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A simplifed theoretical model of the AERORail vehicle-bridge coupling system and a corresponding numerical simulation system
in Simulink are established. Based on several widely used methods for modelling and simplifying vehicle systems, the Simulink
simulation system used in this study, including the vehicle system and the bridge (AERORail) system, is presented. Identifcation
examples using amoving loadmodel and a simplifed 1/4-scale vehicle model are established.Te simulation results agree with the
data of the simplifed dynamic model, with errors between 2.9% and 4.72%, and a satisfactory accuracy is achieved even for single-
point signal identifcation, thereby verifying the correctness of the simplifed dynamic model of the AERORail system and the
improved time-domain method based on the method of moments.

1. Introduction

Te AERORail transportation system, referred to as
AERORail, is a new type of cable-rail composite structure
consisting of multispan continuous chord cables, rails, lower
supports, and related power and control systems [1] and is
somewhat similar in appearance to existing cable-supported
suspension bridges (Figure 1). However, in contrast to
traditional bridges, the AERORail structure uses steel as the
structural material instead of concrete and prestressed
concrete (PC) for the superstructure, eliminates the heavy
bridge deck in traditional bridges, and forms a spatial force-
resisting system by directly using the steel rail and the chords
together. Te structural stifness is mainly derived from the
stress stifness formed by the pretensioning of the chord
cables, and the system exhibits the obvious characteristics of
a fexible structure.

Traditional light rail systems often require the con-
struction of heavy girders to carry the rail and vehicles, such
as the PC rail girders and steel box rail girders used in the
Chongqing light rail [2], the PC channel girders used in the

Shanghai rail transit system, and the German-made sus-
pended sky train planned for introduction in Ningbo [3].

Compared with the abovementioned traditional struc-
tures, AERORails have the advantages of a simple structural
form, low construction cost, less resource consumption, fast
construction speed, and low impact on the environment. In
view of the large proportion of steel structure in AERORails
and the need for concrete and earthwork only for the
foundation, these systems can be constructed at a fast pace
with relatively little pollution to the environment. Moreover,
the superstructure of an AERORail occupies only a small
space, and its structure is completely hollowed out and easy
to see through; hence, it has little impact on the natural or
urban landscape. Terefore, AERORails have signifcant
advantages in terms of environmental protection.

Research on the AERORail structure has mainly focused
on its static and dynamic behaviour. Researchers at Tongji
University preliminarily verifed the feasibility of the
AERORail structure using 1 : 20 and 1 :15 scale models and
used a virtual prototype to investigate the dynamic and static
behaviour of the structure [4, 5]. Tey conducted numerical
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analysis on the static defections of AERORails with diferent
spans under diferent loads and pretensions and experi-
mentally verifed the numerical results using a 1 :1 full-scale
AERORail model. On this basis, they investigated the dy-
namic defection responses of AERORails with diferent
spans using vehicle-bridge coupling theory.

Studies have demonstrated that the cable stress in-
crement, dynamic defection, and structural stifness of the
AERORail structure do not change signifcantly under low-
speed moving loads, that the structural stifness increases
signifcantly with increasing cable force and midspan sup-
port height, and that there is a nonlinear relationship be-
tween vehicle speed and dynamic defection [4, 5]. Although
these studies have preliminarily revealed some of the static
and dynamic characteristics of the AERORail structure, their
results are still inadequate for the further development of
related research and engineering applications.

In practical engineering, the consideration and selection
of loads are the frst and also one of the most important steps
in designing a structure. Static loads are often determined
based on statistical data from feld investigations and using
a safety factor to ensure a certain level of structural per-
formance [6]. Dynamic loads, including moving loads and
dynamic loads in the narrow sense, come from efects of the
external environment on the structure, such as wind, an
earthquake, or an explosion. Tese efects are collectively
referred to as the external excitation. Te dynamic response
of a structure, including its acceleration, velocity, and dis-
placement, is the result of the interaction between the
structure’s own properties and the external excitation. In
some cases, the structure has little efect on the excitation
(e.g., earthquake), but there are many cases of coupling (e.g.,
wind-induced vibration and wave action), for which the
research often has a high degree of complexity. Compared to
the traditional problem of fnding the vibrational response
with known structural parameters and external excitations,
the study of excitation, especially the calculation of exci-
tation based on existing responses and structural parame-
ters, is an inverse problem that emerged late in the study of
vibration systems, i.e., the dynamic load identifcation
problem.

Dynamic load identifcation technology was initially
developed in the 1970s and was frst used for military
purposes. Currently, the mainstream dynamic load identi-
fcation methods include time-domain methods (TDMs)

and frequency-domain methods (FDMs). FDMs are based
on the Fourier transform or the Laplace transform. By
establishing a transformation relationship between the ex-
citation and response in the frequency domain (such as the
frequency response function), the corresponding excitation
can be calculated from the measured response. FDMs were
studied earlier and are relatively mature, but they impose
a requirement on the sample length of the response signal (it
must usually be longer than a specifed length). Terefore,
FDMs are generally used only for stationary random loads or
steady-state dynamic loads [7]. TDMs are usually based on
the kinetic equations of the system. By inverting the con-
volution integral of structural responses, the dynamic load
applied to the structure is determined throughout the time.
Te responses used in identifcation can be displacement,
velocity, and acceleration. Some classic methods in the time
domain are the deconvolution method, weighted accelera-
tion method, and function ftting method [8, 9]. In recent
years, a series of new methods have also been reported, such
as time fnite element methods, inverse system methods,
neural network-based methods, and transformation with
orthogonal wavelet operators [10]. In contrast to FDMs,
TDMs are sensitive to boundary conditions and initial
values, but they can be used for nonlinear systems and to
identify transient impact loads [11, 12], and their identif-
cation accuracy is not infuenced by the signal acquisition
method [13, 14]. Additionally, TDMs can capture the actual
history of time-dependent loads at each specifc time in-
crement. Tis history of load usually has a clear physical
meaning and is therefore more practical to guide the design
and improvement of AERORail structure.

In bridge engineering, there is another branch of dy-
namic load identifcation—moving load identifcation. In
contrast to general dynamic load identifcation, moving load
identifcation mostly involves vehicles traveling on bridges.
It is very important to determine the dynamic efect of
moving vehicles on the structure in bridge design and
construction. However, because the interaction between the
two is closely related to the design parameters of the bridge,
the design parameters of the vehicles, and the driving speed,
the force between each vehicle and the bridge is often dif-
fcult to quantify accurately. Terefore, it is necessary to
calculate the force between each vehicle and the bridge using
the dynamic load identifcation method [15]. A very
prominent feature of moving load identifcation is that the

Figure 1: Schematic diagram of an AERORail transportation system.
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action point of the external excitation changes with time. As
a result, some traditional methods for dynamic load iden-
tifcation, such as frequency response function inversion,
cannot be directly applied to moving load identifcation.
Based on the advantages of TDMs, we use a time-domain
method which is improved by the method of moment to
identify the contact force between the vehicle and the
structure.

To verify whether the improved time-domain method
(ITDM) can capture the dynamic load applied on the
structure, a simplifed structure-vehicle model is used in the
test case. Tis simplifed model is a system of partial dif-
ferential equations (ODE) containing both the vehicle and
the structure’s kinetic equations, where the structural and
material parameters of AERORail are utilized. Te solution
of this system is obtained by Simulink.

Te article is structured as follows: Section 2 proposes
a system of ODEs as a simplifed structure-vehicle model,
which is used in the next section for verifcation. Te nu-
merical procedures to solve the equations are also in-
troduced therein.Te theory and numerical implementation
of ITDM are briefy explained in Section 3. To fully in-
vestigate ITDM’s ability of capturing the dynamic external
load, two test cases with a moving force and a ¼ vehicle
model are presented in Section 4. Te summary of main
conclusions of this study is provided in Section 5.

2. Simplified Dynamic Numerical Model of an
AERORail System

Te joint vibration efect of vehicle and bridge structures,
i.e., vehicle-bridge coupled vibration, is an important
property in bridge structural dynamics. In engineering
practice, usually due to the limitations of the calculation
method and time cost, only the vibration of the bridge itself
is considered, or each vehicle is simplifed as a moving mass
block in structural analysis and verifcation, which clearly
fails to fully and truly refect the efect of vehicle-bridge
coupled vibration. Generally, to comprehensively consider
the vehicle-bridge coupled vibration problem, the vehicle
dynamics, rail dynamics, and wheel-rail contact relationship
should be considered and analysed as a whole coupled
system. To this end, Hwang and Nowak [16], Wang and
Huang [17], Yang et al. [18, 19], Tan et al. [20], and
Kwasniewski et al. [21] proposed numerical vehicle-bridge
coupling models based on beam elements, plane bar systems,
or solid simulation models, which gradually achieved results
with satisfactory accuracy and were relatively consistent with
experimental results.

In these vehicle-bridge coupling models, there are four
vehicle model options (Figure 2).

(1) TeMoving Mass Model (Figure 2(a)).Te calculated
midspan defection of the bridge is relatively large
and can refect the vibration of some vehicles and
bridges;

(2) Te 1/4-Scale Vehicle Model (Figure 2(b)). Tis
model increases the fuctuation of the defection

response relative to the moving mass model, and the
calculation results of the two models are similar.

(3) Te 1/2-Scale Vehicle Model (Figure 2(c)). Te cal-
culated maximum defection is relatively small, and
the defection results fuctuate greatly.

(4) Te Full Vehicle Model (Figure 2(d)). Tis model
generates accurate results and can represent the
vibration efect caused by “swaying motions” and
“nodding motions,” but its calculation is complex
and costly.

Notice that in the rest of the paper, the coordinate system
of the beam is along its axis with the origin at the end where
the load/vehicle makes the frst contact with the beam.

Tere are some assumptions shared by these vehicle
models:

(1) Te friction force between wheels and the structure is
ignored. Tis is mainly because the defection is
a major concern in structural safety; therefore, the
vertical load is what engineers care more about.

(2) Te kinematics of vehicle systems does not take
ambient vibrations (for example, vibration from the
motor) into account.

(3) Te parameters assigned to the systems are from
numerical analysis or an investigation of the liter-
ature. Tere could be the diference between these
chosen parameters and the real properties of the
structure.

For the dynamic load identifcation problem considered
in this study, the full vehicle model and the 1/2-scale vehicle
model are too complex, the 1/4-scale vehicle model is ap-
propriate, and the moving mass model is computationally
simple and can be used as a simplifed model for practical
calculation. In the following, the simplifed 1/4-scale vehicle
model and the moving load (ML) model are used to calculate
the vehicle-bridge coupled vibration of the AERORail
structure using modal decomposition. Ten, this numerical
simulation system is used to verify the improved TDM
(ITDM) based on the method of moments.

2.1. Simplifed Dynamic Numerical Model of the AERORail
Structure. It is assumed that a vehicle moving on the
AERORail structure can be simplifed as a vibration system
composed of masses, springs, and dampers. Taking the
single-degree freedom system as an example, the vibration
equation can be expressed as the following equation:

mc €wc + cc _wc + kc wc − w(ct)(  � fct − mcg, (1)

where mc, cc, and kc are the mass, damping, and contact
stifness, respectively, of the simplifed vehicle system; wc is
the vertical displacement of the centre of mass of the
simplifed vehicle system relative to the geodetic coordinate
system; w(ct) is the defection of the bridge at the coordinate
ct at time t, where c is the moving speed of the vehicle
system; fct is the contact force between the vehicle system
and the bridge system; and mcg is the gravitational force on
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the vehicle system. Te corresponding vibration equation of
the bridge structure can be expressed as the following
equation:

€qn + 2ξnωn _qn + ω2
nqn �

2
ρbLb

sin
nπct

Lb

 fct, (2)

where qn is the modal displacement, ξn is the modal damping
ratio, ωn is the modal circle frequency, ρb b is the linear mass
of the beam, Lb is span, and n is the order. Notice that the
bridge structure here is assumed to be an Euler-
Bernoulli beam.

Te above two equations and their parameters together
form a simplifed dynamic numerical model of the
AERORail. Te vibration diferential equations of this
coupled system can generally be solved using the Newmark-
β and Wilson-θ methods. In this study, Simulink is used to
build a simulation system of the model, and the ode45 solver
is employed to solve the equations using the 4/5th-order
Runge–Kutta method.

2.2. Calculation Module of the Vehicle System. To build
a calculation module using Simulink, it is necessary to frst
change the vibration diferential equation into a form that
can be directly calculated by the integrator, that is, an explicit
expression of acceleration. By slightly rearranging terms in
equation (1), we obtain

€wc �
1

mc

fct − g  − 2ξcωc _wc + ω2
c wc − w(ct)(  . (3)

Te constant parameters in equation (3) that must be
determined in advance are ξc,ωc,mc (ormc, kc, and ξc), c and
g, where g is the acceleration of gravity.Te defection of the
contact point, w(ct), must be “input” from the outside
continuously to calculate the contact force, fct, which is

“output” continuously.Te calculationmodule of the vehicle
system in Simulink is shown in Figure 3.

To make the vehicle system enter the bridge structure
“smoothly,” it is necessary to eliminate the transient vi-
bration of the vehicle system caused by gravity at the be-
ginning of the calculation. To this end, the following initial
integration condition is introduced into the integrator:

wc

t�0 �
mcg

kc

. (4)

To simulate multivehicle or multiwheels conditions, it is
only necessary to make multiple copies of this module and
connect them to the calculation process.

Te contact force in Figure 3 is an interface to the
AERORail calculation module, in which the location and the
value of the load are the current coordinate and the contact
force of the vehicle. Notice that the contact force itself as an
unknown is solved together with other variables in the
Simulink using an explicit solver.

2.3. CalculationModule of the AERORail System. Te modal
acceleration of the bridge structure, i.e., the AERORail
structure, is expressed as follows:

€qn �
2

ρbLb

sin
nπct

Lb
  fct − 2ξnωn _qn + ω2

nqn , (5)

where the constant input parameters are ρb, Lb, c, ξn, and ωn.
Te contact force fct is obtained from the vehicle system
calculation module. Te single-mode vibration calculation
module of the AERORail system in Simulink is shown in
Figure 4.

Te module in Figure 4 is a single-mode vibration
calculation module. Because the multimode vibration re-
sponse must be calculated in the simulation, it is necessary to

m

(a)

k_c c_c
m_c

(b)

cK1

K2
m2

cK1

K2
m2

m

(c)

ck1

k2

m2

m2

m2

ck1

k2

ck1

k2

m1

(d)

Figure 2: Four vehicle model options. ki, mi, and ci represent the springs, masses, and dampers in a kinematic system, respectively. (a)
Schematic diagram of the moving mass mode. (b) Schematic diagram of the 1/4-scale vehicle model. (c) Schematic diagram of the 1/2-scale
vehicle model. (d) Schematic diagram of the full vehicle model.
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make multiple copies of this module according to the re-
quired number of modes and call them in parallel in the
calculation.

Te locs and f (t) in the AERORail calculation module
are the current coordinates and values of the excitation force.
For example, when vehicle module is linked to the system,
locs1 and f (t) 1 are the coordinates and contact force (see
Figure 3) of the frst ¼ vehicle model. Te vehicle’s co-
ordinates are taken care of by an overall control unit which
evaluates locs1� ct at every simulation instance. Moreover,
in the moving load example, the f(t)1 is not an unknown
but a known function predefned by the user.

Since the structural modes are used in the ODE, the
structural responses at certain points, such as defections,
speeds, and accelerations, are recovered from the simulation
results using the amplitudes of all structural modes involved
in the simulation.

3. ITDM Based on the Method of
Moments (MoM)

TDMs for identifcation exhibit instability in practical
identifcation, which is mainly refected in the large size and
severe ill-conditioning of the solution matrix [22–24]. In the

area of antennas, microwaves, and electromagnetic waves,
the method of moments is a widely accepted tool to address
this issue. As a long-established procedure in the statistics,
the method of moments provides a good estimation that
matches the true and sample moments. Since the mathe-
matics of inversing the convolution integral equations are
replaced by statistic estimation, the algorithm’s stability and
the solution’s quality are signifcantly improved.

We present here a brief introduction to theMOM [A] for
an inhomogeneous equation as follows:

D(f) � g, (6)

with L, g, and f being the linear operator, a known forcing
function, and an unknown function, respectively. Given a set
of basis functions fn that are nearly independent, an ap-
proximate solution of f can be expressed as follows:

f � 

N

n�1
anfn, (7)

where an are weighting coefcients to be determined. In
a Hilbert space, the inner product of functions f and g is
defned as follows:

1
k

u ×

×

×

×

×

×

4

4

Divide5
Divide

Divide1

Divide2
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Divide3

Sqrt

2
C

3
m

9.8

g

×
×

×

×

ξ

Add3

Add
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4
BeamDef
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1
sx0

vel

1

1

s

ContactForce

Figure 3: Schematic diagram of the Simulink calculation module of the vehicle system.
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〈f, g〉 � 
Ω

f · g dΩ. (8)

Te solution to equation (5) is obtained when the inner
product of residual εn and M selected test functions qm

equals zero.



N

n−1
〈qm, εn〉 � 0, form � 1, 2, . . . , M,

εn � anD fn(  − g.

(9)

Equation (9) can be written in the followingmatrix form:

L a
→

� g
→

,

L �

〈q1, L f1( 〉 〈q1, L f2( 〉 · · · 〈q1, L fN( 〉

〈q2, L f1( 〉 〈q2, L f2( 〉 · · · 〈q2, L fN( 〉

⋮ ⋮ · · · ⋮

〈qM, L f1( 〉 〈qM, L f2( 〉 · · · 〈qM, L fN( 〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

q �

q1

q2

⋮

qM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

10
locs2

locs1

9

8

f (t)2

f (t)1

1

3
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N
2
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×

×

×

×

2

ωncon3
C

con2

con1

2

2

uv

x^2
Pn3

Pn2

con Pn1

×
Add1

Add2

Fn1

Fn2

locs
Vc
f (t)
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Figure 4: Schematic diagram of the single-mode vibration calculation module of the AERORail system in Simulink.
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f �

f1

f2

⋮
fN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

g �

〈h1, g〉
〈h2, g〉
⋮
〈hM, g〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a �

a1

a2

⋮
aN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10)

Teoriginal TDM is to solve the following equations atN
sampling instances of acceleration:

€w � 
∞

n�1
DxnAnfct,

Dxn �
2

ρbLb

sin
nπx

Lb

,

Hn(k) �
∆t

ωn

€hn(k),

S(k) � sin
nπc∆t

Lb

k ,

An �

S(1) 1 + Hn(0)(  0 · · · 0

Hn(1)S(1) S(2) 1 + Hn(0)(  · · · 0

⋮ ⋮ ⋱ ⋮

Hn(N − 1)S(1) Hn(N − 2)S(2) · · · Hn N − Nc( S Nc( 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

€w � €w1 €w2⋮ €wN ,

fct �

fct,1

fct,2

⋮

fct,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11)

where €hn(k) is the unit impulse response incurred by ex-
citation at k-th sampling instance corresponding to the n-th
mode with damping, An is a coefcient matrix corre-
sponding to n-th structural mode, Nc is the number of
sampling points to the moving force, and €w is the column of
accelerations samples.

Using Legendre polynomials pi up to the Np-th order as
a set of orthogonal basis functions yields equation (13):

f
→

ct,j � 

Np

i�1
piαi. (12)
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Using the Dirac function δ(t − tj) as the test function,
the resultant discrete equations of acceleration and excita-
tion force read [25]:

€w � 
∞

n�1
DxnAn

⎛⎝ ⎞⎠fct. (13)

Equation (9) is the system of linear equations for the
ITDM based on the method of moments. Let

B � 
∞

n�1
DxnAn,P � Pi tj . (14)

Ten, equation (9) can be simplifed as follows:

€w � BPα. (15)

Solving it using the least squares method yields the
following equation:

α � (BP)
T

(BP) 
− 1

(BP)
T

€w . (16)

An approximate solution of the moving load is obtained
by substituting equations (16) into (12).

In order to investigate the weight of Legendre poly-
nomials of diferent orders, we plot the values of αi in
equation (15) obtained from single-point and multipoint
identifcations in Figure 5.

In fact, α approaches zero when Np is greater than
a threshold value.Te physical meaning of this phenomenon
is that in practical calculations, using Legendre polynomials
beyond a threshold order has a little infuence on the cal-
culation results. Empirically choosing an appropriate order
Np of Legendre polynomials helps improve the computa-
tional efciency without sacrifcing computational accuracy.

4. Simplified Dynamic Model of AERORail and
Examples of TDMs for Identification

To verify the correctness of the ITDM based on the method
of moments and to ensure that the two theories are con-
sistent and the calculations are properly connected, two
identifcation examples are given in this section with moving
loads (ML) and a simplifed 1/4-scale vehicle model [26].

Moving loads model is probably the simplest case in the
realm of load identifcation. However, it is very useful when
validating algorithms and corresponding implementations,
since the input is clearly defned. Te ¼-scale vehicle model
is adopted to test the method’s ability in a close-to-reality
scenario, where the structure-vehicle interaction is the
dominant efect.

Te calculation process and results of these two examples
are aforementioned.

4.1. Example with the ML Model. Te parameters of the
simply supported beam simulated in this example are shown
in Table 1. Te listed parameters are based on the numerical
estimation of an under-construction AERORail structure.

Te ML is expressed as follows:

p1 � 50000N,

p2 � 5000 sin(4πt)N,

p3 � 2500 sin(15πt)N,

p4 � 2500 sin(40πt)N,

p(t) � p1 + p2 + p3 + p4N.

(17)

Te ML p(t)-t curve is plotted in Figure 6.
By substituting the load and parameters into the sim-

plifed dynamic model of the AERORail, the accelerations at
the 1/4, 1/2, and 3/4 spans of the beam and the defection at
the 1/2 span of the beam are calculated, and the results are
shown in Figures 7 and 8.

Te acceleration curves indicate that the acceleration
oscillation of the beam gradually increases as the moving
load moves and gradually decreases after the load approx-
imately passes the midspan. Te defection increases to the
maximum when the moving load moves near the midspan
and then gradually returns to the equilibrium position and
performs free damped vibration. Tis calculation result is
close to the actual engineering experience, indicating that
the simplifed dynamic numerical model of the AERORail
can meet the calculation requirements to a certain extent.

Te acceleration time history of the beam at the 1/2 span
is used as the response sample. Te signal is resampled with
a frequency of fs � 200Hz and input together with the
parameters of the simply supported beam of the ML model
in Table 1 into the calculation program of the ITDM based
on the method of moments. Te calculation fow of the
program is shown in Figure 9.

20

α i

i
30 40 50 60 70 80 90 1000 10

single-point
multipoint

-50

-40

-30

-20

-10

0

10

Figure 5: Relationship between αi and i.

Table 1: Parameters of the simply supported beam in the
ML model.

Parameters ρb f1 f2 f3 Lb ξ1 ξ2 ξ3 c

Units kg/m Hz m % % % km/h m/s
Values 2000 4 16 36 20 2 2 2 72 20
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Legendre polynomials of order m� 100 are used in the
identifcation calculation to obtain the identifed moving
load p(t)-t curve, as shown in Figure 10(a).

According to Figure 10(a), the diference between the
identifcation result and the original result is small at the
start and end time points, and the error is approximately
4.72% at the middle time point. By adding the acceleration

signal at the 1/4 span of the beam as the identifcation input,
the identifcation result shown in Figure 10(b) is obtained.
Te identifcation result essentially coincides with the
original moving load p(t)-t curve, exhibiting high accuracy.

Te condition number is the most commonly used
metric at present to measure the degree of ill-conditioning of
a matrix in engineering applications and theoretical studies
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Figure 6: Time history of p(t).

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0
t (s)

1/4 span
1/2 span
3/4 span

w 
(m

/s
2 )

-1.0

-0.5

0.0

0.5

1.0

Figure 7: Time history of acceleration of the ML model.
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Figure 9: Flowchart of the ITDM based on the method of moments.
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Figure 10: Time history of moving load p(t) curve. (a) Based on single-point identifcation. (b) Based on multipoint identifcation.

Table 2: Matrix condition numbers for diferent identifcation methods.

Single-point/original Single-point/improved Multipoint/original Multipoint/improved
Unit 1 1 1 1
Condition numbers 6.15 × 1013 2.32 × 104 3.51 × 1013 1.41 × 104
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Figure 11: Time history of acceleration at diferent spans using the vehicle system model.
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[27]. Te larger the condition number is, the closer the
eigenvalue is to zero and themore severe the ill-conditioning
of the matrix. To verify that the ITDM is superior to the
original TDM, the matrix condition numbers in the cases of
single-point identifcation and multipoint identifcation are
calculated and listed in Table 2.

In 0, it was shown that the ITDM efectively reduces the
matrix condition number and improves the matrix state,
making the linear equations easier to solve.

4.2. Example with a Simplifed 1/4-Scale Vehicle System.
Te parameters of the simply supported beam in this ex-
ample are the same as those in the above example. Te
parameters of the vehicle system are consistently selected as
follows: mc � 5000 kg, kc � 100000N/m, and ξc � 0.15. Te
accelerations at the 1/4, 1/2, and 3/4 spans of the beam and
the defection at the 1/2 span of the beam are calculated, and
the results are shown in Figures 11 and 12.

Te identifcation results are shown in Figure 13.
Te ITDM based on the method of moments performs

reasonably well in identifying the vehicle systemmodel, with
only a small error (∼2.9%) in the single-point recognition

when the vehicle travels to the midspan. Tis example
demonstrates that the ITDM is also applicable to systems
with a bridge-vehicle-coupled vibration efect.

5. Conclusions

In the present study, the authors explored the application of
an improved time-domain identifcation method to
a structure-vehicle system, which is a simplifed kinetic
model of the novel structure AERORail. Te ability of the
ITDM is verifed under the moving loads and ¼ vehicle
cases. Te main conclusions are as follows:

(1) Te acceleration curves demonstrate that the ac-
celeration oscillation of the beam gradually increases
as the moving load moves and gradually decreases
after the load passes the midspan, and that the dy-
namic defection increases to its maximum when the
moving load moves near the midspan, after which it
gradually returns to the equilibrium position and
performs free damped vibration.

(2) Te simplifed dynamic numerical model of
AERORail meets the requirements for carrying out

𝑤
/ 0

.5
L b (m

m
)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0
t (s)

-5

-4

-3

-2

-1

0

1

Figure 12: Time history of defection at the 1/2 span of the beam using the vehicle system model.
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Figure 13: Moving load p(t)-t curve based on identifcation. (a) Based on single-point identifcation. (b) Based onmultipoint identifcation.
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AERORail vibration calculations under the ML
model. Te ITDM based on the method of moments
performs excellently in the identifcation of the ML
during the simulation, and the feasibility of the al-
gorithm is verifed. Multipoint identifcation is more
accurate than single-point identifcation, but the
single-point identifcation results still have reliable
accuracy.

(3) Te diference between the load identifcation results
and the original results is small at the start and end
time points, and the error is approximately 4.72% at
the middle time point. By adding the acceleration
signal at the 1/4 span of the beam to the identifcation
inputs, the identifcation result essentially coincides
with the original moving load p(t)-t curve with high
accuracy.

(4) Te ITDM efectively reduces the matrix condition
number and improves the matrix state, making the
system of linear equations easier to solve. However,
the order m of the Legendre polynomials should be
selected appropriately since using an excessively high
value of m does not substantially improve the cal-
culation results.

(5) Te results of numerical examples indicate that the
ITDM has good accuracy. Te calculation results are
in almost perfect agreement with the true values,
with errors between 2.9% and 4.72%, and satisfactory
accuracy is achieved even in single-point signal
identifcation.

Te above conclusions are based on the estimated
structural properties (stifness, modes, and weight) of the
AERORail and the ODE-based structure-vehicle model.
Although the verifcation is limited to the numerical do-
main, it still shows the potential of the future application of
the ITDM to the real AERORail and other civil engineering
structures alike.
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