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During the launch process of an electromagnetic railgun, the armature is subjected to the ampere force andmoves along the rail with
variable acceleration. In this period, the rail is excited by time varying moving loads and generates lateral vibration. For analysis, the
rail is simplifed as an Euler–Bernoulli beam, and the nonlinear dynamic equation of the beam under time varying moving loads is
established. Te electromagnetic repulsive force between rails, the contact pressure between the armature and the rail, and the
thermal expansion pressure acting on the rail are taken into account.Te lateral vibration response of the rail is achieved by using the
analytical method combined with numerical integration. Te variable motion of the armature during launch is also illustrated.
Furthermore, the study of the efects of structure parameters on the vibration amplitude of the rail is performed.Te research results
can provide a theoretical basis for the structural optimization and vibration reduction of electromagnetic railguns.

1. Introduction

Electromagnetic (EM) launch technology is a revolution in
the launch mode which uses EM energy to propel objects to
high speed or even ultrahigh speed [1]. EM railguns are the
most important application of the EM launch technology,
which have many advantages such as high speed, long range,
and strong power [2]. As one of the newest powerful
weapons, EM railguns have attracted great attention in
military feld in recent years, especially in America, Russia,
and China [3–5].

During the launch process, the armature moves along
the rails of EM railguns under the action of the ampere force
generated by the heavy current. Meanwhile, the rail is
subjected to moving loads which will result in its nonlinear
lateral vibration. Rail vibration can afect the contact status
and shot accuracy, even causing damage between the ar-
mature and the rail [6]. In order to ensure the launch ac-
curacy and reliability of EM railguns, it is necessary to
analyze the vibration response of the rail.

A typical barrel of EM railguns is mainly composed of
two rails, elastic insulation layers, and the containment

structure with fastening parts. When the out containment is
assumed to be a rigid boundary and the insulation layer is an
elastic support, the rail can be seen as a beam on an elastic
base [7]. Terefore, many works established a beam model
sitting on an elastic foundation to analyze the vibration of
the rail. Tzeng [8] simplifed the rail of EM railguns as
a Timoshenko beam founded on an elastic base. Te in-
fuences of design parameters andmaterial characteristics on
the critical velocity of the rail were analyzed. Johnson and
Moon [9] adopted a fnite element code to calculate the
dynamic defection of the rail which was simplifed as
a Timoshenko beam. Simulation results showed that the
contact pressure between the armature and the rail changes
when the speed of the armature reaches the critical velocity
of the rail. In addition, Nechitailo and Lewis [10, 11]
modeled an Euler–Bernoulli beam subjected to uniform
pressure to estimate the critical velocity of the rail. Nu-
merical tests using the fnite element analysis were used to
illustrate the existence of the group resonance phenomenon.
Daneshjoo et al. [12] built an Euler–Bernoulli beammodel of
the rail to study its dynamic behavior. Results showed that
the resulting maximum defection varies with physical and
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mechanical parameters of the rail. However, these results are
mainly applicable to the analysis of the critical velocity and
resonance in a hypervelocity launcher, always assuming
constant pressure on the rail as well as constant speed of the
armature.

To analyze the dynamic response of the rail, many ap-
proaches have been presented. Yang et al. [13] studied the
contact between the armature and the rail during launch by
a fnite element model with LS-DYNA code. Tree types of
C-shaped armatures were designed to match rails with
curvatures. Reck et al. [14] also used the LS-DYNA code to
simulate a projectile launch with a moving armature. As-
suming the pressure acting on the rail is uniform, the dy-
namic deformations of the rail and the dynamic stress states
were studied. Chen et al. [15] applied the numerical analysis
methods to obtain the dynamic response of the rail. Te
actions of the EM repulsion and the thermal expansion
pressure of the armature were considered. Tian et al. [16]
simplifed the rail as a beam on an elastic foundation. Te
dynamic response of the beam was solved by using two-
dimensional Fourier integral transformation. Yin et al. [17]
calculated the critical velocity of a fexural wave in the
composite housing of the railgun barrel using the 3D
transient fnite element. Te dynamic responses and the
development of damage for the railgun barrel were analyzed.
Zhang et al. [18] also treated the rail as an Euler–Bernoulli
beam and proposed a nonlinear fnite element model to
study the dynamic characteristics of the rail. In the work, the
repulsive force and the contact pressure acting on the rail
were considered.

As we know, the dynamics of beams under moving loads
has been widely studied for their extensive applications in
engineering, such as railroads, bridges, and transport pipe-
lines. Te research procedures on beams can provide helpful
ideas for solving the dynamic equation of the rail under time
varying moving loads in this paper. Based on the references
we have found, there are two types of moving loads on beams
which aremainly studied. One is a singlemoving load, and the
other is a harmonic moving load. On the aspect of a single
moving load, for instance, AlSaleh et al. [19] investigated the
dynamic response of Euler–Bernoulli beams under a tra-
versing moving load based on Green’s functions combined
with a decomposition technique. Te load was assumed to be
moving with diferent values of constant velocity. Akbas et al.
[20] analyzed the vibration of a simply supported porous
microbeam made of functionally graded materials subjected
to a moving load. Te governing equations were obtained by
the Lagrange procedure and were solved by Ritz and New-
mark average acceleration methods. And then, they also
studied the dynamics of carbon nanotube-reinforced com-
posite beams under a moving load using the same methods
[21]. Guo et al. [22] studied the forced vibration response of
thick microplates under a moving load with acceleration in
speed on its upper surface. Te governing equations for
simply supported microplate were solved by developing
a state space method in conjunction with a set of mathe-
matical series. Bozyigit [23] proposed an analytical method
based on a combination of transfer matrix formulations and
modal superposition to obtain the forced vibration of

damaged beams subjected to a moving concentrated load.
Kumar et al. [24] derived a simple closed-form expression for
free vibration response, and the dynamic behavior of simply
supported uniform beams subjected to a single moving point
load was analyzed. Moreover, Esen [25] investigated the
forced vibration of microbeams under a moving point load
with constant velocity using the Newmark-β method and the
fnite element method. For the case of a harmonic moving
load, Eyvazian et al. [26] investigated the dynamic analysis of
a composite cylindrical nanoshell on an elastic foundation
subjected to a moving harmonic load. Te equations of
motion were derived based on frst-order shear deformation
theory and the nonlocal strain gradient theory. Kim and Cho
[27] investigated the vibration and buckling of an infnite
shear beam-column resting on an elastic foundation. Te
response of the beam under moving harmonic loads was
obtained using a Fourier transform. Yang et al. [28] estab-
lished the governing equation of a simply supported thin-
walled beam under a harmonic moving load, and closed-form
solutions were presented for the lateral, vertical, and torsional
vibration of the beam. Chen et al. [29] studied the responses of
an infnite beam resting on a tensionless viscoelastic foun-
dation under a harmonic point force moving with a constant
speed. To solve the governing equation, the infnite beam is
replaced by a fnite long beam expanding the beam defection
into a harmonic series. In addition, in the study of dynamic
behaviors of the beam supported on a viscoelastic foundation.
Bozyigit et al. [30] developed a comprehensive method to
solve the motion equations by combing the Adomian de-
composition method and the diferential transform method.

In terms of EM railguns, the existing research works
provide a good foundation for the vibration analysis and
structural design of rails. However, most results are appli-
cable to constant pressure or constant speed of armature
motion. In fact, since the exciting current is changing with
time, the armature undergoes a variable acceleration motion
along the rail.Te dynamic response of beams is signifcantly
afected by varying the moving velocity of loads [19]. In this
paper, in order to study the dynamic behavior of EM rail-
guns deeply, more consideration is given on the nonuniform
motion of the armature and the moving loads on rail. Tree
kinds of forces acting on the rail are involved, which are time
varying and nonperiod, more complex than the constant and
periodic moving loads. Te dynamic governing equation of
an Euler–Bernoulli beam under time varyingmoving loads is
established. Due to its high nonlinearity, an analytical
method combined with numerical integration is presented
to get solutions of the governing equation. Te lateral vi-
bration response of the rail in the process of launching is
achieved. Furthermore, the infuences of parameters on the
vibration amplitude of the rail are analyzed. Te results
obtained can provide a meaningful tool for the vibration
analysis of EM railguns.

2. Dynamic Modeling of the Rail

2.1. Mathematical Model. Te schematic diagram of the
barrel of an EM railgun is shown in Figure 1, which is mainly
composed of two rails, an armature, elastic insulation layers,
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and the containment structure which includes the stifening
steel plates and steel bolts. During launch, the current fows
in from one rail through the armature and then out from the
other rail, as shown in Figure 2. Te current generates
a strong magnetic feld between the two rails, and so the
armature moves along the rails propelled by the ampere
force. In addition, when the armature is sliding, friction
exists between the armature and the rail.

Te rail has a rectangular cross section and has a large
slenderness ratio. During launch, the rail mainly bears lateral
loads perpendicular to the axial. Assuming that the cross
section is always perpendicular to the axis when the lateral
vibration of the beam occurs, the rail can be simplifed as an
Euler–Bernoulli beam with an elastic insulation support
wrapped in a rigid constraint, as shown in Figure 3. In
addition, the insulation layer is thin and the outer con-
tainment is rigid. Under these conditions, the elastic support
behavior is similar to the spring model. Terefore, the elastic
foundation of the rail is modeled as a Winkler foundation
model ignoring the shear defection. TeWinkler model has
a simple form and is mathematically easy to handle, and it is
used popularly in the analysis of EM railguns in most
previous studies [9–16].

To improve the stability and life of the barrel of EM
railguns, the insulation should use materials with sufcient
strength and stifness to bear the forces transmitted from the
rail. Te greater the stifness of the insulation gets, the
smaller the efect of its damping is. Terefore, most studies
ignore the damping in modeling for simplifcation [6–18].

Te governing equation of the beam subjected to the
time varying moving load is established as follows [7]:

EI
z
4ω(x, t)

zx
4 + m

z
2ω(x, t)

zt
2 + kω(x, t) � q(x, t), (1)

where ω(x, t) is the lateral vibration amplitude of the rail, E is
the modulus of rail material, I is the moment of inertia of the
cross section, m is the mass per unit length of rail, k is the
elastic foundation coefcient, and q(x, t) represents the time
varying moving load.

When the armature moves along the rail at ultrahigh
speed, the rail sufers moving loads. In many studies, to
obtain the critical velocity of rail, only the EM repulsive force
on rail is considered [7–12]. With further researches, Cao
et al. [31] established the governing equation of an
Euler–Bernoulli beam under moving loads to investigate the
dynamic response of the rail. In the study, two forces in-
cluding the repulsive force between rails and the thermal
pressure of armature on rail were considered. Wu et al. [32]
also simplifed the rail to an Euler–Bernoulli beam sup-
ported by an elastic base to analyze the vibration response of
the rail. In the work, the repulsive force and the contact
pressure acting on the rail were considered. Based on the
above works, we believe that there are three kinds of forces
acting on the rail actually; i.e., the EM repulsive force be-
tween rails, the contact pressure between the armature and
the rail due to factors such as preloading for tight ftting, and
the thermal expansion pressure of the armature induced by
the Joule heating efect, respectively.

Terefore, the time varying moving loads on rail are
composed of three parts as follows:

q(x, t) � q1(t)[1 − H(x − u(t))]

+ q2(t) + q3(t)( 􏼁H
1
2

l􏼒 􏼓
2

− (x − u(t))
2

􏼢 􏼣,

(2)

where q1(t), q2(t), and q3(t) are the EM repulsive force, the
contact pressure, and the thermal expansion pressure, re-
spectively, H is a Heaviside step function, u(t) is the dis-
placement of the armature, and l is the contact length
between the armature and the rail.

2.2. Loads Computation

2.2.1. EM Repulsive Force. Te EM feld coordinate of the
rail is established as shown in Figure 4. Considering the skin
efect of the current and ignoring the distribution of current
in the width direction of the rail, the magnetic induction
intensity at any point between two rails can be obtained.

According to the Biot–Savart law and reference [33], the
magnetic induction intensity B generated by rail 1 at the
infnitesimal dy′ of rail 2 is as follows:
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Figure 1: Schematic diagram of the barrel of an EM railgun.
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Figure 2: Schematic diagram of forces acting on the rail and
armature.
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Figure 3: Beam model of the rail.
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B �
μ0
4π

􏽚
h/2

− h/2

(i(t)/h)dy

s
2

+ y − y
′

􏼒 􏼓
2

�
μ0i(t)

4πhs
arctan

h/2 − y
′

s
+ arctan

h/2 + y
′

s
⎡⎣ ⎤⎦,

(3)

where μ0 is the vacuum permeability, h is the height of the
rail, s is the distance between the inner walls of two rails, and
i(t) is the current.

Terefore, the EM repulsive force q1 between rail 1 and
rail 2 is derived as follows:

q1 � 􏽚
h/2

− h/2
B

i(t)

h
dy
′

�
μ0i

2
(t)

4πh
2
s

2h arctan
h

s
+ s ln

s
2

s
2

+ h
2􏼢 􏼣.

(4)

2.2.2. Contact Pressure. In order to avoid the occurrence of
transition and ensure steady contact between the armature and
the rail, the Anker law is usually used to judge whether the
contact pressure provided by the tight ft can meet the launch
demand. However, when the armature moves along the rail at
a superhigh speed, the contact pressure will be impacted by the
initial interference between the armature and the rail and the
tension of the armature under the action of current as well as
the wear of the armature [34]. So, the calculation of the contact
pressure q2 is complex to some extent.

Te contact pressure can be approximately calculated by
the following equation [31]:

q2 �
L
′
li
2
(t)

s
2 , (5)

where L′ is the inductance gradient. Te calculation method
of L′ is detailed in reference [35].

2.2.3. Termal Expansion Pressure. When the current passes
through the armature, the armature will inevitably generate
a large amount of heat inside it because of the Joule heating
efect. Te Joule heat will cause thermal expansion of the
armature and therefore produce a thermal expansion
pressure on the rail. According to references [31, 36], as-
suming that the current inside the armature distributes
uniformly, the temperature distribution of the armature
along its height direction is computed by the following
equation:

Td � Tf +
P(t)h

2

8λT

1 +
4λT

hαF

− 4
y

ha

􏼠 􏼡

2
⎡⎣ ⎤⎦, (6)

where ha is the height of the armature, αF is the heat transfer
coefcient of armature material, Tf is the temperature of the
medium adjacent to the armature, λT is the thermal con-
ductivity coefcient of armature material, σd is the con-
ductivity of armature material, and P(t)� 0.86(J2(t)/σd) is the
power of the Joule heat with the current density J(t) � (i(t)/
l·ha).

Given an extremely short acting time, the change of the
temperature can be ignored. Te average temperature along
the height direction of the armature is taken as the basis for
calculation. Based on equation (6), ignoring the medium
temperature, the thermal strain of the armature is obtained
as follows:

εT(t) �
αT

ha

􏽚
ha/2

− ha/2
Tddy �

P(t)haαT

8
4λT

αF

+
2
3
ha􏼢 􏼣, (7)

where αT is the linear expansion coefcient of armature
material.

Terefore, assuming that the armature expands uni-
formly and the force acting on the rail is even, the thermal
expansion pressure of the armature on rail is derived as
follows:

q3 � εT(t)Edhal �
EdP(t)ha

2
lαT

8
4λT

αF

+
2
3
ha􏼢 􏼣, (8)

where Ed is the elastic modulus of armature material.

3. Movement of the Armature

As shown in Figure 4, according to the Biot–Savart law, the
magnetic induction intensity B1 generated by rail 1 at the
infnitesimal dz is as follows:

B1 �
μ0
4π

􏽚
h/2

− h/2

(i(t)/h)

z
2

+ y
2 dy �

μ0i(t)

2πhz
arctan

h

2z
. (9)

Similarly, the magnetic induction intensity B2 generated
by rail 2 at the infnitesimal dz is as follows:

B2 �
μ0i(t)

2πh(s − z)
arctan

h

2(s − z)
. (10)

Tus, the Ampere force on the armature is calculated by
the following equation:
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Figure 4: Coordinate system of the EM feld.
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F � 􏽚
s

0
B1 + B2( 􏼁i(t)dz. (11)

In addition, there is friction between the armature and the
rail. Ignoring the static friction at the initial startup stage, the
thrust force of the armature in the sliding stage is as follows:

Fa � F − Ff � F − 2μFN, (12)

where Ff is the friction force, μ is the coefcient of sliding
friction, and FN � (q2 + q3)hl is the normal pressure.

Terefore, according to the Newton’s second law, the
velocity and displacement of the armature during launch can
be derived as follows:

v(t) � 􏽚
t

0

Fa

M
dt � 􏽚

t

0

F − 2μFN

M
dt,

u(t) � u0 + 􏽚
t

0
v(t)dt � u0 + 􏽚

t

0
􏽚

t

0

F − 2μFN

M
dtdt,

(13)

where M and u0 are the mass and the initial position of the
armature, respectively.

4. Solving Method

Here, the method of separation of variables is adopted to
solve the diferential equation of the rail. Te solution of
equation (1) is assumed as follows [19]:

ω(x, t) � θ(x)φ(t) � 􏽘
∞

i�1
θi(x)φi(t), (14)

where θ(x) and ϕ(t) represent the vibration mode and the
vibration rule, respectively.

Te homogeneous vibration equation of equation (1) is
as follows:

EI
z
4ω(x, t)

zx
4 + m

z
2ω(x, t)

zt
2 + kω(x, t) � 0. (15)

Substituting equation (14) into equation (15), there is

EIφ(t)
z
4θ(x)

zx
4 + mθ(x)

z
2φ(t)

zt
2 + kθ(x)φ(t) � 0. (16)

Equation (16) can also be expressed as follows:

EI
m

d
4θ(x)/dx

4
􏼐 􏼑

θ(x)
+

k

m
� −

d
2ϕ(t)/dt

2
􏼐 􏼑

ϕ(t)
. (17)

In equation (17), x and t are independent of each other.
So, both sides of the equation must be a constant at the same
time, and the constant should be nonnegative. Assuming the
constant is c2, equation (17) is transformed into the fol-
lowing two independent equations:

d
4θ(x)

dx
4 − δ4θ(x) � 0,

d
2ϕ(t)

dt
2 + c

2ϕ(t) � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

with

δ4 �
m c

2
− (/)􏼐 􏼑

EI
. (19)

Now, solutions of equation (18) can be expressed as
follows:

θ(x) � a1e
δx

+ a2e
− δx

+ a3 sin δx + a4 cos δx,

ϕ(t) � c1 cos ct + c2 sin ct.

⎧⎨

⎩ (20)

Introducing hyperbolic functions, i.e.,
cosh x � (ex + e− x)/2 and sinhx � (ex − e− x)/2 into equa-
tion (20), the solutions of equation (18) are rewritten as
follows:

θ(x) � a1sinh δx + a2cosh δx + a3 sin δx + a4 cos δx,

ϕ(t) � c1 cos ct + c2 sin ct,
􏼨

(21)

where a1, a2, a3, and a4 are constant coefcients which can be
determined by the boundary conditions and the initial
conditions, c1 and c2, are constant coefcients.

According to Appendix A, the constant coefcients a1,
a2, a3, and a4 can be obtained. Substituting equation (A.7)
into equation (21), the ith-order vibration mode of the rail
θi(x) is derived as follows:

θi(x) � coshδix − cos δix( 􏼁

−
sinhδiL − sin δiL

coshδiL + cos δiL
sinhδix − sin δix( 􏼁.

(22)

Te function θi(x) is an orthogonal function which
satisfes the following formula:

􏽚
L

0
θi(x)θj(x)dx �

0, i≠ j,

1, i � j.
􏼨 (23)

Next, in order to obtain ϕ(t) in equation (14) under the
time varying moving load q(x, t), the Lagrange equation of
the rail is established as follows [37]:

d

dt

zT

z(dϕ(t)/dt)
􏼠 􏼡 −

zT

zϕ(t)
+

zU

zϕ(t)
� Q(t), (24)

where T and U are the kinetic energy and the total potential
energy of the beam, respectively. Also, Q(t) is a generalized
force, which is defned as follows:
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Q(t) � 􏽚
L

0
q(x, t)θ(x)dx. (25)

According to Appendix B, the kinetic energy T and the
total potential energy U of the beam can be obtained. So,

based on equations (B.3) and (B.7), the following equations
are obtained:

d

dt

zT

z(dϕ(t)/dt)
􏼠 􏼡 �

d

dt

z 1/2􏽐iMi dϕi(t)/dt( 􏼁
2

􏼐 􏼑

z(dϕ(t)/dt)
⎛⎝ ⎞⎠

� 􏽘
i

Mi

d
2ϕi(t)

dt
2 ,

(26)

zT

zϕ(t)
� 0, (27)

zU

zϕ(t)
�

z 1/2􏽐iMiϕi
2
(t)c

2
i􏼐 􏼑

zϕ(t)
� 􏽘

i

Miϕi(t)c
2
i . (28)

Substituting equations (26)–(28) into equation (24), the
Lagrange equation about the generalized coordinator ϕi(t) is
simplifed as follows:

d
2ϕi(t)

dt
2 + c

2ϕi(t) �
Qi(t)

Mi

. (29)

According to the Duhamel integral, the general solution
of ϕi(t) in equation (29) can be expressed as follows:

ϕi(t) � ϕi(0) cos cit( 􏼁 +
1
ci

_ϕi(0) sin cit( 􏼁

+
1
ci

􏽚
t

0

Qi(t)

Mi

sin ci(t − ξ)􏼂 􏼃dξ.

(30)

Te initial conditions of ϕi(t) at zero time are as follows:

ϕi(0) � 0,

dϕi(0)

dt
� 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

Substituting equation (31) into (30), there is

ϕi(t) �
1
ci

􏽚
t

0

Qi(t)

Mi

sin ci(t − ξ)􏼂 􏼃dξ, (32)

where

Qi(t) � 􏽚
L

0
q(x, t)θi(x)dx,

� 􏽚
L

0
q1(t)[1 − H(x − u(t))] + q2(t) + q3(t)( 􏼁H

1
2

l􏼒 􏼓
2

− (x − u(t))
2

􏼢 􏼣􏼢 􏼣􏼢 coshδix − cos δix( 􏼁

−
sinhδiL − sin δiL

coshδiL + cos δiL
sinhδix − sin δix( 􏼁􏼣dx.

(33)

According to the properties of the Heaviside step
function, the generalized forceQi(t) can be further expressed
by the following equation:
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Qi(t) � 􏽚
u(t)

0
q1(t) coshδix − cos δix( 􏼁 −

sinhδiL − sin δiL

coshδiL + cos δiL
sinhδix − sin δix( 􏼁􏼢 􏼣dx

+ 􏽚
u(t)+l

u(t)
q2(t) + q3(t)( 􏼁 coshδix − cos δix( 􏼁 −

sinhδiL − sin δiL

coshδiL + cos δiL
sinhδix − sin δix( 􏼁]dx

�
q1(t)

δi

sinhδix − sin δix( 􏼁 −
sinhδiL − sin δiL

coshδiL + cos δiL
coshδix + cos δix( 􏼁􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u(t)

0

⎡⎣

+
q2(t) + q3(t)

δi

sinhδix − sin δix( 􏼁 −
sinhδiL − sin δiL

coshδiL + cos δiL
coshδix + cos δix( 􏼁􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

u(t)+l

u(t)

.⎡⎣

(34)

So, substituting equation (34) into equation (32), the ith-
order vibration rule ϕi(t) can be achieved as follows:

ϕi(t) �
1

ciMiδi

A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9( 􏼁, (35)

where

A1 � 􏽚
t

0
q1(ξ) − q2(ξ) + q3(ξ)( 􏼁( 􏼁sinh δiu(ξ)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A2 � − 􏽚
t

0
q1(ξ) − q2(ξ) + q3(ξ)( 􏼁( 􏼁sin δiu(ξ)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A3 � − ni 􏽚
t

0
q1(ξ) − q2(ξ) + q3(ξ)( 􏼁( 􏼁cosh δiu(ξ)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A4 � − ni 􏽚
t

0
q1(ξ) − q2(ξ) + q3(ξ)( 􏼁( 􏼁cos δiu(ξ)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A5 � 􏽚
t

0
q2(ξ) + q3(ξ)( 􏼁sinh δi(u(ξ) + l)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A6 � − 􏽚
t

0
q2(ξ) + q3(ξ)( 􏼁sin δi(u(ξ) + l)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A7 � − ni 􏽚
t

0
q2(ξ) + q3(ξ)( 􏼁cosh δi(u(ξ) + l)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A8 � − ni 􏽚
t

0
q2(ξ) + q3(ξ)( 􏼁cos δi(u(ξ) + l)􏼂 􏼃sin ci(t − ξ)􏼂 􏼃dξ,

A9 � 2ni 􏽚
t

0
q1(ξ) sin ci(t − ξ)􏼂 􏼃dξ,

ni �
sinhδiL − sin δiL

coshδiL + cos δiL
.

(36)
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Ten, the vibration rule ϕ(t) can be calculated by per-
forming numerical integration on equation (36). Based on
the procedures presented above, the solution of equation (1)
is obtained at last.

5. Results and Analysis

5.1. Physical Parameters. Te detailed parameters of the
armature and the rail under the laboratory conditions are
shown in Table 1. Te rail is made of copper, and the ar-
mature is made of aluminum. Te exciting current curve is
shown in Figure 5. Te peak value of the current is about
400KA at the time of 0.6ms. Heavy pulse current with
a certain pulse width can make the armature accelerate
instantaneously and speed up to an extremely high level [1].

5.2. Time Varying Moving Loads. Based on the parameters
listed in Table 1, the repulsive force, the contact pressure,
and the thermal expansion pressure acting on the rail during
launch are calculated as shown in Figures 6–8, respectively.
It can be seen from Figure 6 that the repulsive force on rail
always exists at the rear position of the armature as it is
moving along the barrel. While in Figures 7 and 8, the
contact pressure and the thermal expansion pressure only
exist at the contact position between the armature and the
rail.With the varying of the current, these forces change with
time and reach their peaks within approximately 0.6ms. Te
maximum values of the repulsive force, the contact pressure,
and the thermal expansion pressure are 1.71× 106N/m2,
4.08×106N/m2, and 2.24×108N/m2, respectively. It is il-
lustrated that the thermal expansion pressure is much bigger
than the repulsive force and the contact pressure. So, it is
necessary to consider the thermal expansion pressure in the
vibration analysis of the rail.

5.3. Movement of the Armature. When the armature is
moving along the rails, the contact between the armature
and the rail is seen as a sliding electrical contact. Te
friction coefcient of the sliding electrical contact is from
0.04 to 0.09 generally [38]. In this paper, the sliding
friction coefcient is selected as 0.05.Te ampere force and
the friction force acting on the armature are obtained as
shown in Figure 9. It can be seen that both the ampere
force and the friction force are time varying. When the
current reaches its peak, the forces reach their maximum
values, too. Te friction force is approximately 16% of the
ampere force. According to the forces analysis in Section
5.2, the friction force is mainly generated by the thermal
expansion force. Terefore, the armature undergoes
a variable acceleration motion, whose velocity and dis-
placement during launch are illustrated in Figure 10. It can
be seen that the acceleration of the armature increases
rapidly in the frst half of the motion and then decreases
gradually because the thrust reduces. If the initial position
of the armature u0 is assumed to be zero, the whole launch
time is about 1.87ms and the muzzle velocity of the ar-
mature is up to 1072.0m/s.

5.4. Vibration Response of the Rail. Based on the solving
procedure presented in Section 4, the frst six vibration
modes of the rail are obtained as shown in Figure 11. It can

Table 1: Parameters of the armature and the rail.

Parameter Value
Rail length (L) 2000mm
Rail height (h) 20mm
Rail width (b) 10mm
Distance between rails (s) 20mm
Elastic modulus (E) 110GPa
Foundation stifness (k) 10GPa
Contact length between armature and rail (l) 24mm
Rail density (ρr) 8900 kg/m3

Armature height (ha) 20mm
Armature mass (M) 20 g
Armature density (ρa) 2700 kg/m3

Elastic modulus of armature (Ed) 70GPa
Armature conductivity (σd) 3.7×107(Ω/m)
Sliding friction coefcient (μ) 0.05
Heat conduction coefcient of armature
material (λT)

237W/(m · °C)

Heat transfer coefcient of armature
material (αF)

500W/(m · °C)

Linear expansion coefcient (αT) 2.35×10− 5 (°C− 1)
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Figure 5: Curve of the exciting current.
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Figure 6: Repulsive force on the rail.
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be seen that as the mode order increases, the natural fre-
quency increases. Using high-order modes to calculate the
vibration response of the rail can improve the calculation

accuracy, but the calculation cost is high. According to the
vibration mechanics theory, the vibration of a beam is
mainly afected by low-order modes. So, the frst three order
modes are used for the calculation of vibration
amplitudes [39].

Te vibration response of the rail under time varying
moving loads is shown in Figure 12. As the armature moves
along the rail, the dynamic response of the rail at diferent
times and positions can be obtained from the graph. It can be
seen from Figure 12 that the rail vibration is low frequency
defection wave. Tis tendency agrees with the results ob-
tained in reference [14], approximately. When the defection
is positive, it means that the railgun caliber is constricted
[14]. In Figure 12, the vibration amplitude at the middle of
the rail is obviously larger than that at other locations. When
the armature runs for 1.1ms and reaches the position of
0.983m of the rail, the maximum vibration amplitude
(MVA) of the rail is about 1.79×10− 4m. Te MVAs at
diferent positions of the rail are diferent during the period
of launch. From a local perspective, the MVAs at the po-
sitions of 0.8m, 1.0m, and 1.2m of the rail are 1.72×10− 4m,
1.78×10− 4m, and 1.33×10− 4m, respectively, as given in
Figure 13.

5.5. Efects of Parameters on Lateral Vibration

5.5.1. Elastic Foundation Coefcient. Te elastic foundation
coefcient of the supporting structure is an important pa-
rameter, which will afect the lateral vibration amplitude of
the rail. But the armature motion will not be afected because
the exciting current and the geometric structure parameters
of the rail are unchanged.

Now, the elastic foundation coefcient is set to be 7GPa,
10GPa, and 15GPa, respectively. Te lateral vibration
amplitudes at the position of 1.0m are shown in Figure 14. It
can be seen that the MVA of the rail decreases with the
increasing of the elastic foundation stifness. When the
elastic foundation coefcients are 7GPa, 10GPa, and
15GPa, the MVAs are 2.55×10− 4m, 1.78×10− 4m, and
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1.17×10− 4m, respectively.Terefore, to reduce the vibration
amplitude of the rail, the elastic foundation stifness should
be enhanced as much as possible by changing the foundation
material or dimensions.

5.5.2. Rail Width. When the rail width is varied, the
magnetic induction intensity and the inductance gradient as
well as the moment of inertia of the rail will change cor-
respondingly. Here, the rail widths of 8mm, 10mm, and
12mm are selected for calculation. Te moment of inertia,
the inductance gradient, and the magnetic induction in-
tensity under diferent widths are calculated, as listed in
Table 2. It can be seen that when the rail width increases, the
moment of inertia increases, and the bending stifness of the
rail is enhanced. However, the inductance gradient and the
magnetic induction intensity decrease slightly, and it means
that the forces acting on the rail will get smaller.

Te velocity and the displacement of the armature under
diferent rail widths are given in Figures 15 and 16. It can be
seen that the running speed of the armature decreases with
the increasing of the rail width. When the rail widths are
8mm, 10mm, and 12mm, the muzzle velocities of the ar-
mature are 1085.1m/s, 1072.0m/s, and 1056.9m/s, re-
spectively. Correspondingly, the running times of the
armature on the 2-meter long rail are 1.81ms, 1.87ms, and
1.93ms, respectively.

Ten, the lateral vibration amplitudes at 1.0m of the rail
are shown in Figure 17. It can be seen that the vibration
amplitude of the rail decreases with the increasing of the
width of the rail. When the rail widths are 8mm, 10mm, and
12mm, the MVAs are 1.89×10− 4m, 1.78×10− 4m, and
1.62×10− 4m, respectively.

5.5.3. Rail Height. Here, the rail heights of 18mm, 20mm,
and 22mm are selected for calculation. Te moment of
inertia, the inductance gradient, and the magnetic induction
intensity under diferent heights are calculated as listed in
Table 3. It can be seen that when the rail height increases, the
moment of inertia increases, while the inductance gradient
and the magnetic induction intensity decrease.

Te velocity and the displacement of the armature under
diferent rail heights are given in Figures 18 and 19. It is
illustrated that the running speed of the armature decreases
with the increasing of the rail height. When the rail heights
are 18mm, 20mm, and 22mm, the muzzle velocities of the
armature are 1079.2m/s, 1072.0m/s, and 1065.9m/s, re-
spectively. Correspondingly, the running times of the ar-
mature on the 2-meter long rail are 1.85ms, 1.87ms, and
1.90ms.

Ten, the lateral vibration amplitudes at 1.0m of the rail
are shown in Figure 20. It can be seen that the lateral vi-
bration amplitude of the rail decreases with the increasing of
the rail height. When the rail heights are 18mm, 20mm, and
22mm, the MVAs are 2.19×10− 4m, 1.78×10− 4m, and
1.46×10− 4m, respectively.

Now, in order to compare the efects of diferent factors
on the muzzle velocity of the armature and the MVA of the
rail, the relative reduction rates are listed in Table 4. Te
relative reduction rate Ri is computed by the following
equation:

Ri �
Di − D1

D1
×100%, (37)

where D1 is the frst data and Di (i� 2, . . .,m) represents the
other data.

It can be seen from Table 4 that the changing of pa-
rameters has a little efect on the muzzle velocity of the
armature, but an obvious efect on the MVA of the rail.
Relatively speaking, the infuences of the rail height and the
elasticity foundation stifness are greater than that of the rail
width. Among them, the relative reduction rate of the MVA
reaches 54.2% when the foundation elastic stifness increases
to 15GPa, and the relative reduction rate of the MVA
reaches 33.3% when the rail height increases to 22mm.
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Figure 11: First six vibration modes of the rail.
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Figure 14: Efects of the elastic foundation coefcient on the lateral vibration of the rail.

Table 2: Mechanical parameters under diferent rail widths.

Rail width, b (mm) Moment of inertia, I (mm4) Inductance gradient, L′ (μH/m) Magnetic induction intensity, B (T)
8 853.3 0.4901 12.76
10 1666.7 0.4860 12.65
12 2880.0 0.4813 12.19

Shock and Vibration 11



1100

1080

1060

1040

1020
0.0015 0.0016 0.0017 0.0018 0.0019

0.0005 0.00150.0000 0.00200.0010
Time (s)

0

200

400

600

800

1000

1200

Ve
lo

ci
ty

 (m
/s

)

b=8 mm
b=10 mm
b=12 mm

Figure 15: Velocities of the armature under diferent widths of the rail.
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Figure 16: Displacements of the armature under diferent widths of the rail.
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Table 3: Mechanical parameters under diferent rail heights.

Rail height, h (mm) Moment of inertia, I
(mm4)

Inductance gradient, L′
(μH/m)

Magnetic induction intensity,
B (T)

18 1500.0 0.4881 13.25
20 1666.7 0.4860 12.65
22 1833.3 0.4840 12.05
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Figure 18: Velocities of the armature under diferent heights of the rail.
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Figure 17: Efects of rail widths on the lateral vibration of the rail.
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6. Conclusions

In this paper, an analytical method combined with nu-
merical integration is proposed to investigate the lateral
vibration of rails under time varying moving loads. Te
dynamic response of the simplifed Euler–Bernoulli beam is
obtained. Te main results are as follows:

(1) A dynamic analysis of an EM rail under time varying
moving load is carried out based on the Winkler
model by using the method of separation of variables
and the Lagrange procedure. An intuitive 3D graph
refecting the change of rail vibration with launch
time and rail position is achieved. It can be seen that
the lateral vibration pattern mainly appears as

Table 4: Summary of results for comparison.

Parameter Foundation stifness, k
(GPa) Rail width, b (mm) Rail height, h (mm)

Value 7 10 15 8 10 12 18 20 22
Muzzle velocity (m/s) 1072.0 1072.0 1072.0 1085.1 1072.0 1056.9 1079.2 1072.0 1065.9
Relative reduction rate 0 0 0 0 1.2% 2.6% 0 0.7% 1.2%
Maximum vibration amplitude (×10− 4m) 2.55 1.78 1.17 1.89 1.78 1.62 2.19 1.78 1.46
Relative reduction rate 0 30.2% 54.1% 0 5.8% 14.3% 0 18.7% 33.3%
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Figure 19: Displacements of the armature under diferent heights of the rail.
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Figure 20: Efects of rail heights on lateral vibration of the rail.
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deviation from the axis of the railgun bore. Te
vibration amplitude at the middle position of the rail
is much bigger than that at other locations. Te
maximum vibration amplitude can reach
1.79×10− 4m. Tis provides an idea for the structure
design of the rail, i.e., an irregular section rail with
high stifness in its middle part is needed to reduce
the vibration amplitude of the rail.

(2) Te time for the armature to pass through a 2-meter
long rail is approximately 1.8ms. Te muzzle ve-
locity of the armature is about 1043m/s. During the
whole launch time, the time varying forces reach
their peaks when the current is biggest at 0.6ms. Te
thermal expansion pressure induced by the Joule
heating efect at the contact area between the ar-
mature and the rail is much bigger than the repulsive
force and the contact pressure. It is about a hundred
times that of the repulsive force. So, it is the main
cause of friction and wear between the armature and
the rail.

(3) Te vibration response is infuenced by the di-
mensions of the rail and the brace stifness obviously.
Increasing the width and the height of the rail and
the elastic foundation stifness can reduce the vi-
bration magnitude. Relatively speaking, the relative
reduction rates of the MVAs obtained by increasing
the foundation stifness and the rail height are bigger
than that obtained by increasing the rail width. Te
relative reduction rate reaches 54.2% by increasing
the foundation stifness from 7GPa to 15GPa and
33.3% by increasing the rail height from 18mm to
22mm. It should be noted that although the relative
reduction rate is signifcantly higher, it is difcult to
enhance the foundation stifness to such a high level.
Terefore, it is advisable to increase the rail height as
a priority for vibration reduction. In addition, it is

good to see that the variation of parameters has slight
efects on the muzzle velocity of the armature.

Next, further works will be conducted on the forces and
dynamic responses of irregular rails (with concave or convex
cross-section) of EM railguns, as well as the variable cross
section rails like the trapezoidal rail. Te aim is to study the
efects of rail beams with special shapes on the vibration
reduction of EM railguns. Moreover, it is necessary to in-
vestigate the infuence of the rail vibration on the shot ac-
curacy of EM railguns in the future.

Appendix

A. Details of Solving Coefficients in Equation
(21) under Boundary Conditions

Te aim of this procedure is to obtain the coefcients aj
(j� 1, . . ., 4) of the following equation:

θ(x) � a1sinh δx + a2cosh δx + a3 sin δx + a4 cos δx.

(A.1)

According to the simplifed beam model of the rail, both
the defection and rotation angle of the fxed end are zero,
and the bending moment and shear stress of the free end are
also zero. Hence, when the length of the rail is L, its
boundary conditions are as follows:

x � 0:

θ(x) � 0,

dθ(x)

dx
� 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

andx � L:

d
2θ(x)

dx
2 � 0,

d
3θ(x)

dx
3 � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A.2)

Substituting equation (A.2) into equation (A.1), the
following relations are obtained:

θ(0) � a2 + a4 � 0,

dθ(x)

dx
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
x�0

� δ a1 + a3( 􏼁 � 0,

(A.3)

d2θ(x)

dx2􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x�L)

� δ2 a1sinh δL + a2cosh δL − a3 sin δL − a4 cos δL( 􏼁 � 0,

d3θ(x)

dx3􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(x�L)

� δ3 a1cosh δL + a2sinh δL − a3 cos δL + a4 sin δL( 􏼁 � 0.

(A.4)

It can be seen from equations (A.3) and (A.4) that there
must be the following relations to have nonzero a1 and a2:

sinh δL + sin δL cosh δL + cos δL

cosh δL + cos δL sinh δL − sin δL

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (A.5)

So, we can obtain the following equation:

cosh δL · cos δL + 1 � 0. (A.6)

According to the boundary conditions, when the value of
a2 is set to 1, the constants a1, a3, and a4 are obtained as follows:
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a1 � − a3 �
sinhδiL − sin δiL

coshδiL + cos δiL
,

a4 � − a2 � − 1,

(A.7)

where δi � (i− 0.5)π/L, (i � 1, 2... n) and n represents the
number of modes.

B. Details of Solving the Kinetic Energy and the
Total Potential Energy of the Beam

Te kinetic energy of the beam T is expressed as follows:

T �
1
2

􏽚
L

0
m

zω(x, t)

zt
􏼠 􏼡

2

dx. (B.1)

Ten, substituting equation (14) into equation (B.1),
there is

T �
1
2

􏽘
i

􏽘
j

dϕi(t)

dt

dϕj(t)

dt
􏽚

L

0
mθi(x)θj(x)dx. (B.2)

Combining equation (B.2) with equation (23), the ki-
netic energy of the beam T can be obtained as follows:

T �
1
2

􏽘
i

Mi

dϕi(t)

dt
􏼠 􏼡

2

, (B.3)

whereMi represents the generalizedmass of the beam, which
is expressed as follows:

Mi � 􏽚
L

0
mθ2i (x)dx. (B.4)

In addition, the total potential energy is determined by
the strain energy of the rail and the strain energy of the
elastic foundation.

Te strain energy of the rail Us is computed by the
following equation:

Us �
1
2

􏽚
L

0
EI

z2ω(x, t)

zt2
􏼠 􏼡

2

dx �
1
2

􏽘
i

􏽘
j

ϕi(t)ϕj(t) 􏽚
L

0
EI

d
2θi(x)

dx
2

d
2θj(x)

dx
2 dx �

1
2
EI
m

􏽘
i

δi
4
Miϕi

2
(t). (B.5)

Also, the strain energy of the elastic foundation Ub is
computed by the following equation:

Ub �
1
2

􏽚
L

0
kω2

(x, t)dx �
1
2

k􏽚
L

0
􏽘

i

θ(x)ϕ(t)⎛⎝ ⎞⎠

2

dx �
k

2
􏽘

i

􏽘
j

ϕi(t)ϕj(t) 􏽚
L

0
θi(x)θj(x)dx �

k

2m
Mi 􏽘

i

ϕi
2
(t). (B.6)

Tus, the total potential is achieved as follows:

U � Us + Ub �
1
2

EI

m
􏽘

i

δi
4
Miϕi

2
(t) +

k

2m
Mi 􏽘

i

ϕi
2
(t) �

1
2

􏽘
i

Miϕi
2
(t)c

2
i . (B.7)
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