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A three-dimensional autonomous deterministic chaotic system having six parameters is explored within this article. Te dy-
namical characteristics of the proposed system are investigated through eigenvalues structure, bifurcation diagrams,
Kaplan–Yorke dimension, Lyapunov exponents, time response, and phase plane trajectories. For the suitable design of the system
parameters, it is found that the system can exhibit periodic, period-n, or chaotic oscillations. Accordingly, the system’s dynamical
behavior to the variation of its coefcients has been explored. Te obtained results revealed that the proposed dynamical system
does not lose its chaotic oscillations for the small fuctuations of one or more of the values of its parameters. In addition, chaos
control and chaos synchronization have been studied by means of the adaptive control strategy relying on Lyapunov’s second
method of stability. Te numerical simulation revealed that superior chaos control and master-slave synchronization have been
achieved by the applied control laws. Finally, the obtained results have been simulated via a nonlinear electronic circuit that
demonstrated the feasibility of the purposed chaotic system for diferent engineering applications such as secure communications,
cryptosystems, image encryption, and image processing.

1. Introduction

Te chaos theory is defned as a branch of computer science
and mathematics that studies the dynamical properties of
nonlinear systems which are extremely sensitive to the initial
conditions [1, 2]. Lyapunov exponents and the compactness
property of the phase space are the most two important and
necessary measures that may be used to investigate the
chaotic behavior of such systems. Some of the initial par-
adigms of the three-dimensional chaotic oscillators in the
literature are the Lorenz system [3], Rössler oscillator [4],
Arneodo et al. system [5], Sprott system [6], Chen and Ueta

oscillator [7], Lü and Chen system [8], Liu et al. system [9],
Cai and Tan system [10], Chen and Lee system [11], and
Tigan and Opris [12]. Recently, chaotic dynamics has found
many applications in diferent areas such as mechanical
systems [13, 14], microelectromechanical systems [15], radar
systems [16], vehicle models [17], random number gener-
ators [18], robotic systems [19–22], memristive devices
[23–25], maglev systems [26], rotor active magnetic bearings
systems [27–29], biodynamics [30], biological systems
[31–34], ecological systems [35, 36], cardiology [37, 38],
chemical reactions [39–42], lasers [43, 44], unmanned aerial
vehicles [45], rotating machinery [46–50], secure
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communications [51–53], image encryption [54–56], cryp-
tosystems [57, 58], fnancial system [59–61], DC motor
systems [62], and electronic circuits [63–65]. Any chaotic
attractor has an infnite number of unstable periodic orbits.
Terefore, chaotic motion arises when the system states
move in the neighborhood of one of these unstable periodic
orbits for a short period and then fall close to another
unstable periodic orbit for a limited time and so forth. Tis
mechanism results in unpredictable motion of the system
state for a long time, where this motion is called chaotic
oscillation. Chaos control aims to stabilize the chaotic
wandering of the system states about its equilibrium points.
Many control techniques have been applied for this purpose
such as the optimal control system [66, 67], state-feedback
control [68], sliding mode and integral sliding mode control
[69–74], backstepping control method [75], adaptive control
[76–78], and time-delayed feedback control [79].

Chaotic synchronization is a phenomenon that happens
when two or more oscillators are coupled or when an os-
cillator drives another one. Te common meaning of syn-
chronization is that the phases of two or more systems
change according to a specifc pattern. Te synchronization
phenomenon is abundant in nature, science, social life, and
engineering. Well-known systems such as clocks, fring
neurons, applauding audiences, singing crickets, and cardiac
pacemakers tend to operate in synchrony [80]. Tere are fve
synchronization techniques, which are phase synchroniza-
tion, generalized synchronization, lag synchronization,
amplitude envelope synchronization, anticipated synchro-
nization, and complete synchronization. A complete syn-
chronization regime is the common one that is used with
a pair of chaotic systems known as the master system and the
slave one. Te main target of this synchronization technique
is to force the slave system output according to a specifc
control law to track the output of the master system. Pecora
and Carroll are the frst people that found chaos synchro-
nization in their experiments on circuits [81, 82], where the
authors utilized two Lorenz systems where one of them has
been used as the master system and the other as the slave.
Tey found that the synchronization among the master and
slave systems occurred when the frst state variable of the
slave system is replaced with the frst state variable of the
master system. Tis synchronization scheme is called the P-
C scheme. In fact, many control techniques that are used for
chaos control can also be utilized in chaos synchronization,
where the active control method has been applied in chaos
synchronization when all the system parameters are mea-
surable [83–87]. Te adaptive control strategy is also
employed in chaotic system synchronization when some or
all the system parameters are not measurable or when the
estimation for some uncertain parameters is required
[88–91]. In addition, sampled data feedback control strat-
egies [92–94], time-delayed feedback control techniques
[95, 96], and backstepping control methods [97, 98] are used
in the chaos synchronization. Moreover, the sliding mode

control has been applied extensively in chaos synchroni-
zation [99, 100].

In general, 3D-chaotic systems can be categorized
depending on the number of terms, parameters, and equi-
librium points as shown in Table 1 [101–108]. Also, the
chaotic system with dimensions higher than 3D and having
at least two positive Lyapunov exponents is called a hyper-
chaotic system [109, 110].

Within this article, a new 3D-chaotic system with four
linear terms, two quadratic nonlinear terms, and six pa-
rameters is presented. Detailed bifurcation analysis for the
considered system has been conducted through the time
response, phase plane trajectories, Lyapunov exponents,
bifurcation diagrams, and Kaplan–Yorke dimension. Te
fuctuation of the diferent system parameters on the sys-
tem’s dynamics is explored. Te obtained results illustrated
that the considered system may respond with periodic,
period-n, or chaotic oscillations depending on the values of
its parameters. Accordingly, the optimal values of the system
parameters are designed in such a way that makes the
considered system oscillate chaotically, where both the
Lyapunov exponents and the corresponding Kaplan–Yorke
dimension are obtained. In addition, chaos control has been
achieved by designing an adaptive controller based on
Lyapunov’s second method of stability. Moreover, the chaos
synchronization of the introduced chaotic system with itself
as a master-slave system has been investigated by designing
a globally stable adaptive control system. Finally, we have
built an electronic circuit using MultiSim (version 13.0) to
simulate the chaotic dynamics of the considered system.

2. The Novel 3D Chaotic System

Te study of chaos arose from the discovery of the well-
known Lorenz system in 1963. A chaotic system is a non-
linear dynamical system that is very sensitive to the initial
conditions and produces aperiodic bounded signals that
resemble noise despite not being generated from stochastic
systems. Te breakthrough of the huge applications of chaos
(as in mathematics, computer science, engineering, pop-
ulation dynamics, robotics, biology, and so on) has
prompted chaos generation to be a vital research subject.
Terefore, this article introduces a novel 3D-chaotic au-
tonomous system with four linear terms and two quadratic
terms as follows.

_x � − ax + by
2
,

_y � ry − gz,

_z � − fz + cxy,

(1)

where x, y, and z denote the state variables and a, b, c, f, g,

and r are positive constant parameters that form the co-
efcients of the considered system. At the system parameters
a � 2, b � 7, c � 5, f � 8, g � 11, and r � 4, system (1) ex-
hibits complex dynamics. Te chaotic motion of the
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suggested dynamical system will be proved in the fowing
subsections.

2.1.Dissipativity, Attractor Existence, and EquilibriumPoints.
Te nonlinear autonomous system given by equation (1) can
be expressed in the state-space form as follows:

W(x, y, z) �

w1(x, y, z)

w2(x, y, z)

w3(x, y, z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

− ax + by
2

ry − gz

− fz + cxy

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

According to equation (2), the divergence of the vector
feld W(x, y, z) on R3 can be calculated simply as follows:

div(W) �
zw1

zx
+

zw2

zy
+

zw3

zz
� − a + r − f. (3)

Terefore, the necessary and sufcient conditions for the
nonlinear autonomous system given by equation (1) to be
a dissipative one are that the divergence div(W) should be
a negative value. So, based on equation (3), system (1) is
a dissipative system if and only if − a + r − f< 0.

SupposeΩ is a region in R3 with smooth boundaries and
let Ω(t) � φt(Ω), where φt represents the fow of the vector
feld W. Let F(t) represent the volume ofΩ(t). According to
the Liouville theorem [111], we have

dF(t)

dt
� 􏽚

−

Ω(t)
div(W)dx dy dz

� (− a + r + f)􏽚
Ω(t)

dx dy dz � (− a + r − f) F(t).

(4)

Te solution of equation (4) can be written as
F(t) � F0e

(− a+r− f)t. Terefore, any volume element F0 in
the space of system (1) will be contracted by the fow into the
volume element F0e

(− a+r− f)t at the time t. Tis means that
each volume containing the system trajectories will be
shrunk to zero when t⟶∞ at an exponential decay rate
− a + r − f. Accordingly, all the orbits of the system given by
equation (1) will be confned into a subset of zero volume,
and the asymptotic motion of the system will settle into an
attractor regardless of the initial conditions. So, for the
designed parameters (a � 2, f � 8, and r � 4), the expo-
nential contraction rate of the considered system is − 6t. In
addition, the equilibrium points of the considered system are
E1(0, 0, 0), E2(fr/cg,

������
afr/cbg

􏽰
, r/g

������
afr/cbg

􏽰
), and

E3(fr/cg, −
������
afr/cbg

􏽰
, − r/g

������
afr/cbg

􏽰
). Tese equilibrium

points are unstable when the system parameters are designed
such that a � 2, b � 7, c � 5, r � 4, g � 11, andf � 8. Tus,
the trajectories of the considered dynamical system (1) will
diverge from the equilibrium points as long as the initial
conditions do not satisfy one of these points.

Table 1: Categorization of the diferent 3D-chaotic systems.

3D chaotic systems No. of terms No. of parameters State of equilibria References
_x � a(y − x) + byz2,

7 6 Five equilibrium points 2013 [101]_y � cx + dxz2,

_z � hz + kx2.

_x � − x − 2y,

7 4 Tree equilibrium points 2014 [102]_y � − xz − by − ax,

_z � xy − cz.

_x � y + ax + bxz,

9 4 Tree equilibrium points 2016 [103]_y � cxz + dx + yz + 1,

_z � 1 + xy.

_x � y − x − az,

8 2 Tree equilibrium points 2012 [104]_y � xz − x,

_z � − xy − y + b.

_x � wx − y2,

7 4 Tree equilibrium points 2016 [105]_y � μ(z − y),

_z � αy − βz + xy.

_x � a(y − x),

6 4 Two equilibrium points 2012 [106]_y � bx − cxz,

_z � exy − dz.

_x � a(y − x),

8 3 Tree equilibrium points 2002 [8]_y � (c − a)x − xz + cy,

_z � xy − bz.

_x � a(y − x),

6 5 Tree equilibrium points 2004 [9]_y � bx − kxz,

_z � − cz + hx2.

_x � a(y − x),

7 4 Tree equilibrium points 2007 [10]_y � bx + cy − xz,

_z � x2 − hz.

_x � − ax + by2,

6 6 Tree equilibrium points Tis paper_y � ry − gz,

_z � − fz + cxy.
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2.2. Kaplan–Yorke Dimension. Within this section, Lyapu-
nov exponents (LE) of the considered dynamical system are
obtained numerically as shown in Figure 1 at the system
parameters: a � 2, b � 7, c � 5, r � 4, g � 11, and f � 8. It is
clear from the fgure that the steady-state Lyapunov expo-
nents of the considered system are LE1 � 0.5, LE2 � 0, and
LE3 � − 6.5, where LE1 < LE2 < LE3. Accordingly, one can
fnd the Kaplan–Yorke dimension (i.e., DKY) as follows:

DKY � 2 +
LE1 + LE2

LE3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 2 +

0.5 + 0.0
6.5

� 2.0769. (5)

It is clear from equation (5) that the considered system
has a fractional dimension, which confrms that the con-
sidered autonomous dissipative system has a nonperiodic
solution.

2.3. Chaotic Response and Phase Trajectories. Based on the
obtained Lyapunov exponents (LE1 � 0.5, LE2 � 0.0, and
LE3 � − 6.5) as shown in Figure 1, the autonomous dy-
namical system (1) will respond with a chaotic bounded
motion for any initial conditions in the three-dimensional
space except the three equilibrium points E1 � (0, 0, 0), E2 �

(0.5818, 0.4077, 0.1483), and E3 � (0.5818, − 0.4077,

− 0.1483). Te time response of the considered chaotic
system is illustrated in Figure 2 at the initial conditions
x(0) � y(0) � z(0) � 0.01, while Figure 3 shows the cor-
responding phase plane trajectories. Figures 2 and 3 are
obtained via solving equation (1) numerically using the
ODE45 MATLAB solver when a � 2, b � 7, c � 5, r � 4, g �

11, and f � 8. It is clear from Figure 2 that the system
motion is chaotic. In addition, Figure 3 shows that the
suggested chaotic system has chaotic attractors with shapes
that are diferent from those Lorenz-like systems.

3. Bifurcation Analysis

For the practical realization of the considered chaotic sys-
tem, it should have high immunity to the slight fuctuations
of one or more of its parameters.Terefore, this section aims
to investigate the system dynamics when changing each one
of the system parameters. Figure 4 shows the bifurcation
diagram and the corresponding Lyapunov exponents uti-
lizing a as a bifurcation parameter along the range 0< a< 3,
with fxing the other parameters constant. Figure 4(a) il-
lustrates that the system has dissipativity behaviors, where
the contractions exponent − a + r − f< 0 on the interval
0< a< 3. However, Figures 4(a) and 4(b) demonstrate that
system motion may be either periodic, period-n, or chaotic
depending on the value of the parameter a. Also, one can
notice from Figure 4(b) that the system can perform chaotic
oscillation at a wide range of about a � 2 (i.e., the system
oscillates chaotically as long as 1.5< a< 3), which guarantees
the immunity of the proposed chaotic system to the fuc-
tuation of a without losing its chaotic dynamics.

Figure 5 illustrates the bifurcation of the system motion
and the corresponding Lyapunov exponents when utilizing r

as a bifurcation parameter on the interval 2< r< 6. Fig-
ure 5(a) demonstrates that the system may perform periodic
oscillations as long as 2< r< 2.5, but increasing r beyond 2.5
may result in a periodic-doubling bifurcation, that is, the
route to a chaotic motion. In addition, the fgure shows that
the system may lose its chaotic oscillation via periodic-
halving bifurcation if r is increased beyond 5. However,
Figure 5(b) confrms that the proposed system can exhibit
chaotic motion as long as 3.5< r< 4.5, which guarantees the
system immunity for the small fuctuation of r about the
designed value r � 4.

Figure 6 depicts the motion bifurcation and the corre-
sponding Lyapunov exponents when utilizing f as the main
bifurcation parameters along the interval 5<f< 9.
Figure 6(a) shows that the system can perform periodic
motion as long as 5<f< 6. But, increasing f beyond 6
results in periodic-doubling bifurcation, which ultimately
leads to chaotic oscillations as shown in Figure 6(b) when
7<f≤ 9. Accordingly, one can confrm the system’s im-
munity to the small fuctuation of f about the designed value
f � 8. Figures 7–9 are a repetition of Figures 4–6 but
concerning the rest of the system parameters b, c, and g,
respectively. By examining Figures 4–6, one can demon-
strate that the motion bifurcation and the corresponding
Lyapunov exponent of the considered chaotic system are
insensitive to the variation of the parameters b, c, and g on
the intervals 5< b< 8, 3< c< 6, and 9<g< 12. Based on the
abovementioned investigations, it is clear that the in-
troduced system (1) with the designed parameter values (i.e.,
a � 2, b � 7, c � 5, r � 4, g � 11, and f � 8) has high im-
munity for the slight fuctuations of the values of its
parameters.

4. Chaos Control

4.1. Adaptive Controller Design. Chaos control of the pro-
posed dynamical system has been investigated within this
section utilizing an adaptive control strategy. Tus, the
suggested controlled chaotic system (1) is modifed to
become

50
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-2
0
2
4

60 70 80 90 100 110
t

120 130 140 150

Ly
ap
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LE2=0.0

LE3=-6.5

Figure 1: Evolution of the system Lyapunov exponents (i.e., LE) on
the time interval 50≤ 0< 150 at a � 2, b � 7, c � 5, f � 8, g � 11,

and r � 4, where the steady-state Lyapunov exponents are LE1 �

0.5, LE2 � 0.0, and LE3 � − 6.5.
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_x � − ax + by
2

+ u1,

_y � ry − gz + u2,

_z � − fz + cxy + u3,

(6)

where u1, u2, and u3 are the suggested adaptive control
signals to stabilize the chaotic motion of system (1). Te
main strategy of the adaptive controller is to generate control
signals u1, u2, and u3 in order to cancel the nonlinearity of
the considered chaotic system (6) and force it to respond as
a dissipative linear system with (0, 0, 0) stable equilibrium
point. Accordingly, u1, u2, and u3 are designed such that

u1 � 􏽥ax − 􏽥by
2

− δ1x,

u2 � − 􏽥ry + 􏽥gz − δ2y,

u3 � 􏽥fz − 􏽥cxy − δ3z,

(7)

where δ1, δ2, and δ3 are positive constants that form the
linear feedback gains, while 􏽥a, 􏽥b, 􏽥r, 􏽥g, 􏽥f, and 􏽥c denote the
estimated parameters of the system coefcients a, b, r, g, f,

and c. Now, by substituting equation (7) into equation (6),
we have the following controlled system:

_x � − (a − 􏽥a)x +(b − 􏽥b)y
2

− δ1x,

_y � (r − 􏽥r)y − (g − 􏽥g)z − δ2y,

_z � − (f − 􏽥f)z +(c − 􏽥c)xy − δ3z.

(8)

Notice that when the estimated parameters (i.e.,
􏽥a, 􏽥b, 􏽥r, 􏽥g, 􏽥f, and 􏽥c) reach the same values of the system

parameters (i.e., a, b, r, g, f, and c), equation (8) becomes
_x � − δ1x, _y � − δ2y, and _z � − δ3z. Accordingly, let us de-
note the error estimation of the parameters as follows:

e1 � a − 􏽥a, e2 � b − 􏽥b, e3 � r − 􏽥r, e4

� g − 􏽥g, e5 � f − 􏽥f, e6 � c − 􏽥c.
(9)

Based on equation (9), the derivatives of the parameter
estimation errors can be expressed as follows:

_e1 � − _􏽥a, _e2 � −
_􏽥b, _e3 � − _􏽥r, _e4 � − _􏽥g, _e5 � −

_􏽥f, _e6 � − _􏽥c. (10)

Substituting equation (9) into equation (8) yields

_x � − e1x + e2y
2

− δ1x,

_y � e3y − e4z − δ2y,

_z � − e5z + e6xy − δ3z.

(11)

To obtain the control law that will adjust the parameter
estimations, let us build up the Lyapunov positive defnite
function V1(x, y, z, e1, e2, e3, e4, e5, e6) for the controlled
chaotic system given by equation (11) as follows:

V1 x, y, z, e1, e2, e3, e4, e5, e6( 􏼁

�
1
2

x
2

+ y
2

+ z
2

+ e
2
1 + e

2
2 + e

2
3 + e

2
4 + e

2
5 + e

2
6􏼐 􏼑.

(12)

Diferentiating the constructed Lyapunov function
V1(x, y, z, e1, e2, e3, e4, e5, e6), we have

0
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0 20 40 60 80 100
t
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(t)

(a)

0
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-1
0 20 40 60 80 100
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(t)

(b)

-0.6

-0.4
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0

0.2

0.4

0.6

0 20 40 60 80 100
t

z (
t)

(c)

Figure 2: (a–c) Time response of the proposed chaotic system at x(0) � y(0) � z(0) � 0.01, a � 2, b � 7, c � 5, f � 8, g � 11, and r � 4.
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_V1 x, y, z, e1, e2, e3, e4, e5, e6( 􏼁

� x _x + y _y + z _z + e1 _e1 + e2 _e2 + e3 _e3 + e4 _e4 + e5 _e5 + e6 _e6( 􏼁.

(13)

Eliminating _x, _y, _z, _e1, _e2, _e3, _e4, _e5 and _e6 from equation
(13) utilizing equations (10) and (11) yields
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Figure 4: (a) Te system bifurcation diagram and (b) the corresponding Lyapunov exponents, utilizing a as the bifurcation parameter with
fxing the other parameters constant such that b � 7, c � 5, f � 8, g � 11, and r � 4.
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Figure 3: Phase plane trajectories of the system when a � 2, b � 7, c � 5, f � 8, g � 11, r � 4 and x(0) � y(0) � z(0) � 0.01: (a) Tree-
dimensional phase trajectory in (x, y, z) and (b–d) two-dimensional phase trajectory in (y, z), (x, y), and (x, z), respectively.

6 Shock and Vibration



_V1 x, y, z, e1, e2, e3, e4, e5, e6( 􏼁

� − δ1x
2

− δ2y
2

− δ3z
2

− e1
_􏽥a + x

2
􏼐 􏼑 − e2

_􏽥b − xy
2

􏼒 􏼓 − e3
_􏽥r − y

2
􏼐 􏼑 − e4(

_􏽥g + yz) − e5
_􏽥f + z

2
􏼒 􏼓 − e6(

_􏽥c − xyz)􏼒 􏼓.
(14)

According to equation (14), the parameters estimation
law can be chosen as follows:
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Figure 5: (a) Te system bifurcation diagram and (b) the corresponding Lyapunov exponents, utilizing r as a bifurcation parameter with
fxing the other parameters constant such that a � 2, b � 7, c � 5, f � 8, and g � 11.
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Figure 6: (a) Te system bifurcation diagram and (b) the corresponding Lyapunov exponents, utilizing f as a bifurcation parameter with
fxing the other parameters constant such that a � 2, b � 7, c � 5, g � 11, and r � 4.
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Figure 7: (a) Te system bifurcation diagram and (b) the corresponding Lyapunov exponents, utilizing b as the bifurcation parameter with
fxing the other parameters constant such that a � 2, c � 5, f � 8, g � 11, and r � 4.
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_􏽥a � − x
2

+ η1(a − 􏽥a),

_􏽥b � xy
2

+ η2(b − 􏽥b),

_􏽥r � y
2

+ η3(r − 􏽥r),

_􏽥g � − yz + η4(g − 􏽥g),

_􏽥f � − z
2

+ η5(f − 􏽥f),

_􏽥c � xyz + η6(c − 􏽥c),

(15)

where ηk (k � 1, 2, . . . , 6) are positive constants. Based on
the designed estimation law given by equation (15), the
derivative of the Lyapunov function _V1(x, y, z, e1, e2,

e3, e4, e5, e6) is a negative defnite function that can be
written as follows:

_V1 x, y, z, e1, e2, e3, e4, e5, e6( 􏼁 � − δ1x
2

+ δ2y
2

+ δ3z
2

+ η1e
2
1 + η2e

2
2 + η3e

2
3 + η4e

2
4 + η5e

2
5 + η6e

2
6􏼐 􏼑. (16)

Theorem 1. Te controlled system that is given by equation
(6) with the unknown coefcients a, b, r, g, f, and c is globally
stabilized regardless of the initial conditions by both the
designed control law given by equation (7) and the parameters
estimation law given by equation (15), where δj (j � 1, 2, 3)

and ηk (k � 1, 2, . . . , 6) are positive constants.

Proof. Te above theorem is a simple consequence of
Lyapunov’s second method for stability [112]. We showed
that the Lyapunov function V1(x, y, z, e1, e2, e3, e4, e5, e6)

that is given by equations (12) is a positive defnite function
on R9. In addition, we illustrated that the frst derivative
_V1(x, y, z, e1, e2, e3, e4, e5, e6) given by equations (15) is
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Figure 8: (a) Te system bifurcation diagram and (b) the corresponding Lyapunov exponents, utilizing c as the bifurcation parameter with
fxing the other parameters constant such that a � 2, b � 7, f � 8, g � 11, and r � 4.
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Figure 9: (a)Te system bifurcation diagram and (b) the corresponding Lyapunov exponents, utilizing g as the bifurcation parameter with
fxing the other parameters constant such that a � 2, b � 7, c � 5, f � 8, and r � 4.
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Figure 10: Te evolution of the chaotic system time response before and after chaos control when the system parameters
a � 2, b � 7, r � 4, g � 11, f � 8, c � 5, control gains δi � ηj � 0.5, (i � 1, 2, 3, j � 1, 2, .., 6), and initial conditions
x(0) � y(0) � z(0) � 0.01, 􏽥a(0) � 􏽥b(0) � 􏽥r(0) � 􏽥g(0) � 􏽥f(0) � 􏽥c(0) � 0.0. (a–c) the evolution of the system states x(t), y(t), and z(t)

before chaos control on the interval 0≤ t< 100 and after control on the interval 100≤ t≤ 150, and (d) the evolution of the system estimated
parameters 􏽥a, 􏽥b, 􏽥c, 􏽥g, 􏽥f, and 􏽥r.
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a negative defnite on R9. Hence, according to Lyapunov’s
second method for stability, it follows that the system states
x(t), y(t), z(t), e1(t), e2(t), e3(t), e4(t), e5(t), and e6(t)

tend to zero exponentially as the time t tends to infnity,
which completes the proof that the system given by equation
(6) is globally stable. □

4.2. Numerical Simulation of Chaos Adaptive Control.
Numerical simulations for the introduced adaptive control
system given in Section 4.1 are illustrated within this section.
Te time response of the controlled chaotic system is
simulated numerically via solving equations (6), (7), and (15)
using the ODE45 MATLAB solver as in Figure 10 when
a � 2, b � 7, c � 5, f � 8, g � 11, r � 4, and
δi � ηj � 0.5, (i � 1, 2, 3, j � 1, 2, . . . , 6) at the initial con-
ditions x(0) � y(0) � z(0) � 0.01, 􏽥a(0) � 􏽥b(0) � 􏽥g(0) � 􏽥c

(0) � 􏽥f(0) � 􏽥r(0) � 0.0. Figures 10(a)–10(c) show the
system’s chaotic motion before control on the time interval
0< t< 100 and after turning on the introduced adaptive
control law at t � 100 up to t � 150. In addition,
Figure 10(d) shows the evolution of the estimated param-
eters (􏽥a(t), 􏽥b(t), 􏽥c(t), 􏽥g(t), 􏽥f(t), 􏽥r(t)) after turning on the
controller at t � 100. It is clear from Figures 10(a)–10(c) that
the chaotic states x(t), y(t), and z(t) on the interval
0< t< 100 have been forced to enter the equilibrium point
E1(0, 0, 0) as soon as turning on the controller at t � 100
(i.e., x(t)⟶ 0, y(t)⟶ 0, and z(t)⟶ 0 as soon as the
controller is activated). Moreover, Figure 10(d) demon-
strates the exponential convergence of the estimated pa-
rameters to the system parameters (i.e., 􏽥a(t)

⟶ a � 2, 􏽥b(t)⟶ b � 7, 􏽥c(t)⟶ c � 5, 􏽥g(t)⟶ g �

11, 􏽥f(t)⟶ f � 8, 􏽥r(t) ⟶ r � 4).

5. Chaos Synchronization

5.1. Adaptive Controller Design. Based on the investigation
given in Section 3, the parameters b, c, and g have negligible
infuence on the system’s dynamical behaviors. Accordingly,
these parameters are treated as fxed values such that
b � 7, c � 5, and g � 11 within this section. Terefore, the
modifed novel chaotic system (i.e., equation (1)) that rep-
resents the master system is given as follows:

_x � − ax + 7y
2
,

_y � ry − 11z,

_z � − fz + 5yx.

(17)

In addition, let the slave system be given by the following
dynamical equation:

_X � − aX + 7Y
2

+ U1,

_Y � rY − 11Z + U2,

_Z � − fZ + 5XY + U3,

(18)

where X, Y, and Z denote the slave system states, and
U1, U2, and U3 are the control signals to be designed in
order to achieve the global synchronization between the

master system (17) and the slave one (18). Accordingly, the
master-slave state errors can be defned as follows:

eX � X − x, eY � Y − y, eZ � Z − z. (19)

Based on equations (17)–(19), the error dynamics can be
defned as follows:

_eX � − aeX + 7e
2
Y + U1,

_eY � reY − 11eZ + U2,

_eZ � − feZ + 5(XY − xy) + U3.

(20)

According to equation (20), let us design the control law
as follows:

U1 � 􏽢aeX − 7e
2
Y − α1eX,

U2 � − 􏽢reY + 11eZ − α2eY,

U3 � 􏽢feZ − 5(XY − xy) − α3eZ,

(21)

where 􏽢a, 􏽢r, and 􏽢f are the estimated parameters of the un-
known system parameters a, r, and f. In addition, α1, α2,
and α3 are positive constants that represent the control
gains. Now, substituting equation (21) into equation (20)
yields

_eX � − eaeX − α1eX,

_eY � ereY − α2eY,

_eZ � − efeZ − α3eZ,

(22)

where ea � a − 􏽢a, er � r − 􏽢r, and ef � f − 􏽢f are the pa-
rameter estimation errors, and _ea � − _􏽢a, _er � − _􏽢r, _ef � −

_􏽢f. To
obtain the control laws that will adjust the states’ syn-
chronization and the parameter estimations, let us build up
the Lyapunov positive defnite function
V2(eX, eY, eZ, ea, er, ef) for the chaotic system given by
equation (22) as follows:

V2 eX, eY, eZ, ea, er, ef􏼐 􏼑 �
1
2

e
2
X + e

2
Y + e

2
Z + e

2
a + e

2
r + e

2
f􏼐 􏼑.

(23)

Accordingly, the derivative of equation (23) can be
expressed as follows:

V2 eX, eY, eZ, ea, er, ef􏼐 􏼑

� eX _eX + eY _eY + eZ _eZ + ea _ea + er _er + ef _ef􏼐 􏼑.
(24)

Eliminating _eX, _eY, _eZ, _ea, _er, and _ef from equation (24)
utilizing equation (22) yields

_V2 eX, eY, eZ, ea, er, ef􏼐 􏼑

� − α1e
2
X − α2e

2
Y − α3e

2
Z

− ea
_􏽢a + e

2
X􏼓 − er

_􏽢r − e
2
Y􏼓 − ef

_􏽢f + e
2
Z􏼓.􏼒􏼒􏼒

(25)

According to equation (25), the parameters estimation
law can be designed as follows:
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_􏽢a � − e
2
X + β1(a − 􏽢a),

_􏽢r � e
2
Y + β2(r − 􏽢r),

_􏽢f � − e
2
Z + β3(f − 􏽢f),

(26)

where βj (j � 1, 2, 3) are positive constants. Based on the
designed estimation law given by equation (26), the de-
rivative of the Lyapunov function _V2(eX, eY, eZ, ea, er, ef) is
a negative defnite function that can be expressed as follows:

_V2 eX, eY, eZ, ea, er, ef􏼐 􏼑

� − α1e
2
X + α2e

2
Y + α3e

2
Z + β1e

2
a + β2e

2
r + β3e

2
f􏼐 􏼑.

(27)

Theorem 2. Te coupled synchronized master-slave chaotic
system that is given by equations (17) and (18) with the
unknown coefcients a, r, and f is globally stabilized via both
the designed control law given by equation (21) and the
updated parameters law that is given by equation (26), where
αj and βj (j � 1, 2, 3) are positive constants.

Proof. Te abovementioned theorem is a simple conse-
quence of Lyapunov’s second method for stability [112]. We
designed the Lyapunov function V2(eX, eY, eZ, ea, er, ef)

given by equation (23) to be a positive defnite function on
R6. In addition, its frst-order derivative (i.e.,
_V2(eX, eY, eZ, ea, er, ef)) given by equation (27) is a negative
defnite on R6. Terefore, based on Lyapunov’s second
method for stability, it follows that
eX(t), eY(t), eZ(t), ea(t), er(t), and ef(t) tend to zero ex-
ponentially as the time t tends to infnity, which completes

the proof that the master-slave system given by equations
(17) and (18) is globally stable. □

5.2. Numerical Simulation of Chaos Synchronization.
Based on equations (17)–(19), (21), and (26), the block di-
agram describing the sequential execution of the synchro-
nizedmaster-slave system is depicted in Figure 11.Te fgure
shows that the chaotic states of both the master and slave
systems (i.e., x(t), y(t), z(t), X(t), Y(t), and Z(t)) are
frstly fed into both the adaptive control law (i.e., equation
(21)) and parameters estimation law (i.e., equation (26))
using an appropriate sensors network simultaneously. Ten,
the parameter estimation law estimates the system param-
eters 􏽢a (t), 􏽢f(t), and 􏽢r(t) according to the predefned es-
timation rule (i.e., equation (26)) to feed them into the
adaptive control law. After that, the adaptive control law
computes the control signals U1(t), U2(t), and U3(t) based
on the input signals x(t), y(t), z(t),

X(t), Y(t), Z(t), 􏽢a (t), 􏽢f(t), and 􏽢r(t) to apply them to the
slave system in order to follow typically the same chaotic
motion of the master one.

Accordingly, the master-slave synchronized motion has
been simulated within this section via solving equations
(17)–(19), (21), and (26) numerically using MATLAB
ODE45 solver as shown in Figures 12 and 13 when the
system parameters a � 2, r � 4, f � 8, control gains
αi � βi � 2.0, (i � 1, 2, 3), and initial conditions
x(0) � y(0) � z(0) � 0.1, X(0) � Y(0) � Z(0) � 0.0001,

􏽢a(0) � 􏽢r(0) � 􏽢f(0) � 0.0. Figures 12(a)–12(c) illustrate the
instantaneous oscillations of both the master and slave
systems before synchronization (i.e.,

Slave System (Equation (18))
Ẋ = –aX + 7Y 2 + U1, Ẏ = rY – 11Z + U2,

Ż = –fZ + 5XY + U3

Adaptive Control Law (Equation (21))

U3 = f̂ eZ – 5(XY – xy) – α3eZ.

U1 = âeX – 7eY
2 – α1eX, U2 = –r̂eY + 11eZ – α2eY,

eX = X – x, eY = Y – y, eZ = Z – z,

eX = X – x, eY = Y – y, eZ = Z – z,

â̇ = –eX
2 + β1(a – â),  ṙ̂ = eY

2 + β2(r – r̂),

f̂  = –eZ
2 + β3( f – f̂ ).

Parameters Estimation Law (Equation (26))

ż = –fz + 5xy.
ẋ = –ax + 7y2, ẏ = ry – 11z,

Master System (Equation (17))
x (t)

U1 (t) U2 (t) U3 (t)

â (t) f̂  (t) r̂ (t)

y (t)

z (t)

X (t)

Y (t)

Z (t)

Figure 11: Block diagram of the master-slave synchronized chaotic system.
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Figure 12: Te evolution of the system time response before and after chaos synchronization when a � 2, b � 7, r � 4, g � 11, f � 8, c � 5,
control gains αi � βi � 2.0, (i � 1, 2, 3), and initial conditions x(0) � y(0) � z(0) � 0.1, X(0) � Y(0) � Z(0) � 0.0001, 􏽢a(0) � 􏽢r(0) �
􏽢f(0) � 0.0. (a–c) the evolution of both the master-slave systems states x(t), y(t), z(t), X(t), Y(t), and Z(t) before chaos synchronization
on 0≤ t< 20 and after chaos synchronization on 20≤ t≤ 40 and (d) the evolution of the system estimated parameters 􏽢a, 􏽢r, and 􏽢f.
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Figure 13: Te evolution of the chaotic system time response before and after chaos synchronization when the system parameters
a � 2, b � 7, r � 4, g � 11, f � 8, c � 5, control gains αi � βi � 2.0, (i � 1, 2, 3), and initial conditions x(0) � y(0) � z(0) � 0.1,

X(0) � Y(0) � Z(0) � 0.0001, 􏽢a(0) � 􏽢r(0) � 􏽢f(0) � 0.0. (a–c) the evolution of both the master and slave systems states
x(t), y(t), z(t), X(t), Y(t), and Z(t) before chaos synchronization on the interval 0≤ t< 20 and after chaos synchronization on the interval
20≤ t≤ 40 and (d) the evolution of the system estimated parameters 􏽢a, 􏽢r, and 􏽢f.
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U1(t) � U2(t) � U3(t) � 􏽢a (t) � 􏽢f(t) � 􏽢r(t) � 0) on the
interval 0< t< 20 and after turning on the synchronization
controller at t � 20 up to t � 40. In addition, Figure 12(d)
demonstrates the evolution of the estimated parameters
(􏽢a (t), 􏽢f(t), and 􏽢r(t)) after turning on the controller at
t � 20. It is clear from Figures 12(a)–12(c) that the un-
synchronized states of the slave system (i.e., X(t), Y(t), and
Z(t)) on the time interval 0< t< 20 have been forced to
follow the master system states when the controller is turned
on at t � 20 (i.e., X(t)⟶ x(t), Y(t)⟶ y(t), and
Z(t)⟶ z(t) when t> 20). Also, Figure 12(d) demonstrates
the exponential convergence of the estimated parameters to
the system parameters with time (i.e.,
􏽢a(t)⟶ a � 2, 􏽢f(t)⟶ f � 8, 􏽢r(t)⟶ r � 4 when
t> 20).

On the other hand, Figures 13(a)–13(c) show the tem-
poral oscillations of both the master and slave systems before
synchronization (i.e., U1(t) � U2(t) � U3(t) � 0) on the
time interval 0< t< 20 and after turning on the synchro-
nization controller at t � 20 up to t � 40. In addition,
Figure 13(d) depicts the evolution of the estimated

parameters (􏽢a (t), 􏽢f(t), and 􏽢r(t)) along the time interval
0< t< 40. It is clear from Figures 13(a)–13(c) that the un-
synchronized states of the slave system (i.e., X(t), Y(t), and
Z(t)) on the time interval 0< t< 20 have been forced to
follow the master system states as soon as the controller is
turned on at t � 20 faster than that in Figures 12(a)–12(c)
(i.e., X(t)⟶ x(t), Y(t)⟶ y(t), and Z(t)⟶ z(t)

when t≥ 20). Moreover, Figure 13(d) demonstrates the
abrupt convergence of the estimated parameters to the
system parameters when t≥ 20 (i.e.,
􏽢a(t)⟶ a � 2, 􏽢f(t)⟶ f � 8, 􏽢r(t)⟶ r � 4 when ≥20).

By comparing Figures 12 and 13, one can notice that in
Figure 12, both the control signals and the estimated pa-
rameters have been set to zero on the time interval 0< t< 20
(i.e., both the adaptive control law and the parameters es-
timation law have been stopped from t � 0 up to t � 20), but
in Figure 13, the control signals only have been set zero on
the time interval 0< t< 20 (i.e., the adaptive control law has
been stopped from t � 0 up to t � 20 but the parameters
estimation law is activated from t � 0 up to t � 40). It is clear
from Figure 13(d) that the estimated parameters 􏽢a(t), 􏽢f(t),
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Figure 14: An electronic circuit to simulate the proposed chaotic system given by equation (1) using MultiSim.
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and 􏽢r(t) are very close to the actual system parameters a �

2, f � 8, and r � 4 on the time interval 0< t< 20 even
though the adaptive controller has stopped. So, as soon as
the controller is turned on at t � 20, the correct control
signals have been applied to the slave system, which makes it
abruptly follows the master system from t � 20 up to t � 40.
Accordingly, to make the slave follows the master system
exactly at a short transient time, it is recommended to ac-
tivate frstly the parameters estimation law before turning on
the adaptive control law to avoid the transient time required
by the adaptive controller to compute the correct control
signals, which was of 4 time steps approximately as shown in
Figure 12.

6. Nonlinear Circuit Design

Using MultiSim software (Version 13.0), the proposed cha-
otic system (1) has been simulated within this section using an
electronic circuit consisting of fve operational amplifers (i.e.,
U1A − U5A) as shown in Figure 14, where three of these
amplifers serve as analog integrators (i.e., U1A − U3A) while
the other two are employed as inverting amplifers (i.e.,
U4A,U5A). According to this electronic circuit, the straight-
forward equations ofmotion that govern the states x, y, and z

shown in Figure 14 can be expressed as follows:

_x � −
1

R1C3
􏼠 􏼡x +

R8

10R2R5C3
􏼠 􏼡y

2
,

_y �
R8

10R3R5C1
􏼠 􏼡y −

1
R4C1

􏼠 􏼡z,

_z � −
1

R6C2
􏼠 􏼡z +

R10

10R7R9C2
􏼠 􏼡xy.

(28)

Based on equation (28), the circuit components are
designed such that R1 � 5kΩ, R2 � 0.14285kΩ,

R3 � 2.5kΩ, R4 � 0.909kΩ, R5 � 100kΩ, R6 � 1.25kΩ, R7 �

0.2kΩ, R8 � 100kΩ, R9 � 100kΩ, R10 � 100kΩ, and
c1 � c2 � c3 � 1nF. Relying on these designed parameters,
the circuit output has been visualized using the Multisim
oscilloscope as in Figure 15. Figure 15(a) shows the chaotic
attractor when the circuit outputs x and y are the input
channels to the oscilloscope. In addition, Figure 15(b) shows
the phase plane trajectory when the circuit outputs y and z

are the input channels to the oscilloscope. Moreover,
Figure 15(c) illustrates the phase plane when the circuit
outputs x and z are the input channels to the oscilloscope. By
comparing Figure 3 with the simulation results in Figure 15,
one can notice the typical correspondence between the
numerical solutions in Figure 3 and the output of the
electronic circuit shown in Figure 15. Accordingly, one can
confrm the possible implementation of the introduced
chaotic system for diferent engineering applications such as
secure communications, cryptosystems, image processing,
and image encryption.

7. Conclusion

A novel three-dimensional autonomous chaotic oscillator
having both four linear terms and two quadratic nonlinear
terms with six parameters has been studied in this work. Te
system’s dynamics are explored utilizing Lyapunov expo-
nents, bifurcation diagrams, Kaplan–Yorke dimension, time
response, and phase plane trajectories. Te obtained results
demonstrated that the proposed dynamical system may
perform periodic, period-n, or chaotic oscillations
depending on the designed values of its parameters. In
addition, the obtained bifurcation diagrams illustrated that
the considered system does not lose its chaotic oscillations
for the small fuctuations of one or more of the values of its
parameters. Moreover, adaptive control strategies based on
Lyapunov’s second method of stability have been applied for
the purposes of chaos control and chaos synchronization.
Te numerical simulation proved that the designed adaptive
control laws can achieve superior chaos control and master-

(a) (b) (c)

Figure 15: Phase portrait obtained using MultiSim with X: 0.5V/div, Y: 0.5V/div, and Z: 0.5V/div: (a) x(t) versus z(t), (b) y(t) versus
z(t), and (c) x(t) versus z(t).
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slave synchronization. Finally, a simple electronic circuit
that simulates the system dynamics demonstrated the fea-
sibility of the designed chaotic system for diferent engi-
neering applications.
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[104] İ. Pehlivan and Y. Uyaroğlu, “A new 3D chaotic system with
golden proportion equilibria: analysis and electronic circuit
realization,” Computers & Electrical Engineering, vol. 38,
no. 6, pp. 1777–1784, 2012.

[105] M. Borah, J. P. Singh, and B. K. Roy, P. P. Singh, On the
construction of a new chaotic system,” IFAC-PapersOnLine,
vol. 49, no. 1, pp. 522–525, 2016.

[106] F. Yu and C. Wang, “A novel three dimension autonomous
chaotic system with a quadratic exponential nonlinear term,”
Engineering, Technology & Applied Science Research, vol. 2,
no. 2, pp. 209–215, 2012.

[107] M. Tuna and C. Fidan, “A Study on the importance of chaotic
oscillators based on FPGA for true random number gen-
erating (TRNG) and chaotic systems,” Journal of the Faculty
of Engineering and Architecture of Gazi University, vol. 33,
no. 2, pp. 473–491, 2018.

[108] M. Tuna, M. Alçın, I. Koyuncu, C. Fidan, and I. Pehlivan,
“High speed FPGA-based chaotic oscillator design,” Mi-
croprocessors and Microsystems, vol. 66, pp. 72–80, 2019.

[109] M. Tuna, A. Karthikeyan, K. Rajagopal, M. Alcin, and
İ. Koyuncu, “Hyperjerk multiscroll oscillators with mega-
stability: analysis, FPGA implementation and a novel ANN-
ring-based true random number generator,” AEU - In-
ternational Journal of Electronics and Communications,
vol. 112, Article ID 152941, 2019.

[110] P. Prakash, K. Rajagopal, I. Koyuncu et al., “A novel simple 4-
D hyperchaotic system with a saddle-point index-2 equi-
librium point and multistability: design and FPGA-based
applications,” Circuits, Systems, and Signal Processing,
vol. 39, no. 9, pp. 4259–4280, 2020.

[111] A. T. Azar and S. Vaidyanathan, “Advances in chaos theory
and intelligent control,” Studies in Fuzziness and Soft
Computing, Springer-Verlag, vol. 337, Berlin, Germany,
2016.

[112] H. K. Khalil, Nonlinear Systems, Prentice Hall, Hoboken, NJ,
USA, 2001.

Shock and Vibration 19




