Made Experimental Rig. A proprietary
uniaxial rolling gear test rig is used to simulate the diferent
working conditions in our experimentation, which contains
a motor, coupling, test bearing, adjustable magnetic loader,
acceleration sensor, and data acquisition system as shown in
Figure 11. In the test, a three-phase asynchronous motor
commonly used in mine water pump and small hoist is
employed. Te rated power of the motor is 2.2 kw, and
working speed is 1430 r/min. Te magnetic loader is con-
trolled by an NX6000 dynamometer, and working load
torques are set to 2Nm, 5Nm, and 10Nm. A set of deep-
groove ball bearings (SKF-4306) with diferent defects are
used for vibration monitoring as listed in Table 3. As shown
in Figure 12, there are 6 bearing states containing single
defect and compound defect, to simulate the faults fre-
quently occurring in mining machine. For these defects, they
are created by a linear cutting machine, and inner race, out
race, and ball are defected with a same size of 1mm width
and 0.5mm depth, and cage is cut radially. Te vibration
signals under diferent working conditions are acquired by
a piezoelectric accelerometer CYQ9250 and amplifed by
a data collector NI USB-6009 with a sample frequency of
10 kHz and 20minutes duration. Finally, the signals are

randomly split into train and test sets with a sample size of
500 and 120 under per condition, and each sample contains
20,000 points.

Te proposed MTFST and other deep networks are
tested in the self-made experiment dataset to validate the
efectiveness and superior performance of our method. Te
hyperparameters of MTFSTare shown in Table 4. Again, the
experiment of each model is conducted for 5 runs to exclude
the efect of the randomness of the data. Te average ac-
curacy of the test set under diferent defect types and
working conditions is listed in Table 5. Te accuracy box-
plots in diferent methods are shown in Figure 13, which
tailed the results of 5 runs. It can be seen that the accuracy in
single defect diagnosis is generally higher than that of
compound defect types. In general, the proposed MTFST
obtains better performance than other comparative groups.
As shown in Figure 14, the t-SNE of extracted features is
used to further illustrate the performance of MTFST. Note
that, for each model, the test under working conditions of
10Nm and closest to the average accuracy is used as ex-
amples. From the results, it can be observed that MTFST is
better at learning to distinguish the hidden characteristics of
fault types. Te confusion matrixes are shown in Figure 15
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Figure 14: Visualization of the learned features in diferent methods via t-SNE: (a) CNN, (b) CNN-LSTM, (c) Bi-LSTM, (d) WRN-16-2, (e)
TST, (f ) TFT, (g) BAFT, and (h) MTFST (proposed).
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and further present the diagnosis results of MTFST in the
test example.

5. Conclusions

In this paper, a novel transformer-like bearing fault di-
agnosis network that processes the TFRs of raw vibration
signal is established. Te XJTU-SY and self-made experi-
ment rig datasets are used to verify the efectiveness, and the
diagnosis results of some existing networks based on CNN,
RNN, and transformer are analysed in the experiment as the
comparison groups of the proposed MTFST. Te main
conclusions are as follows:

(1) Te novel tokenizer based on TFRs that obtained by
diferent window widths STFT is designed, which
can code the multiscale complementary TFR in-
formation to grasp more discriminative features.

(2) Te designed sparse self-attention mechanism
(SSAM) can efectively eliminate the interference of
secondary information and obtain a better perfor-
mance than naive self-attention mechanism.

(3) Te proposed MTFST discards the recurrence
structure and convolutional operations and focuses
on the multihead attention mechanism, which im-
proves diagnostic performance and has partial in-
terpretability. Furthermore, the encoder-decoder
framework of MTFST is closer to the vanilla trans-
former and better in extracting hidden features than
existing transformer-like algorithms.

Experiment results indicate that MTFST can efectively
detect rolling bearings faults, which extends the kind of
diagnosis methodology based on transformer. Future re-
search will focus on the following aspects to ensure the
further improvement. First, CNN models and transformer
are integrated to enhance model performance by adding the
small-feld features. Second, the adaptive STFT window
widths and sparse ratio of SSAM can be studied to improve
the generalization. Tird, the method can be tested on
diferent rotating machines and application scenarios, such
as gearbox and remaining useful life (RUL) estimation.
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