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Tis paper presents the development of a numerical model able to track in time the behavior of nonlinear focused ultrasound
when interacting with tiny gas bubbles in a liquid. Our goal here is to analyze the frequency components of the waves by
developing a model that can easily be adapted to the geometrical restrictions and complexities that come out in several application
frameworks (sonochemistry, medicine, and engineering). We thus model the behavior of nonlinear focused ultrasound
propagating in a liquid with gas bubbles by means of the fnite-element method in an axisymmetric three-dimensional domain
and the generalized-αmethod in the time domain. Te model solves a diferential system derived for the nonlinear interaction of
acoustic waves and gas bubble oscillations. Te high nonlinearity and dispersion of the bubbly medium hugely afect the behavior
of the fnite-amplitude waves.Tese characteristics are used here to generate frequency components of the signals that do not exist
at the source through nonlinear mixing (parametric antenna). Te ability of the model to work with complex geometries, which is
the main advantage of the method, is illustrated through the simulation of nonlinear focused ultrasound in amedium excited from
two spherical sources in opposite directions.

1. Introduction

Finite-amplitude ultrasonic waves are of interest in many
applications [1]. Specifc mathematical models are required
to analyze these nonlinear waves, especially when the
medium in which they propagate is nonhomogeneous [2].
Bubbly liquids, for which small gas bubbles are introduced
into a homogeneous liquid, have been intensively studied
in the last few years. However, the nonlinear interaction
between ultrasonic waves and bubble vibrations requires
more theoretical studies to increase the knowledge about
the underlying efects of such waves [3]. A liquid with
a small bubble concentration is dispersive. Its sound speed,
nonlinear parameter, and attenuation coefcient can be

raised over determined frequency bands.Tis characteristic
greatly afects the propagation of ultrasound [4–7]. In this
paper, we study ultrasound of fnite amplitude that focuses
on a bubbly liquid by means of a numerical model. Finite-
amplitude focused ultrasound can be useful in medicine
(e.g., noninvasive diagnostic and therapeutic techniques)
[8, 9] and industry (e.g., sonochemistry) [1, 10–12]. We
carry out the study through a fnite-element model (FEM).
We consider a spherical transducer exciting a three-
dimensional volume of liquid with bubbles evenly dis-
tributed. Te wave equation, in terms of acoustic pressure
variable, is used to model the acoustic feld. We couple the
wave equation to a Rayleigh–Plesset equation, written in
terms of bubble volume variation, to model the bubble
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vibrations [4, 13, 14]. Te numerical model developed to
solve the diferential system considers cylindrical symmetry
around the transducer axis. It allows us to track the acoustic
pressure in time. Te time-dependent signal is then
decomposed by the fast Fourier transform (FFT) to obtain
its frequency components. Te pressure amplitude im-
posed at the source is modifed in the numerical experi-
ments to compare the linear and nonlinear responses of the
system.

Few models based on the FEM have been developed for
the modeling of nonlinear ultrasonic felds in sonoreactors.
Moreover, most of them are based on Helmholtz-type
equations. Chu et al., in a recent paper [12], give a sum-
mary on this topic in their introduction, from the seminal
papers of Dähnke et al. [15, 16], the works by Yasui et al.
[17, 18], the work by Tudela et al. [19], the review papers by
Tudela et al. [3] and by Lebon et al. [20], up to Sarac et al.
[21], before comparing several Helmholtz-based models
solved through the FEM.

It must be noted that some seminal studies on non-
linear focused ultrasound in bubbly liquids have been
published [22–24]. Tey are based on the Khokh-
lov–Zabolotskaya–Kuznetsov (KZK) equation model (in-
cluding some variants). Tey show the efect of one single
bubble or a bubble population (evenly distributed or not)
on the focused ultrasonic feld through nonlinearity,
difraction, and absorption and also consider the thermal
conduction [24]. None of them assumes a multifrequency
excitation from the source, unlike our work presented in
Section 3.2. Moreover, their modeling is based on equa-
tions valid for focused ultrasound in homogeneous liquid
adapted to bubbly liquids through the introduction of
equivalent parameters such as sound speed and attenua-
tion. None of them takes the bubbles into account as
a series of oscillators that induce nonlinearity, dispersion,
and attenuation afecting ultrasound as we do here. Others
study the behavior of the focus by taking the dispersion of
a medium (not due to gas bubbles) into account through
the resolution of KZK-based equations [25, 26]. It is worth
noting that [25] shows the focus shift when dispersion is
considered, but with a low coefcient of nonlinearity
compared to a bubbly liquid, which is several orders of
magnitude higher than the corresponding homogeneous
liquid [5]. Other works study one-dimensional bubbly
cavitating fows in elastic fuids, such as [27], which models
this phenomenon through microsized nozzles of diferent
shapes.

Te FEM developed here in the time domain allows us to
consider the study of the nonlinear efects generated from
a dual-frequency source and to easily modify the geometrical
confguration of our problem (Section 3).

Tis paper deals with the development of a numerical
model able to track in time the behavior of nonlinear
focused ultrasound when interacting with tiny gas bubbles
in a liquid. Our goal here is to analyze the frequency
components of the waves by developing a model that can
easily adapt the geometrical restrictions and complexities
in several application frameworks (sonochemistry, medi-
cine, and engineering).

Tis paper is organized as follows. Section 2 describes the
diferential system derived for the physical problem of fo-
cused ultrasound in bubbly liquids we consider here. Section
3 presents illustrative simulations in a medium with an even
density of bubbles by considering a specifc physical con-
fguration and parametric excitation for which the pressure
amplitude at the source is varied. Tis section also shows
simulations with amore complex geometry carried out easily
from the previous ones. Te conclusions of this work are
described in Section 4.

2. Materials and Methods

We consider a liquid in an open cylindrical domain in which
tiny gas bubbles are added. A spherical transducer emits an
ultrasonic signal into the bubbly liquid (Figure 1). Bubbles
oscillate under the efect of ultrasound.R0 is the initial radius
of the bubbles. V0 is their initial volume. Vb is their current
volume. Te spherical transducer is defned by its diameter
D and radius of curvature Rc. Te bubble density, i.e.,
number of bubbles per unit volume, N, is constant in the
entire domain. All the bubbles have the same size and are
spherical. Te three-dimensional system is assumed to have
a symmetry around the axis defned by the main direction of
acoustic propagation, z. Te other space coordinate in the
axisymmetric plane is the radial coordinate r. t is the time-
independent variable. Lz and Lr are the lengths of the space
domain in the z and r directions. T is the last instant of
the study.

Te coupled diferential system that models the non-
linear interaction of the ultrasonic feld, wave equation in
terms of acoustic pressure p, and the vibrations of the
bubbles, Rayleigh–Plesset equation in terms of volume
variation v � Vb − V0, is [4, 13]
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in which δ � 4]l/ωbR2
0 is the viscous damping coefcient of

the bubble due to the viscosity of the fuid, with ]l the ki-
nematic viscosity of the liquid, ωb �
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is the
bubble resonance, with c the specifc heats ratio of gas, pb �

ρbc2b/c the atmospheric pressure of gas, ρb the equilibrium
density of gas, cb the small-amplitude sound speed of gas, ρl

the equilibrium density of liquid, a � (c + 1)ω2
b/2V0 is the

second-order nonlinear coefcient due to the adiabatic law
used to model the gas pressure inside the bubble, b � 1/6V0
is the nonlinear coefcient associated to the bubble dy-
namics, η � 4πR0/ρl is a constant in the source term, and cl is
the small amplitude sound speed of liquid. Te system
(liquid and bubbles) at rest at the onset of the study, the axial
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symmetry, and the open-feld character of the space domain
lead to the initial and boundary conditions that close the
diferential system:
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including the excitation at the source defned by

s(z, r, t) � p0g(t),
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in which p0 is the pressure amplitude. Note that when two
spherical sources are considered in Section 3.3, the above
source equation also applies at z � Lz − Rc +
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.

Some approximations are considered in this work: the
bubble is spherical (spherically symmetric pulsation); the
bubble content is adiabatic gas only, without vapor; the
surface tension at the gas-liquid boundary is neglected; the
bubble does not radiate sound itself; bubble oscillations are
of moderate values; buoyancy, Bjerknes, and viscous drag
forces are neglected.

In order to seize the geometrical and graphical aspects
given by a commercial FEM solver, we chose to solve
equations (1)–(5) with the COMSOL Multiphysics® software
[28], through the defnition of two “Coefcient Form PDE”
coupled in the axisymmetric domain. To optimize the ac-
curacy of the results in relation to the computation cost, this
space domain is discretized with quadratic triangular
Lagrange elements, and we consider two distinct areas. Te
frst one, called the focal region in which the energy of both
the pressure and bubble volume variation felds is concen-
trated and large gradient values of dependent variables are
expected, is an ellipse centered on the focal point according to
the radius of curvature. In this focal region, a dense mesh is
employed to ensure that the sharp gradients in both felds are
approximated correctly. A maximum mesh size of λ/48 is
chosen (where λ is the shortest wavelength of the pressure
feld imposed at the curvature radius). Te second one that
encompasses the rest of the space domain uses 6 elements per
wavelength. Tis number is a reasonable compromise be-
tween computation time and accuracy. Figure 2 displays the
meshes used to carry out the simulations in the following
sections. Te number of degrees of freedom (DOFs) ranges
from around 36,000 to around 470,000.

Te generalized-α scheme is used to discretize the problem
in the time domain [29]. Compared to backward diferentiation
formula, this implicit method is known to lead to minimal
numerical dissipation and to enhance the stability and
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Figure 1: Schematic representation of the physical problem described in Section 2 showing the axisymmetric domain used in Sections 3.1
and 3.2 with one geometrical source (a), and in Section 3.3 with two geometrical sources (b).
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convergence of the approximate solution. Te time dis-
cretization step used in the following simulations is
τ � CFL h/cb, where cb is the sound speed in the bubbly liquid
at the given frequency and h is themaximumelement size of the
mesh, defned previously in the largest part of the domain as the
sixth part of the wavelength Tis leads to the stability of the
simulations carried out hereafter. Te Courant–Frie-
drichs–Levy number (CFL) is set at 0.1 in all the simulations
shown in this paper. It is worth noting that simulations carried
out with CFL � 0.2 give roughly the same results in the time
domain, but the quality of the FFT of the two dependent
variables is somehow altered.

Te coupling of the wave equation to the bubble
equation induces dispersion, which mitigates the formation
of shock waves. Tis important feature of the coupled dif-
ferential system allows us to observe harmonic components
of the pressure wave without strong difculties. Moreover,
the high nonlinear characteristic of the medium allows it to
trigger nonlinear behaviors at quite low-pressure ampli-
tudes, which makes it very much easy to model as well. Te
densifcation of the FEM mesh, where the highest acoustic-
pressure gradients are physically expected defnitely ensures
the good behavior of the simulation results (see previous
paragraphs and Section 3.1).

3. Results and Discussion

Te numerical model described above is used here to solve the
physical problem given in Section 2 considering a medium
made of water and air bubbles.Te following parameters are set:

D � 0.04m, Rc � 0.04m, Fnumber � Rc/D � 1, Lz � 0.08m,
Lr � 0.02m, T � 80/f s, R0 � 2.5 μm (ω0 � 8.4605MHz,
f0 � 1.34653MHz), N � 5 × 1011/m3, cl � 1500m/s, ρl �

1000 kg/m3, cg � 340m/s, ρg � 1.29 kg/m3, cg � 1.4, and
μl � 1.43 × 10− 6 m2/s.

Te dispersive curves of the bubbly medium defned
above with bubbles evenly distributed are shown in
Figure 3 [4]. Tey allow us to localize the frequency
ranges for which nonlinearity and attenuation are high or
low, in order to set the working frequencies according to
what we want to prevail in the simulations carried out in
Section 3. Te vertical red lines indicate the frequency
values which are useful in these simulations (from left to
right in the diagram): fd, f1, f2, 2f1, fs, and 2f2; dashed,
dash-dotted, and solid lines correspond to, respectively,
primary, second harmonics of primary, and mixing-
created frequencies. fs belongs to a huge attenuation
frequency range. Tis feature is also valid, in a lower
measure, for 2f1 and 2f2. f1 and f2 are located in
a frequency range of quite high compressibility, which
means that the nonlinearity of the medium is high for
these frequencies [4].

Tis section is structured as follows. We frst consider
a single-frequency pressure source (Figure 1(a), Section 3.1),
for which a very low-pressure amplitude is employed. We
then use a high-amplitude pressure to observe the nonlinear
efects due to the presence of bubbles. In the second part of
this section (Figure 1(a), Section 3.2), a parametric study is
done by assuming a dual-frequency pressure source in two
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Figure 2: Finite-element meshes used to solve the physical problem described in Section 2 in the axisymmetric domain (Figure 1) in
Sections 3.1 and 3.2 with one geometrical source (a), and in Section 3.3 with two geometrical sources (b).
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confgurations: linear and nonlinear. Finally, the potential
use of the model, due to its attractive feature concerning the
modifcation of the geometry, is commented in Section 3.3
(Figure 1(b)). Note that the useful model developed in this
paper, and tested in this section, will allow us to simulate
more complex nonlinear ultrasonic felds easily in the future
(more complex geometries, nonevenly distributed bubbles
in the liquid).

3.1. Single-Frequency Source. Te source is driven at the
single frequency f � 200 kHz and amplitude p0 � 1 Pa by
means of the continuous signal g(t) � sin(ωt), where ω �

2πf is the frequency of the source (Figure 1(a)). Te
travelling wave in the liquid impinges the bubbles.Temesh,
made of 9,454 elements (36,736 DOF, 2,304 internal DOF),
is presented in Figure 2(a).

Figure 4 shows the acoustic pressure vs. time (a) and vs.
frequency (b), the bubble volume variation vs. time (c) and vs.
frequency (d), all of them at the focus, i.e., the point of
maximal pressure amplitude on the axis, and the acoustic
pressure amplitude after 10 periods in the axisymmetric plane
(e). Note that Diagram (e) represents the whole (z, r) domain,
not only its half-calculated part, for a better observation of the
focalization efect.Te same presentation of the results applies
to Figures 5–8. Although T � 80/f s are calculated, the FFT
shown in these fgures are evaluated from the last 65 periods.
Only few periods are displayed in the time representations to
clearly observe the behavior of the waveforms.

Te focal zone is situated between 39 × 10− 3 m and
40 × 10− 3 m from the source. Te pressure and bubble
volume variation waveforms are symmetric around p � 0 Pa

and v � 0m3, respectively. Only one signifcative frequency
component, the source frequency, is seen in both spectra.

Now, we work with the source amplitude p0 � 4 kPa in
the same confguration as above. Figure 5 shows the cor-
responding results. Due to the high-pressure amplitude, the
nonlinearity of themedium at the working frequency f � fd

(Figure 3) implies modifcations of the ultrasonic feld.
Although the space pattern is quite similar to the linear

one and the focal zone is still situated between 39 × 10− 3 m
and 40 × 10− 3 m from the source, diferences occur at the
focus, where acoustic energy is concentrated. Both wave-
forms are no longer symmetric around their horizontal axis:
they are shifted to the positive pressure values and to the
negative bubble volume variation values, respectively. Te
broadening of the negative pressure zone is also observed.
Besides the source frequency f, the high nonlinearity of the
medium at f (Figure 3) generates the second (2f), third
(3f), and fourth (4f) harmonics, seen in the spectra. Teir
respective pressure amplitude values are about 46%, 15.5%,
and 4% of the fundamental frequency amplitude (f). Tis
means that the pressure wave is strongly nonlinear.

A mesh refnement procedure has been carried out for
the simulations shown in this paper. We present the results
only in this particular nonlinear case, but similar results
about convergence have been obtained in the confgurations
presented in the following sections. Figure 6 shows the
maximal relative v and p values obtained vs. the number of
DOFs used in the mesh (DOF variation is from 2,000 to
65,000).Te reference values v′ and p′ used here are the ones
obtained from a 100,000 DOF mesh. Also, it is important to
mention that the amplitude values employed in this paper
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(Sections 3.1, 3.2, and 3.3) are high enough to observe the
physical phenomena that we wanted to describe in this work
and that the number of DOFs used in these sections is within
the stable region of the convergence curve (Figure 6).

3.2. Dual-Frequency Source. We now excite the medium
with the following dual-frequency continuous source,
g(t) � sin(ω1t) + sin(ω2t), where ω1 � 2πf1 and
ω2 � 2πf2 are the primary frequencies of the source

(Figure 1(a)). In this section, f1 � 570 kHz and
f2 � 770 kHz.We set the pressure amplitude at the source at
p0 � 1 Pa (Figure 7). Since the working frequency is higher
than in Section 3.1, the mesh, presented in Figure 2(a), is
now made of 118,418 elements (469,684 DOF, 8,024
internal DOF).

Te acoustic and bubble volume variation responses are
completely diferent from the single-frequency case pre-
sented in the previous section. Although the focal zone is still
situated between 39 × 10− 3 m and 40 × 10− 3 m from the

8 8.5 9 9.5 10 10.5 11
log (number of DOF)

0

0.5

1

1.5

2

no
rm

al
iz

ed
 so

lv
ed

 v
ar

ia
bl

es

|v|/v*
|p|/p*

Figure 6: Maximal relative v (blue) and p (red) values vs. number of DOFs used in the mesh. Nonlinear regime, p0 � 4 kPa. Single-
frequency case.

× 10-4

0.2 0.4 0.6 0.8 10
t (s)

-5

0

5

p 
(P

a)

(a)

× 106

0.5 1 1.5 20
f (Hz)

0
1
2
3
4
5

|P
 (f

)|

(b)

× 10-4

× 10-21

0.2 0.4 0.6 0.8 10
t (s)

-4

-2

0

2

4

v 
(m

3 )

(c)

× 106

× 10-21

0
0.5

1
1.5

2
2.5

|V
 (f

)|

0.5 1 1.5 20
f (Hz)

(d)

-5

0

5
p 

(P
a)

(e)

Figure 7: Waveform and spectral decomposition at the focus of acoustic pressure (a, b) and bubble volume variation (c, d), distribution of
acoustic pressure p in the (z, r) plane after 10 periods (e). Linear regime, p0 � 1 Pa. Dual-frequency case.

Shock and Vibration 7



source, the volume of high acoustic energy is much smaller
than in the single-frequency case. Both waveforms are linear.
Tey include the two primary frequencies shown in the
spectra.

Now, we aim to analyze the nonlinear mixing of the
primary frequencies while they are travelling through the
medium. We set the pressure amplitude at the source at
p0 � 4 kPa. We draw special attention to the diference and
sum frequency components (Figure 8). Note that, from
equation (5) and the function g(t) defned in a previous
paragraph, the pressure amplitude at the source can reach
8 kPa.

We adopt the following notation. fd is the diference-
frequency component. pd is the pressure amplitude of fd. fs

is the sum-frequency component. ps is the pressure am-
plitude of fs. Since f1 � 570 kHz and f2 � 770 kHz,
fd � 200 kHz, fs � 1, 340 kHz, 2f1 � 1, 140 kHz, and
2f2 � 1, 540 kHz.

Te location of the focus in this high-amplitude case is
still the same as in the linear case (between 39 × 10− 3 m and
40 × 10− 3 m from the source). However, the pressure
waveform presents a quite strong asymmetry around
p � 0 Pa, showing a shift towards the positive pressure
values. Moreover, besides f1 and f2, the spectra include the
components 2f1 (16% of the pressure amplitude at the
primary frequency f1), fd (6% of the pressure amplitude at
the primary frequency f1), and fs (5% of the pressure
amplitude at the primary frequency f1), as well as a slight

2fd component. Te high nonlinearity of the medium at fd

and f1 (Figure 3) is such that the components 2fd and 2f1
are visible and quite intense (a slight component 3f1 is even
noted).

Tis model is thus able to track in time the behavior of
ultrasound in the bubbly medium in nonlinear confgura-
tions. It has a strong advantage over other models
[14, 30, 31], since the FEM allows us to modify the geo-
metrical conditions of the physical problem easily. Tis
important beneft will be the topic of future works. In the
following section, we use the model described above to il-
lustrate that asset, considering a system with a double
spherical source excited at a single frequency.

It must be noted here that to verify and validate the
numerical model presented in this paper, it was used with
the parameters given in Sections 3.1 and 3.2 and compared
with another model based on a diferent kind of numerical
methods, published earlier in the literature [30, 31]. Al-
though the numerical model in the above references did not
allow to get the same geometrical shape at the source, this
comparison led to a quite good concordance. With the
single-frequency source, the maximal pressure amplitude at
2f with the model from [30] was 40% of the fundamental
frequency amplitude f, whereas it is 46% here. In the case of
the dual-frequency source, the maximal pressure amplitude
at fd with the model from [31] was 5% of the pressure
amplitude at the primary frequency f1, whereas it is 6% with
the current model presented here.
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Figure 8: Waveform and spectral decomposition at the focus of acoustic pressure (a, b) and bubble volume variation (c, d), distribution of
acoustic pressure p in the (z, r) plane after 10 periods (e). Nonlinear regime, p0 � 4 kPa. Dual-frequency case.
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3.3.Double Spherical Single-Frequency Source. Tis section is
an illustration of the easy applicability of the model pre-
sented and tested in the previous sections in relation to the
modifcation of the geometry of the space domain. We
consider a double spherical source emitting in the bubbly
liquid at a single frequency in opposite directions (Fig-
ure 1(b)). With this system, we can check whether the
double-source confguration induces nonlinear efects at the
focus spot easier than the single-source confguration
(Section 3.1) or not, i.e., whether a lower intensity level
(lower electrical power) at the source is required to generate
a second harmonic or not. Te geometry, shown with the
mesh used here in Figure 2(b), is easily constructed from one
of the previous sections (Figure 2(a)). Te mesh is made of
9,428 elements (36,642 DOF, 2,282 internal DOF).

We use the same parameter values as in Section 3.1. Te
diagrams represent the solution in the same way as in the
above sections. Figure 9 shows the linear results, when
p0 � 1 Pa is set at the double source. Figure 10 shows the
results in the nonlinear regime, when p0 � 1 kPa is used at the
double source. In both cases, the focal zone is situated at
40 × 10− 3 m. With p0 � 1 Pa, the linear waveforms are sine-

like functions and the spectra show only one frequency
component at the source frequency f. However, when
p0 � 1 kPa is imposed at the sources, the nonlinear waveforms
at the focus present a clear asymmetry and the spectra reveal
a quite strong second harmonic component. Te quite low-
pressure amplitude at the source leads to a nonlinear response
of the system, with a signifcant second pressure harmonic
component of amplitude p2f � 1.3 kPa, i.e., 65% of the sum of
the pressure amplitude at the sources. Te corresponding
results obtained with the one-source model described in
Section 3.1 using the same amplitude at the source p0 � 1 kPa
reveals an amplitude of the second harmonic p2f � 620 Pa,
i.e., 62% of the pressure amplitude at the source. When
p0 � 2k Pa is used at the source, p2f � 2.38 kPa, i.e., 119% of
the pressure amplitude at the source. Tese data show that the
system with two sources has a lower nonlinear efciency. Te
higher efciency of the single-spherical source system is most
likely due to the propagation of a higher amplitude wave from
the source which leads to a strong nonlinear process within the
high nonlinear bubbly medium. Tis result could be in-
teresting for the design of nonlinear systems based on focused
waves in bubbly liquids.
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Figure 9: Waveform and spectral decomposition at the focus of acoustic pressure (a, b) and bubble volume variation (c, d), distribution of
acoustic pressure p in the (z, r) plane after 10 periods (e). Linear regime, p0 � 1 Pa. Single-frequency case. Double-source case.
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4. Conclusions

Te model based on the FEM developed here allows us to
simulate the behavior of nonlinear focused ultrasound
propagating in a liquid with gas bubbles in an axisym-
metric three-dimensional domain. It solves a diferential
system derived for the nonlinear interaction of acoustic
waves and gas bubble oscillations. Te simulations carried
out here have shown that high-amplitude ultrasound is
afected by the high nonlinearity and dispersion of the
bubbly medium. Te model has been used to generate
frequency components of the signals that do not exist at
the source through nonlinear mixing. Te ability of the
model to work with complex geometries has also been
shown here through the simulation of nonlinear focused
ultrasound from a double-source system.

It is worth noting that the versatility of the FEM pro-
posed here is expected to make further developments easier,
specifcally those concerning modifcations of the geo-
metrical characteristics of the physical problem, as well as
changes on bubble-density distribution.
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