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Modal mass is one of the modal parameters that are required to defne the dynamic behavior of a structure when a modal model is
used. In experimental modal analysis (EMA), modal masses are the least reliable modal parameter, while in operational modal
analysis (OMA), modal masses cannot be estimated because the exciting forces are not measured. In this paper, the concept of
cross-length between mode shapes is formulated for continuous and discrete systems, and important properties are derived from
this defnition. It is demonstrated that the cross-length is zero for all modes in constant mass density systems. For structures
consisting of parts with diferent mass density, equations that relate the partial cross-lengths over the diferent volumes and the
total masses of the diferent parts can be formulated for each mode, i.e., there is a relationship between the cross-length and the
total mass of the parts with diferent mass density. Te equations proposed in the paper have been validated through numerical
simulations and experimental testing on two lab-scaled structures. Tis methodology can also be applied as a correlation
technique, specifcally to determine how the mass is distributed in the structure, as well as a technique to construct a proportional
FRF in constant mass density systems.

1. Introduction

When a modal model is used in structural dynamics to
describe the dynamic behavior of a structure, four modal
parameters are required: natural frequencies, modal masses,
mode shapes, and damping ratios. In experimental modal
analysis (EMA), modal mass is the least reliable parameter,
and it is also highly sensitive to response magnitude.

In operational modal analysis (OMA), modal masses
cannot be estimated because the forces are not measured.
Terefore, several techniques for scaling mode shapes (mass
normalization) have been extensively studied in recent years.
According to Brandt [1], these methodologies can be divided
into the following categories:

(1) Methods based on the repetition of OMA tests with
several confgurations of the structure (modifying its
dynamic behavior). Tese methodologies are mainly
based on changing the mass of the structure [2–5]

and have been successfully validated in practical
applications [2–5]. However, performing static mass
modifcations can be challenging in real applications,
such as civil structures where large masses are re-
quired. Several methodologies have been proposed
to overcome this inconvenience. In bridges, moving
vehicles can be used to modify the mass of the
structure [6–10], but the trafc must shut down.
Sheibani et al. [11, 12] proposed to consider trafc
loading as the source of mass modifcation.

(2) Methods based on operational modal analysis with
exogenous inputs (OMAX) where the unmeasured
environmental excitation is complemented with an
additional measured force provided by external ac-
tuators [13–15].

(3) Methods relying on OMA tests with the use of
specifc dynamic systems coupled to the main
structure, such as tuned-mass dampers (TMD) [16]
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or by adding people to the system and using a da-
tabase of pedestrian excitation [17].

(4) Methods based on using harmonic forces (OMAH).
Tis procedure involves the use of general-purpose
actuators and simple signal processing [18–20].

(5) Methods relying on fnite element models [21],
which combine the mass matrix or the modal masses
of the numerical model with the experimental mode
shapes.

Te magnitude and units of the modal mass depend on
the method used to normalize the mode shapes. A mode
shape is considered to be mass normalized when the modal
mass m is dimensionless unity, i.e., m � 1, while it is defned
as unscaled when it is not mass normalized [22–30]. Te
unscaled mode shape vector ψ and the scaled (mass-nor-
malized) mode shape vector ϕ are related through the ex-
pression [5, 31]

ϕ �
1
��
m

√ ψ. (1)

Besides mass normalization, normalizing to the unit
length and the largest component (or to the n-th DOF
component) equal to unity are the most common techniques
used for mode shape normalization.

A mode shape ψ can be normalized to the unit length by
means of the expression

ψL �
ψ
Lψ

, (2)

where ψL indicates mode shape normalized to the unit
length and Lψ is the length of the mode shape.

Te Euclidean length LE of a mode shape ψ(x) in one-
dimensional continuous systems is defned as [32]

LE � |ψ| �

�����������


L

0
|ψ(x)|

2dx



, (3)

where the subindex “E” indicates Euclidean. However, the
length LE given by equation (3) is not dimensionless, al-
though the mode shape is.

Te Euclidean length (or Euclidean norm) of a real
discrete vector ψ is commonly measured as

LE � |ψ| �

����

ψTψ


. (4)

Te length LE given by equation (4) is dependent on the
number of components of vector ψ and it has the same units
as the mode shape.

Aenlle et al. [29, 30] defned a new concept of length of
a continuous mode shape, which does not coincide with
the length of a vector in a Euclidean space that is normally
used in linear algebra. Tis concept was also extended to
discrete systems, introducing the concept of a volume
matrix. Tis new defnition allows for a better in-
terpretation of the modal mass. In constant mass density
systems, the modal mass is equal to the total mass of the
structure when the mode shapes are normalized to the
unit length, whereas the concept of apparent mass

(diferent for each mode and dependent on the mass
distribution) was proposed for nonconstant mass density
systems.

In this paper, the concept of cross-length between mode
shapes is formulated for continuous systems and later ex-
tended to discrete cases by introducing the concept of length
matrix. It is demonstrated that in constant mass density
systems, the cross-length is zero for all the modes. If the
structure is constituted by two parts with diferent mass
density, the ratio of the partial cross-lengths over the two
volumes is constant for all the modes and equal to the ratio
of the total masses of the respective volumes. Te concept of
cross-length is used in this paper to determine the accuracy
of the modal masses estimated with OMA and EMA. Te
proposed methodology can also be used to construct
a proportional frequency response function (FRF) in con-
stant mass density systems when the modal masses are
unknown.

Since fnite element programs do not provide the
lengths and cross-lengths of the mode shapes, an ap-
proximate equation for calculating the length and cross-
length of numerical mode shapes is proposed in this
paper. Ten, this methodology was extended to experi-
mental systems using the structural dynamic modifcation
theory.

Additionally, this methodology can also be applied as
a correlation technique. Model correlation techniques are
methods used to compare two diferent models, typically
a numerical model and an experimental model. Numerous
techniques have been proposed in the literature [33–35],
but the most used methods are those based on comparing
eigenvalues and eigenvectors. However, no techniques
have been proposed to determine whether the discrep-
ancies are in terms of mass, stifness, or both. In this
paper, the cross-length is used to determine how the mass
is distributed in the structure and to identify the dis-
crepancies in terms of mass between numerical and ex-
perimental models.

Te paper is organized as follows: following the in-
troduction, Section 2 presents the basic theory and the
equations regarding the length of mode shapes and modal
mass in constant and nonconstant mass density systems.
In Section 3, the concept of cross-length of mode shapes is
defned for both constant and nonconstant mass density
systems, which enables the identifcation of how the mass
is distributed in the structure. Approximate equations to
calculate the length and the cross-length in numerical and
experimental systems are proposed in Section 4. From the
concept of cross-length, several important properties are
derived in Section 5 for constant mass density systems,
which can be used to validate results obtained through
experimental and operational modal analyses. Te con-
cepts and the equations proposed in this paper were
validated in two experimental systems. Te results of the
numerical models and the experimental tests carried out
on an L-shaped steel structure and a T-shaped structure
made of steel and wood are presented in Section 6. Te
paper concludes by summarizing the main fndings in
Section 7.
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2. State of the Art

2.1. Length ofModeShapes. In [29, 30], the squared length L2
i

of a continuous mode shape ψi was defned as the average of
the length squared |ψi|

2 of the mode shape over the con-
sidered volume V

L
2
i �

1
V


V
ψi



2dV, (5)

where V is the total volume of the system. When equation
(5) is used, both the length and the mode shapes have the
same units.

Te continuous formulation was extended to discrete
systems in matrix form as [29, 30]

L
2
i �

1
V

ψT
i Vψi. (6)

If the structure is constituted by two parts with
two volumes Va and Vb with mass densities ρa and
ρb, respectively, equation (6) can also be expressed as
[29, 30]

L
2
i V � L

2
iaVa + L

2
ibVb, (7)

where

V � Va + Vb,

L
2
ia �

1
Va


Va

ψVia




2
dV; L

2
ib �

1
Vb


Vb

ψVib




2
dV,

(8)

are the partial lengths, now defned over the partial volumes
Va and Vb, respectively.

In discrete systems, equation (7) still holds, and the
expressions of the partial lengths are given by [29, 30]

L
2
ia �

1
Va

ψT
iaVψia; L

2
ib �

1
Vb

ψT
ibVψib. (9)

Equation (7) easily generalizes to cases with many “q”
volumes with constant mass density, i.e., [29, 30]

L
2
i V � 

q

L
2
iqVq. (10)

2.2. Modal Mass in Constant and Nonconstant Mass Density
Systems. Te modal mass for a continuous system with
constant mass density is defned as [29, 30, 36, 37]

mi � 
V
ρ ψi



2dV. (11)

It can also be expressed as

mi � ρV
1
V


V
ψi



2dV � ML

2
i , (12)

where M � ρV is the total mass of the system. Te same
expression is obtained for discrete systems as

mi � ψT
i Mψi � ρV

1
V
ψT
i Vψi � ML

2
i . (13)

If the structure consists of two volumes,Va with themass
density ρa and Vb with the mass density ρb, the modal mass
can be formulated as [29, 30]

mi �
Va

Va


Va

ρa ψVia




2
dV +

Vb

Vb



Vb

ρb ψVib




2
dV � MaL

2
ia + MbL

2
ib,

(14)

where

M � Ma + Mb. (15)

Equation (14) shows that the modal mass can be ob-
tained as the summation of the partial lengths defned over
the partial volumes weighed with the total mass of each
volume. Equation (14) can be easily generalized to “q”
volumes as [29, 30]

mi � 
q

MqL
2
iq

. (16)

3. The Concept of Cross-Length ofMode Shapes

If a mode shape ψ has three components ψx,ψy,ψz, the
Euclidean length is given by

|ψ| �

�����������

ψ2
x + ψ2

y + ψ2
z



. (17)

Te continuous cross-length Lij between the mode
shapes ψi and ψj is defned as

Lij �
1
V



V

�������������������

ψ2
xiψ

2
xj + ψ2

yiψ
2
yj + ψ2

ziψ
2
zj



dV, (18)

which has the same units as the mode shape.
On the other hand, the discrete formulation of the

squared cross-length Lij in matrix form is given by

L
2
ij �

1
V

ψT
i Vψj, i≠ j. (19)

A length matrix L2 containing the squared lengths in
the diagonal terms, and the squared cross-lengths in the
of-diagonal terms, can be obtained by means of the
expression

L2 �
1
V

ψTVψ. (20)

3.1. Cross-Length in Constant Mass Density Systems. Te
orthogonality of the mode shapes ψi and ψj with respect to
the mass matrix is given by

mij � ψT
i Mψj � 0, i≠ j. (21)

In constant mass density systems, equation (21) can also
be expressed as
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mij � ρV
1
V

ψT
i Vψj � ML

2
ij � 0 i≠ j, (22)

from which it is inferred that

L
2
ij � 0, i≠ j, (23)

i.e., in constant mass density systems, the cross-length is zero
for all the modes and, consequently, the length matrix L2 is
diagonal.

3.2. Cross-Length in Nonconstant Mass Density Systems. If
the structure consists of two volumes Va and Vb, the cross-
length between the mode shapes ψi and ψj can be expressed
as

L
2
ijV � L

2
ijaVa + L

2
ijbVb, i≠ j, (24)

where L2
ija andL2

ijb are the squared partial cross-lengths
calculated over the two volumes, Va and Vb, respectively.

Te orthogonality of the mode shapes ψi and ψj with
respect to the mass matrix results in

mij � MaL
2
ija + MbL

2
ijb � 0, i≠ j, (25)

from which the following relationship between total masses
and the squared cross-lengths is derived:

Ma

Mb

� −
L
2
ijb

L
2
ija

, i≠ j. (26)

From equation (26), it is inferred that the ratio of the
partial cross-lengths over the volumes Va and Vb, is constant
for all the modes and equal to the ratio of the total masses of
such volumes.

Te generalization of equations (24) and (25) to “q”
volumes leads to

L
2
ijV � 

q

L
2
ijqVq,


q

L
2
ijqMq � 0,

(27)

respectively.

4. Length and Cross-Length of Numerical and
Experimental Mode Shapes

Finite element programs do not provide the lengths and the
cross-lengths of the mode shapes given by equations (6) and
(19). Although the mode shapes can be exported from fnite
element programs, this is not the case with the volume
matrices and, consequently, the lengths and the cross-
lengths cannot be calculated in an external application
either.

If a structural numerical model is discretized with NV

fnite elements of small volume ∆V, the squared length of
a numerical mode shape ψFEi can be accurately approxi-
mated by

L
2
FEi �


NV

k�1∆VKψ
2
FEki


NV

k�1∆VK

, (28)

where ψFEki is the k-th component of mode shape ψFEi at the
centroid of the volume ∆Vk. If all the elements have the same
volume ∆V, equation (28) results in

L
2
FEi �


NV

k�1ψ
2
FEki

NV

. (29)

As the components of the mode shapes are commonly
known at the nodes of the elements, the squared length of the
i-th mode shape ψFEi can be approximated by means of the
expression

L
2
FEi �

ψT
FEiψFEi

N
, (30)

where N is the number of nodes in the model.
Similarly, the squared cross-length L2

ij between the mode
shapes ψi and ψj can be approximated by

L
2
FEij �

ψT
FEiψFEj

N
. (31)

A length matrix L2FE containing the square lengths in
the diagonal terms and the square cross-lengths in the of-
diagonal terms can be obtained by means of the
expression

L2FE �
ψT
FEψFE

N
. (32)

According to the structural dynamic modifcation the-
ory, the experimental mode shapes can be expressed as
a linear combination of the numerical ones ψFE [38–40]
using the expression

ψX � ψFET, (33)

where T is a transformation matrix. Since the experimental
mode shapes are only known at the measured or active
DOFs, an approximation of matrix T can be obtained by

T � ψ+
FEaψXa, (34)

where subindex “a” indicates active or measured DOFs and
superindex “+” indicates pseudoinverse.

Assuming that the experimental system is discretized
with the same number of volumes as the numerical model,
the matrix with the experimental squared lengths and
cross-lengths L2X can be obtained by means of the
expression

L2X �
ψT
XψX

N
. (35)

Substituting equation (33) in (35) leads to

L2X �
TTψT

FEψFET
N

� TTL2FET. (36)
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5. Implications of Constant Mass Density

Several important properties for constant mass density
systems are derived from the equations presented in Sections
2 and 3. Tese properties can be used to validate results
obtained with experimental and operational modal analysis
and to construct proportional frequency response functions
and proportional change fexibility matrices.

5.1. Relation betweenModalMasses. From (12), it is inferred
that the modal masses of a dynamic system with constant
mass density are related through the equation by

m1

L
2
1

�
m2

L
2
2

. . . . �
mr

L
2
r

� . . . � M. (37)

Tismeans that if the modal mass of onemode is known,
the modal masses of the remaining modes can be estimated
with equation (37).

5.2. Relation betweenModalMasses. Te frequency response
function (FRF) in terms of modal parameters, in case of
proportional damping, is given by

H(ω) � 

N

r�1

ψrψ
T
r

mr ω2
r − ω2

+ i2ζrωωr 
, (38)

where ω is the frequency, and ωr, ζr, andmr are the natural
frequency, damping ratio, and modal mass of the r-th mode,
respectively. If equation (37) is substituted in equation (38),
the resulting equation is

H(ω) �
1

M


N

r�1

ψrψ
T
r

L
2
r ω2

r − ω2
+ i2ζrωωr 

. (39)

Tis means that a proportional FRF can be constructed
without knowing the modal masses, i.e., only the squared
lengths of the mode shapes are needed.

5.3. Change in Flexibility Matrix. Te fexibility matrix f , in
terms of modal parameters, is expressed as

f �
1

M


N

r�1

ψrψ
T
r

L
2ω2

r

. (40)

If we consider two diferent states of an experimental
structure, damaged denoted here with the subindex “D” and
undamaged, denoted here with subindex “U”, the change in
fexibility matrix is given by

∆f � 
N

r�1

ψXDrψ
T
XDr

mXDrω
2
XDr

− 

N

r�1

ψXUrψ
T
XUr

mXUrω
2
XUr

, (41)

where subindex “X” indicates experimental.
If we assume that there are no changes in terms of mass

between both states, i.e., the total mass M is the same for
both states, the following equation can be expressed as

∆f �
1

M


N

r�1

ψXDrψ
T
XDr

L
2
XDrω

2
XDr

−
1

M


N

r�1

ψXUrψ
T
XUr

L
2
XUrω

2
XUr

,

∆f �
1

M


N

r�1

ψXDrψ
T
XDr

L
2
XDrω

2
XDr

− 
N

r�1

ψXUrψ
T
XUr

L
2
XUrω

2
XUr

⎡⎣ ⎤⎦,

(42)

i.e., a proportional change fexibility matrix can also be
constructed without knowing the modal masses.

Moreover, as there are no changes in mass, the modal
mass matrix of the damage system can be obtained by

mXD � TTmXUT, (43)

where T is a transformation matrix, which relates the mode
shapes ψXD and ψXU by

ψXD � ψXU T. (44)

Substitution of equation (12) in (43) results in

ML2XD � MTTL2XUT, (45)

i.e., the squared lengthmatrix of the damage and undamaged
mode shapes are related by

L2XD � TTL2XUT. (46)

5.4.MassChangeMethod. When the mass change method is
used to estimate the modal masses in operational modal
analysis, the following equation can be used [5, 31]:

mi �
ψT
Oi∆MψIi

ω2
Oi/ω

2
Ii − 1 Bii

, (47)

where subindexes “0” and “I” refer to unperturbed and
perturbed systems, respectively. ∆M is the mass change
matrix, and Bii is the i-th diagonal entry of the matrix B
defned as

B � ψ+
0ψI. (48)

Substituting (12) in (47) yields

ψT
Oi∆MψIi

ω2
Oi/ω

2
Ii − 1 BiiL

2
i

� . . . �
ψT
Or∆MψIr

ω2
Or/ω

2
Ir − 1 BrrL

2
r

� . . . � M.

(49)

6. Experimental Examples

6.1. An L-Shaped Steel Structure. A steel structure with L-
shape, consisting of a vertical columnwith a height of 1. 46m

and a horizontal beam that is 0.615m long, was considered
in this study. Both the vertical column and the horizontal
beam have a rectangular hollow steel section of 8 cm × 4 cm
and a thickness of 4mm. Te structure was fxed at the
bottom of the column (see Figure 1), and its total mass was
MX � 13.42 kg.
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A numerical model of the structure was assembled in
ABAQUS [41] and meshed with shell elements S8R (8 nodes
with reduced integration) using a global size of 0.005m (see
Figure 1). A fxed support was considered at the bottom of the
column. Te following mechanical properties were considered
for the steel: mass density 9 � 7850 kg/m3, Young’s modulus
E � 210∙109 N/m2, and Poisson’s ratio ] � 0.3.Te total mass
of the numerical model was MFE � 14.59 kg.

Te numerical natural frequencies fFE and the modal
masses mFE corresponding to the frst eight modes, extracted
with a frequency analysis, are shown in Tables 1 and 2,
respectively.Temode shapes were normalized to the largest
component equal to unity and are presented in Figure 2.

Te experimental modal parameters were frst estimated
with operational modal analysis (OMA). Te structure was
excited by applying many small random hits using the hands
[25], and the responses were measured at ffteen points using
twelve accelerometers (two data sets) with a sensitivity of
100mV/g. Te test setup is shown in Figure 3, where the
arrows indicate the measured directions.

Te responses were recorded for approximately 4minutes
using a sampling frequency of 2132Hz [42].Te singular value
decomposition of the experimental responses is presented in
Figure 4. Te modal parameters of the frst 8 modes were
estimated with the stochastic subspace iteration (SSI) [25]
technique, and the natural frequencies are presented in Table 1.

Te modal parameters were also estimated with exper-
imental modal analysis, using the same sensors, in-
strumentation, and test setup as those used in OMA. Te
structure was excited with an impact hammer applying the
forces in DOFs 10, 11, and 12, respectively (see Figure 3).Te
modal parameters were estimated with the complex mode
indication function (CMIF) technique [22–24]. Te natural
frequencies are presented in Table 1 and the modal masses
estimated by EMA (mX3) are shown in Table 2.

Te numerical L2FE and experimental L2X squared length
matrices estimated with equations (32) and (35), re-
spectively, are shown in Tables3 and 4.

Although there are signifcant discrepancies between the
experimental and the numerical models, the latter was not
updated in order to show the robustness of the equations
proposed in this paper.

Te modal masses were also estimated with the equation
proposed in [21]:

mX2 � TTT, (50)

where matrix T must be estimated using mass-normalized
numerical mode shapes and unscaled experimental mode
shapes.

Since the total mass of the experimental structure is
known, the modal masses were also estimated with equation
(13) (mX1 in Table 2), using the experimental square length
matrix L2X.

6.1.1. Discussion. Te discrepancies in terms of natural
frequencies between the numerical and experimental models
are in the range 0–15%.Temodal assurance criteria (MAC)
[34, 35] (see Table 5) give diagonal values over 0.9795, which
indicates a good correlation in terms of mode shapes;
however, high of-diagonal values have been obtained.

Te errors in modal masses obtained using diferent
techniques described in the previous section, are shown in
Table 6. Te maximum error between mX1 and mX3 is 7%,
which indicates that the squared length L2

X has been esti-
mated with good accuracy using equation (35), although
there are signifcant discrepancies between the numerical
and the experimental models.

Since the mass density of this structure is constant, the
modal masses corresponding to each mode shape are related
through equation (37). Te ratio modal mass/squared length
is presented in Table 7 and the errors are shown in Table 8.
Te ratios mFE/L2

FE are, as expected, very close to the total
mass MFE � 14.59 kg of the numerical model for all the

XY
Z

Figure 1: Te steel structure used in the experiments.

Table 1: Natural frequencies (Hz).

Mode
Natural frequencies (Hz) Error (%)

FE model OMA (SSI) EMA FE-OMA FE-EMA
1 12.53 10.945 10.938 14.48 14.55
2 20.85 18.953 18.75 10.01 11.20
3 55.74 50.995 50.781 9.30 9.77
4 55.31 54.39 54.688 1.69 1.14
5 131.98 115.485 115.625 14.28 14.14
6 198.10 179.742 180.469 10.21 9.77
7 324.78 283.539 284.572 14.55 14.13
8 502.56 464.154 465.35 8.27 8.00

Table 2: Modal masses (kg) of the L-shape structure. Mode shapes
normalized to the largest component equal to unity.

Mode
Modal masses (kg)

mFE mX1� MTxL2x mX2 � TTT mX3 EMA

1 6.9033 6.3732 6.9460 6.25
2 3.6589 3.7333 4.0540 3.74
3 1.7099 1.5769 1.7082 1.47
4 2.0423 1.8854 2.0390 1.87
5 7.1208 6.5764 7.1831 6.57
6 5.6175 5.1591 5.6162 5.51
7 5.4204 4.8506 5.3671 4.93
8 5.6316 4.2968 4.6581 4.18
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modes, with discrepancies being less than 1% (see Table 8).
In this case, the ratios are not exactly equal to
MFE � 14.59 kg because the length of the numerical mode
shapes is estimated using (32), which is an approximation.

Te ratio mX1/L2
X coincides with MX � 13.42 kg because

MX is used in equation (13).
Te maximum discrepancies between mX2/L2

X and
MX � 13.42 kg are in the range 8.15–10.65%. Te ac-
curacy of equation (50) (mX2) depends on the

correlation, in terms of mass, between the numerical
and experimental models. Since there is a discrepancy
of approximately 10% between the total masses of both
the (experimental and numerical) models, it is expected
to have errors of the same order in the modal masses
estimated with equation (50). On the other hand, the
ratio mX2/L2

X is very close to MFE � 14.59 kg for all the
modes, with the maximum discrepancy being less than
1.77%.

Mode 1 Mode 2 Mode 3 Mode 4

Mode 5 Mode 6 Mode 7 Mode 8

Figure 2: Numerical mode shapes of the L steel structure.
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A better correlation exists between MX and mX3/L2
X

(modal masses estimated with experimental modal analysis),
with the discrepancies being less than 7% for all the modes
with MX � 13.42 kg.

In constantmass density systems, there exists a relationship
given by (37) between the modal masses of diferent modes.
Tis information can be used to validate the modal masses
estimated through modal analysis (or by combining numerical
models with modal analysis). Te accuracy of the presented
results can be improved by achieving a better correlation
between the numerical and the experimental models.

6.2. A T Steel-Wood Structure. Tis structure consists of
a vertical steel column (height 1.70m) with a rectangular
hollow steel section of 8 cm × 4 cm and thickness of 4mm,
and a horizontal wooden beam (length 2m) with rectangular
section of 12.7 cm × 7 cm (see Figure 5). Te structure is
fxed at the bottom of the column, and a steel plate was
welded at the top of the column to connect it to the wooden
beam using four bolts.Te total mass of the steel part is MXS �

11.96Kg and that of the wooden part is MXW � 11.46Kg.

A fnite element model was assembled in ABAQUS
[41] using the geometrical parameters described in the
previous paragraph and meshed with 3D elements (20
nodes with reduced integration). Te following me-
chanical properties were considered for the steel: mass
density 9 � 7850 kg/m3, total mass MFES � 13.02 kg,
Young’s modulus E � 210∙109 N/m2, and Poisson’s ratio
] � 0.3. For the wood, the following properties were
considered: mass density 9 � 644 kg/m3, total mass
MFEW � 11.46 kg, Young’s modulus E � 13.5∙109 N/m2,
and Poisson’s ratio ] � 0.38. Te numerical natural fre-
quency fFE and modal masses mFE are presented in Ta-
bles 9 and 10, respectively.

Te experimental modal parameters were estimated with
experimental and operational modal analysis. In OMA, the
responses were recorded for approximately 4minutes with
a sampling frequency of 1632Hz using two data sets (see
Figure 6). Te responses were measured at twenty-one
points using ffteen accelerometers (100mV/g) using the
same data acquisition system as that used in the L structure.
Te singular value decomposition of the experimental re-
sponses is presented in Figure 7, and the modal parameters

10
12

6

5 114

7
8

9

4
5

6

1
2

3

XY
Z

Figure 3: Test setup for both operational and experimental modal analyses.
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Figure 4: Singular value decomposition of the responses.
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were estimated with the stochastic subspace iteration
(SSI) [25].

Te modal parameters were also estimated by experi-
mental modal analysis (EMA) using the complex mode
indicator function (CMIF) technique. Te same sensors,
instrumentation, and test setup as those used in OMA were
used in the EMA, with the structure excited with an impact

hammer applying the forces in DOFs 9, 14, and 15, re-
spectively (see Figure 6).

Te experimental natural frequencies corresponding to
the frst eight modes are shown in Table 9. Te mode shapes
are presented in Figure 8.

Table 3: Squared length of the frst 8 numerical mode shapes of the L steel structure.

Mode
1 2 3 4 5 6 7 8

Mode

1 0.4734 0.0000 0.0000 −0.0006 0.0001 0.0000 0.0000 0.0000
2 0.0000 0.2512 0.0010 0.0000 0.0000 −0.0005 0.0000 −0.0002
3 0.0000 0.0010 0.1407 0.0000 0.0000 −0.0005 0.0000 −0.0006
4 −0.0006 0.0000 0.0000 0.1179 −0.0008 0.0000 0.0004 0.0000
5 0.0001 0.0000 0.0000 −0.0008 0.4882 0.0000 −0.0005 0.0000
6 0.0000 −0.0005 −0.0005 0.0000 0.0000 0.3848 0.0000 0.0009
7 0.0000 0.0000 0.0000 0.0004 −0.0005 0.0000 0.3711 0.0000
8 0.0000 −0.0002 −0.0006 0.0000 0.0000 0.0009 0.0000 0.3876

Table 4: Squared length of the frst 8 experimental mode shapes of the L steel structure.

Mode
1 2 3 4 5 6 7 8

Mode

1 0.4749 0.0116 0.0000 −0.0124 0.00000 0.0123 0.0125 0.0134
2 0.0116 0.2782 0.0020 −0.0044 0.0046 0.0054 0.0014 0.0032
3 0.0000 0.0020 0.1175 −0.0014 0.0000 0.0000 0.0070 0.0065
4 −0.0124 −0.0044 −0.0014 0.1405 −0.0037 −0.0021 0.0000 −0.0016
5 0.0000 0.0046 0.0000 −0.0037 0.4900 0.0159 −0.0014 0.0157
6 0.0123 0.0054 0.0000 −0.0021 0.0159 0.3844 −0.0028 0.0000
7 0.0125 0.0014 0.0070 0.0000 −0.0014 −0.0028 0.3614 −0.0171
8 0.0134 0.0032 0.0065 −0.0016 0.0157 0.0000 −0.0171 0.3202

Table 5: Modal assurance criteria (MAC) of the L steel structure.

MAC
0.9959 0.0003 0.1083 0.0005 0.1178 0.0000 0.0105 0.0000
0.0012 0.9960 0.0003 0.1167 0.0000 0.0051 0.0000 0.0825
0.1490 0.0002 0.9987 0.0001 0.1510 0.0000 0.0500 0.0000
0.0001 0.1590 0.0007 0.9972 0.0006 0.0893 0.0001 0.0447
0.1013 0.0000 0.1764 0.0000 0.9935 0.0002 0.0084 0.0000
0.0009 0.0039 0.0000 0.1204 0.0000 0.9927 0.0001 0.1524
0.0172 0.0000 0.0234 0.0000 0.0425 0.0000 0.9876 0.0001
0.0002 0.0700 0.0041 0.0557 0.0043 0.2200 0.0027 0.9795

Table 6: Errors (%) between modal masses of the L-shape
structure.

Mode
Error (%)

mFE-mX1 mX2 − mX1 mX1 − mX3 mFE-mX3 mX2-mX3

1 8.32 8.99 1.97 10.45 11.14
2 1.99 8.59 0.18 2.17 8.40
3 8.43 8.33 7.27 16.32 16.20
4 8.32 8.15 0.82 9.21 9.04
5 8.28 9.23 0.10 8.38 9.33
6 8.89 8.86 6.37 1.95 1.93
7 11.75 10.65 1.61 9.95 8.87
8 31.06 8.41 2.79 34.73 11.44

Table 7: Ratio modal mass/square length.

Mode
Ratio modal mass/square length

mFE/L2FE mX1/L2X mX2/L2X mX3/L2X
1 14.5815 13.4200 14.6262 13.1607
2 14.5658 13.4200 14.5730 13.4442
3 14.5152 13.4200 14.5367 12.5100
4 14.4991 13.4200 14.5138 13.3107
5 14.5855 13.4200 14.6580 13.4068
6 14.6002 13.4200 14.6091 14.3328
7 14.6066 13.4200 14.8488 13.6395
8 14.5295 13.4200 14.5486 13.0553

Table 8: Errors (%) between the estimated ratio modal mass/
squared length and the total mass of the structure.

Mode
Error (%)

mFE/L2FE -
MFE

mX2/L2X -
MFE

mX2/L2X -
MX

mX3/L2X -
MX

1 0.06 0.25 8.99 1.93
2 0.17 0.12 8.59 0.18
3 0.51 0.37 8.32 6.78
4 0.62 0.52 8.15 0.81
5 0.03 0.47 9.23 0.10
6 0.07 0.13 8.86 6.80
7 0.11 1.77 10.65 1.64
8 0.41 0.28 8.41 2.72
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Since the total mass of the two parts of the experimental
structure is known, the modal masses were estimated with
equation (14). Tis equation can be particularized to the
experimental model, resulting in

mX1 � MXsL
2
Xs + MXwL

2
Xw. (51)

Te modal masses estimated by experimental modal
analysis (mX3), and those calculated using (50) (mX2), are
shown in Table 10.

6.2.1. Discussion. Te discrepancies in terms of natural
frequencies between the numerical and experimental models
are less than 35%. Regarding the MAC [34, 35], the diagonal

terms indicate a good correlation, but high values can also be
seen in the of-diagonal terms (see Table 11). In this case, the
numerical model was also not updated.

Te errors in the modal masses obtained with diferent
techniques are shown in Table 12. It can be observed that
there is a good agreement between the modal masses mX1
and mX2, with discrepancies of less than 6% for all the modes
considered in this study. When comparing the values mX1
and mX3, larger discrepancies can be found in modes 2
(15.6%), 5 (8.81%), and 6 (10.2%). On the other hand, the
largest discrepancies between mX2 and mX3 correspond to
modes 2 (19.52%) and 5 (9.35%).

In this case, the structure consists of two parts made of
diferent materials (wood and steel), and the mass distri-
bution can be obtained using equation (26).

Te matrix with the squared lengths and the cross-
lengths of the mode shapes, corresponding to the nu-
merical model (mode shapes mass normalized), esti-
mated with equation (32), are shown in Tables 13–15. Te
matrix with the experimental squared lengths and cross-
lengths, estimated with equation (35), are shown in
Tables 16–18.

Figure 5: Te T steel-wood structure used in the experiments.

Table 9: Natural frequencies of the T structure.

Mode
Natural frequencies (Hz) Error (%)

FE model OMA (SSI) EMA FE-OMA FE-EMA
1 6.21 5.284 5.308 17.52 16.99
2 11.89 10.337 10.388 15.02 14.46
3 13.07 12.07 11.79 8.29 10.86
4 24.69 18.883 18.366 30.75 34.43
5 56.07 50.276 50.753 11.52 10.48
6 95.45 76.817 75.258 24.26 26.83
7 110.48 99.966 100.315 10.52 10.13
8 151.47 138.73 140.385 9.18 7.90

Table 10:Modal masses (kg) of the T-shape structure. Mode shapes
normalized to the largest component equal to unity.

Mode
Modal masses (kg)

mFE mX1 � MXSL2XS + MXWL2XW mX2 � TTT mX3
EMA

1 19.5847 18.7063 19.2290 18.90
2 15.4660 14.8818 15.3818 12.87
3 3.8194 3.7901 3.7763 3.698
4 4.6212 4.3718 4.4051 4.329
5 2.7747 2.5442 2.5290 2.79
6 9.5415 7.8577 8.3085 8.75
7 8.5031 8.2197 8.5997 8.16
8 3.9790 3.7832 3.9034 3.77
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Figure 6: Test setup for the OMA and EMA tests.
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Te following overdetermined system of equations is
formulated:

LXs(4, 1)

LXs(6, 1)

LXs(6, 4)

LXs(7, 2)

LXs(8, 7)

LXw(4, 1)

LXw(6, 1)

LXw(6, 4)

LXw(7, 2)

LXw(8, 7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

MXs

MXw

⎡⎢⎣ ⎤⎥⎦ �

0

0

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

where the indexes (p, q) indicate the terms of the partial
experimental lengths LXs(p, q) and LXw(p, q) used to esti-
mate the ratio MXs/MXw. In order to reduce the uncertainty,
only the terms LXs(p, q)> 0.01 and LXw(p, q)> 0.01have
been used.

Te least square solution of the system leads to
MXs/MXw � 0.9199.Te same system of equations using the
numerical model gives MFEs/MFEw � 1.128.

It is inferred from Table 19 that the squared lengths and
cross-lengths have been accurately estimated with equation
(26), with an error in the ratio MFEs/MFEw of 2.2%. Re-
garding the experimental ratio MXs/MXw, the error is
11.85%.

If the modal masses are known (estimated with exper-
imental modal analysis), equation (14) can be used to es-
timate the total masses of the two diferent volumes of the
structure. Using the modal masses presented in Table 10 and
formulating the system of equations,

ZMX � mX, (53)

where Z is a matrix containing the diagonal terms of the
squared length matrices of the steel (L2Xs) and the wood
(L2Xw) parts, respectively, i.e.,

Z �

LXs1 LXw1

LXs2 LXw2

⋮ ⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (54)

MX is a vector containing the total masses of the two
parts of the structure

MX �
MXs

MXw

 , (55)

and mX is a vector containing the modal masses, i.e.,

mX �

mX1

mX2

⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (56)

Te values obtained for MXs and MXw using (53) are
shown in Table 20, together with the residual error obtained
with the least squares solution. It can be observed that the
masses MXs and MXw were estimated with errors less than
6% and 2%, respectively, when using mX2, and with errors
less than 6.9% and 6.7%, respectively, when using the modal
masses mX3. With respect to the ratioMXs/MXw, the error is
less than 4% with mX2 and less than 14.5% with mX3.

Te largest residual error was obtained with modal
masses mX3 (see Table 20). Te estimated errors between the
modal masses that have been obtained with the least square
solutions and the modal masses mX2 and mX3 are shown in
Figure 9, where it can be observed that less errors have been
obtained with mX2. With respect to the discrepancies be-
tween the least squares solution and mX3, the larger errors
correspond to modes 2 and 5, which can be an indicator that
these modal masses were not estimated accurately. Tis
agrees with the results presented in Table 12.
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Figure 7: Singular value decomposition of the acceleration responses.
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Mode 4 Mode 5 Mode 6

Mode 7 Mode 8

Figure 8: Mode shapes of the T steel-wood structure.

Table 11: Modal assurance criteria (MAC) of the T steel-wood structure.

MAC
0.9956 0.0001 0.0016 0.3691 0.0002 0.2585 0.0000 0.0001
0.0000 0.9986 0.0001 0.0000 0.0004 0.0000 0.1098 0.2089
0.0004 0.0000 0.9984 0.0005 0.0001 0.0001 0.0001 0.0000
0.4152 0.0002 0.0007 0.9974 0.0002 0.0856 0.0002 0.0002
0.0001 0.0010 0.0006 0.0003 0.9957 0.0000 0.0010 0.0016
0.1673 0.0002 0.0001 0.0182 0.0002 0.9690 0.0000 0.0003
0.0000 0.0735 0.0002 0.0000 0.0010 0.0000 0.9804 0.1105
0.0000 0.2152 0.0001 0.0000 0.0009 0.0000 0.1908 0.9948
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Table 12: Errors (%) between modal masses of the T-shape structure.

Mode
Error (%)

mFE-mX1 mX2-mX1 mX1-mX3 mFE-mX3 mX2-mX3

1 4.70 2.79 1.02 3.62 1.74
2 3.93 3.36 15.63 20.17 19.52
3 0.77 0.36 2.49 3.28 2.12
4 5.70 0.76 0.99 6.75 1.76
5 9.06 0.60 8.81 0.55 9.35
6 21.43 5.74 10.20 9.05 5.05
7 3.45 4.62 0.73 4.20 5.39
8 5.18 3.18 0.35 5.54 3.54

Table 13: Partial squared length of the frst 8 numerical mode shapes estimated with equation (32). Steel Part.

Numerical steel
0.0141 0.0000 0.0000 0.0117 0.0000 −0.0130 0.0000 0.0000
0.0000 0.0172 0.0000 0.0000 0.0000 0.0000 0.0229 −0.0009
0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.0117 0.0000 0.0000 0.0123 0.0000 −0.0219 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
−0.0130 0.0000 0.0000 −0.0219 0.0000 0.0655 0.0000 0.0000
0.0000 0.0229 0.0000 0.0000 0.0000 0.0000 0.0545 −0.0263
0.0000 −0.0009 0.0000 0.0000 0.0000 0.0000 −0.0263 0.0266

Table 14: Partial squared length of the frst 8 numerical mode shapes estimated with equation (32). Wood Part.

Numerical wood
0.0703 0.0000 0.0000 −0.0136 0.0000 0.0138 0.0000 0.0000
0.0000 0.0665 0.0000 0.0000 0.0000 0.0000 −0.0261 −0.0009
0.0000 0.0000 0.0874 0.0000 0.0000 0.0000 0.0000 0.0000
−0.0136 0.0000 0.0000 0.0737 0.0000 0.0242 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0878 0.0000 0.0000 0.0000
0.0138 0.0000 0.0000 0.0242 0.0000 0.0145 0.0000 0.0000
0.0000 −0.0261 0.0000 0.0000 0.0000 0.0000 0.0269 0.0289
0.0000 −0.0009 0.0000 0.0000 0.0000 0.0000 0.0289 0.0568

Table 15: Total squared length of the frst 8 numerical mode shapes estimated with equation (32).

Numerical total
0.0619 0.0000 0.0000 −0.0100 0.0000 0.0098 0.0000 0.0000
0.0000 0.0591 0.0000 0.0000 0.0000 0.0000 −0.0189 −0.0011
0.0000 0.0000 0.0746 0.0000 0.0000 0.0000 0.0000 0.0000
−0.0100 0.0000 0.0000 0.0647 0.0000 0.0173 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0749 0.0000 0.0000 0.0000
0.0098 0.0000 0.0000 0.0173 0.0000 0.0221 0.0000 0.0000
0.0000 −0.0189 0.0000 0.0000 0.0000 0.0000 0.0311 0.0206
0.0000 −0.0011 0.0000 0.0000 0.0000 0.0000 0.0206 0.0522

Table 16: Partial squared length of the frst 8 experimental mode shapes estimated with equation (35). Steel Part.

Experimental steel
0.2914 0.0023 0.0001 −0.1089 0.0030 0.1938 0.0047 0.0031
0.0023 0.2701 0.0009 −0.0002 0.0004 0.0095 0.2765 0.0111
0.0001 0.0009 0.0005 −0.0001 0.0000 0.0004 0.0011 0.0001
−0.1089 −0.0002 −0.0001 0.0477 −0.0014 −0.1222 −0.0006 −0.0012
0.0030 0.0004 0.0000 −0.0014 0.0001 0.0045 −0.0014 −0.0011
0.1938 0.0095 0.0004 −0.1222 0.0045 0.5860 0.0132 0.0065
0.0047 0.2765 0.0011 −0.0006 −0.0014 0.0132 0.5168 0.1664
0.0031 0.0111 0.0001 −0.0012 −0.0011 0.0065 0.1664 0.1037

Shock and Vibration 13



Table 17: Partial squared length of the frst 8 experimental mode shapes estimated with equation (35). Wood Part.

Experimental wood
1.3282 −0.0026 −0.0141 0.1143 −0.0028 −0.1569 0.0003 0.0075
−0.0026 1.0167 0.0058 0.0116 −0.0137 0.0039 −0.2695 0.0145
−0.0141 0.0058 0.3302 −0.0076 0.0085 −0.0045 −0.0040 0.0034
0.1143 0.0116 −0.0076 0.3317 −0.0022 0.1146 −0.0092 0.0018
−0.0028 −0.0137 0.0085 −0.0022 0.2219 −0.0055 0.0055 −0.0049
−0.1569 0.0039 −0.0045 0.1146 −0.0055 0.0741 −0.0033 0.0009
0.0003 −0.2695 −0.0040 −0.0092 0.0055 −0.0033 0.1779 −0.1420
0.0075 0.0145 0.0034 0.0018 −0.0049 0.0009 −0.1420 0.2219

Table 18: Total squared length of the frst 8 experimental mode shapes estimated with equation (35).

Experimental total
1.1736 −0.0018 −0.0120 0.0818 −0.0020 −0.1040 0.0009 0.0069
−0.0018 0.9048 0.0051 0.0099 −0.0116 0.0047 −0.1890 0.0155
−0.0120 0.0051 0.2818 −0.0065 0.0073 −0.0038 −0.0032 0.0030
0.0818 0.0099 −0.0065 0.2900 −0.0021 0.0793 −0.0079 0.0014
−0.0020 −0.0116 0.0073 −0.0021 0.1893 −0.0040 0.0045 −0.0043
−0.1040 0.0047 −0.0038 0.0793 −0.0040 0.1511 −0.0008 0.0017
0.0009 −0.1890 −0.0032 −0.0079 0.0045 −0.0008 0.2293 −0.0959
0.0069 0.0155 0.0030 0.0014 −0.0043 0.0017 −0.0959 0.2041

Table 19: Numerical MFEs/MFEw and experimental MXs/Mxw ratios.

Numerical MFEs/MFEw Error (%)
Experimental MXs/Mxw Error (%)

Exact Equation (27) Exact Equation (27)

1.1361 1.128 2.2 1.0436 0.9199 11.85

Table 20: Masses MXs and MXw estimated with equation (56).

Exact
Modal masses (data from Table 10) used in the calculations

mFE mX2 mX3

MXs (kg) 11.96 13.7754 12.6894 12.7804
MXw (kg) 11.46 11.6517 11.6893 10.6948
MXs/MXw 1.0436 1.1823 1.0856 1.1950
Residual error 0.0328 0.0056 0.0710
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Figure 9: Errors between the modal masses obtained with the least square solutions and the modal masses mX2 and mX3.
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7. Conclusions

Te present study provides a comprehensive explanation of
the concept of cross-length of mode shapes. Firstly, the
cross-length of a continuous mode shape is defned, which is
then extended to discrete systems, introducing the concept
of a length matrix. Furthermore, an approach for calculating
the length and the cross-length of experimental mode shapes
has been developed utilizing the structural dynamic mod-
ifcation theory, where the experimental model is considered
a perturbation of the numerical model.

It is demonstrated that the cross-length between mode
shapes must be zero in constant mass density systems. Due
to the fact that the modal masses of the diferent modes are
related by (37) in constant mass density systems, a pro-
portional frequency response function (FRF) and a pro-
portional change fexibility matrix can be constructed in
these systems even though the modal masses are not known.

If the structure is constituted by two parts with diferent
mass densities, it is demonstrated that the ratio of the partial
cross-lengths over the two volumes is constant for all the
modes and equal to the ratio of the total masses of such
volumes. Tis information can be used to know how the
mass is distributed in the structure. If the modal masses are
known, the mass distribution can also be obtained using the
partial lengths over the two volumes.

In order to validate the equations proposed in this paper
and study their accuracy, two lab-scaled structures were
constructed. Te frst one, an L-shape lab-scaled steel
structure, has constant mass density, whereas the second
one, a T-shape lab-scaled structure, consists of two diferent
materials, with the columnmade of steel and the beammade
of wood. Finite element models were also assembled in
ABAQUS for both structures. Te fnite element models
were intentionally not updated in order to check the ef-
fectiveness of the proposed methodology in cases where
there is not a perfect numerical-experimental correlation.
Te modal masses were obtained from the FE models, es-
timated with experimental modal analysis and combined
with the numerical and experimental mode shapes.

For the L-shape structure, although there are signifcant
discrepancies between the numerical and experimental
models, the squared length L2

X has been estimated with good
accuracy (35). Tis demonstrates that the methodology
proposed in Section 4 can be successfully utilized to de-
termine the length of experimental mode shapes. It was also
proved that the ratio modal mass-squared length of the
mode shapes is constant for all the modes and equal to the
total mass of the system in constant mass density systems.
Tis information can be utilized to check if the experimental
modal masses have been estimated accurately.

For the T-shape structure, the concept of cross-length
was used to determine how the mass is distributed in the
structure. Despite signifcant discrepancies between the
numerical and experimental models (discrepancies in nat-
ural frequencies up to 35%), the ratio of the masses of the
steel and the wooden parts was estimated with an error of
less than 12%.Te modal masses and the length of the mode
shapes were also used to estimate the total masses of the steel

and wooden parts with equation (56), with errors depending
on the accuracy of the experimental modal masses. Te total
masses of the steel and wooden parts were used to determine
if some of the modal masses were not estimated accurately.
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