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In order to investigate the vibration characteristics and propagation mechanism of ground vibrations induced by high-speed train
passing through the viaduct, a feld experiment is carried out, and the measured data is deeply analyzed. Besides the independent
time domain and frequency domain analysis, the continuous wavelet transform (CWT) is performed on the vibration signal to
analyze the energy distribution characteristics of ground vibrations from the view of time-frequency synchronous analysis. Te
experimental results show that the ground vibrations have obvious nonstationary characteristics; the frst dominant frequency of
ground vibration is concentrated between 40–55Hz, which is afected by the excitation frequency of the train wheel axle and the
peak frequency of wheel-rail interaction force. Te ground vibrations attenuate gradually as the distance from the railway track
increases, in which the high-frequency components above 50Hz attenuate faster, low-frequency components below 8Hz
continuously decay in the near feld, and medium-frequency components within 8−50Hz decay slower with a longer transmission
distance. Compared with traditional methods, time-frequency synchronous analysis of ground vibration signals is more accurate
and intuitive, and the CWTcan be used as a promising method in the analysis of ground-borne vibration from high-speed railway.

1. Introduction

With the massive construction and rapid development of
high-speed railways (HSR) around the world, the envi-
ronmental vibration problems around the HSR lines are
becoming increasingly serious [1]. Te environmental vi-
bration and noise caused by trains passing through resi-
dential areas may afect people’s daily lives and health [2, 3].
Terefore, the measurement, evaluation, and reduction of
the hazards of environmental vibration have been paid
increasing attention [4]. In the existing high-speed railway
lines, a large part of the lines is composed of bridges [5], so it
is of great signifcance to study the mechanism and prop-
agation law of environmental vibration around high-speed
railway bridges [6]. For the environmental vibration caused
by elevated railway, researchers have conducted extensive
and detailed research [7]. Te research methods mainly
include theoretical analysis, numerical simulation, and feld
test, in which the feld test has incomparable advantages due
to its consistency with the actual vibration situation.

By means of feld tests, Xia et al. [8] studied the ground
vibration of the surrounding site caused by the elevated
section of Beijing Metro Line 5 and summarized the
propagation laws of ground vibration along diferent di-
rections. Zhai et al. [9] measured the ground vibration re-
sponse caused by high-speed trains traveling at 300–400 km/
h through the roadbed section and found the infuence of
vehicle parameters on the vibration response amplitude. In
order to survey the infuence of the soil condition on ground
vibrations, Niu et al. [10] selected a typical loess area and
conducted feld tests on the ground vibration caused by the
operation of the Datong-Xi’an high-speed railway. Wang
et al. [11, 12] found that the main frequency of vertical soil
acceleration induced by HSR is an integer multiple of the
train loading frequency generated by the center distance of
two adjacent carriages. Li and Liu [13] conducted a feld
measurement in the Guanhumetro depot of Guangzhou city
and proposed a method based on the operational transfer
path analysis (OTPA) and singular value decomposition
(SVD) to obtain the vibration transmission characteristics
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and quantify vibration contribution values along diferent
transmission paths. In order to improve the accuracy of
vibration prediction, Liu et al. [14] presented a methodology
implemented in the frequency domain to predict ground-
borne vibration caused by the passage of trains in a curved
tunnel, and feld tests were conducted in the curved tunnel of
Beijing Metro Line 15 to demonstrate the efectiveness of the
prediction method. Some researchers also tried to combine
experimental data and numerical models [15–17] to obtain
a hybrid analysis method. Moreover, some neural network
models are trained by actual test data to obtain a more
accurate vibration prediction method [18–20].

In dealing with the vibration data from feld measure-
ment, the analysis based on time history and Fourier
spectrum is the most commonly used. Although the Fourier
transform is an efective method in refecting frequency
characteristics of ground vibration signal, it cannot accu-
rately express the nonstationary characteristics of railway
trafc-induced ground vibration nor can it refect the change
of the signal spectrum with time. Terefore, the traditional
Fourier transform is somehow limited. In case of practical
need, the continuous wavelet transform (CWT) [21, 22] was
derived from the short-time Fourier transform (STFT).
Caprioli et al. [23] presented the limitations of the STFTand
further illustrated that the CWT of a signal is a more
promising technique. Garinei et al. [24] also obtained the
efectiveness and prospects of CWT in analyzing transient
signals. As a convenient and efcient signal processing
technique, the CWTcan capture the signal’s frequency while
preserving its time information and has been applied in
various felds [25–27]. For example, some researchers used
time-frequency analysis of CWTto detect and diagnose train
and track faults with high accuracy [23, 28–31] to ensure the
operation safety of train; the time-frequency analysis
combined with convolutional neural network technique was
applied to the detection of machine faults [32, 33]. By using
the modifed Littlewood-Paley (MLP) wavelet basis, Cantero
et al. [34] analyzed the time-frequency response of the bridge
vibration caused by the running train and found that the
frequency spectrum of the bridge vibration afected the
vehicle’s speed and axle confguration as well as nonlinear
behavior of the axle.

In addition to the time-frequency analysis by the CWT
technique, some scholars [35–37] have also conducted en-
ergy analysis based on time-frequency information of signals
to further compensate for the shortcomings of traditional
analysis methods. Zhou and Adeli [38] proposed wavelet
energy spectra for time-frequency localization of seismic
signals, and the results showed that the wavelet energy
spectrum can be regarded as a microscope for looking into
the time-frequency characteristics of vibration signals,
which is helpful for signal analysis.

In this paper, an on-site experiment of the ground-
borne vibration around the HSR viaduct is carried out, and
the measured ground vibration signals are analyzed from
diferent angles, including time domain analysis, frequency
domain analysis, time-frequency domain analysis, and
energy analysis. By combining traditional analysis methods
with new CWT analysis methods, more comprehensive

characteristics and propagation laws of ground vibration
caused by the elevated high-speed railway are obtained. At
the same time, the advantages and development prospects
of CWT over traditional analysis methods are also
illustrated.

2. Wavelet Transform

As an excellent tool for time-frequency analysis, the wavelet
transform [39] proposes the core idea of the scaling and
translation of signals, and it can be used to analyze signals
with diferent frequencies by using adaptable window
lengths [40]. Compared to the STFT, the wavelet transform
has better time-frequency window characteristics, making it
highly adaptable to nonstationary signals, and provides
a good balance between frequency and time resolution in
signal processing. Herein, the continuous wavelet transform
(CWT), one of the most popular tools in wavelet transform,
is adopted. Te CWT of a function v(t) can be defned as
follows [39]:

Wv(a, b) �〈f,φa,b〉 �
1
���
|a|

√ 
+∞

−∞
v(t)φ∗a,b

t − b

a
 dt, (1)

where Wv is the wavelet transform result of the function
v(t); a denotes the scaling factor controlling the wavelet
expansion; b is the shifting factor representing the position
of the wavelet; φa,b(t) is the wavelet basis function; φ∗a,b(t)

denotes the conjugate operation performed on φa,b(t).
Te diferent wavelet basis functions φa,b(t) can be

obtained by scaling and translating the same basis wavelet
φ(t), which can be written as follows:

φa,b(t) �
1
��
a

√ φ
t − b

a
 . (2)

In general, the wavelet coefcients are expressed in terms
of a scale factor a. Te relationship between the scale a and
the actual frequency fa is as follows [41]:

fa �
fsfc

a
, (3)

where fs is the sampling rate of the vibration signal; fc is the
central frequency of the wavelet master function.

Based on the basic principle of CWT, the time-frequency
energy Ea,b of the signal wavelet can be expressed as follows
[38]:

Ea,b �
Wv(a, b)



2

π
. (4)

Since the frequency range of ground vibrations caused by
passing HSR trains is mainly within 200Hz [42], the
maximum frequency of the CWT is set to 200Hz in
the paper.

Figure 1 gives an example of using CWT to process the
measured ground vibration signal, in which Figure 1(a) is
a 3D surface diagram in the time-frequency domain, and
Figure 2(b) is the 2D time-frequency diagram obtained
by CWT.
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3. Field Experiment ofGround-BorneVibration

3.1. Site Overview. An elevated section located at Yuanping
West to Yangqu West of the Datong to Xi’an high-speed
railway (Daxi HSR) is selected as the experimental site, and
the train speed ranges from 250 km/h to 385 km/h. Te
bridge in the test section has a standard 32m double track
concrete box girder (Figures 2 and 3), and the height and
width of the beam section are, respectively, 3.08m and 12m.
More details of the cross section of the beam and pile group
foundation are shown in Figure 3. Te frst vertical bending
eigenfrequencies of the box girder is 9.23Hz, the frst tor-
sional eigenfrequencies is 15.36Hz, and the frst lateral
frequency is 24.1Hz [43].

Around the HSR bridge, an open farmland with fat
terrain was selected as the experimental free feld, as shown
in Figure 2.

3.2. Layout ofMeasuring Points. Te layout of the measuring
points for the free feld vibration test is shown in Figure 4.
Te track on the side relatively far from the free feld is called

the far track and that closer to the feld is called the near
track. Te intersection between the center line of the bridge
pier and the horizontal line of the ground is set as the
coordinate origin O, with the train running direction for the
x-axis, perpendicular to the train running direction for the y-
axis, and vertical down for the z-axis. Te x, y, and z di-
rections are also known as the longitudinal, transverse, and
vertical directions. As shown in Figure 4, the acceleration
sensors of 1# and 2# are laid on the beam bottom and the pier
top, respectively. Besides, the measurement points (3#–9#) of
ground vibration are arranged with diferent spacing in the
side of the bridge pier along the y-axis direction.

In the experiment, all acceleration sensors are of the
941B type (Institute of Engineering Mechanics, China
Earthquake Administration. Range 0–20 g, frequency re-
sponse range 0.25–80Hz) with a sampling frequency of
512Hz. Tree acceleration sensors are simultaneously in-
stalled at each measuring point to measure the vibration
acceleration in the x, y, and z directions in Figure 4. In
addition, the 28-bit network distributed synchronous ac-
quisition instrument INV3020S designed by Beijing
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Figure 1: Example of time-frequency analysis by CWT. (a) 3D time-frequency diagram. (b) 2D time-frequency diagram.

Figure 2: Experimental site.
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Figure 3: Schematic diagram of the bridge and pile foundation. (a) Cross section of box girder (unit: mm). (b) Pile group foundation.
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Figure 4: Arrangement of measuring points in the experiment. (a) Elevation view. (b) Plan view.
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Dongfang Vibration and Noise Research Institute is used for
data acquisition in cooperation with the DASP-V10 oper-
ation software.

3.3. Test Conditions. Te running high-speed train during
the test is the CRH380A, with an axle weight of approxi-
mately 14 t and an 8-car formation, as shown in Figure 5(a).
Te wheelset mass of CRH380A is about 2000 kg. In ad-
dition, the characteristic length of the test train is given in
Figure 5(b), with bogie wheelbase L1 � 2.5m, the central
distance between adjacent bogies L2 � 7.625m of adjacent
vehicles, the central distance between front and rear bogies
L3 �17.375m for the same vehicle, and overall length
L4 � 25m for a single vehicle. Te CRST-II slab ballastless
track is laid on the bridge (Figure 5(c)), in which the rail
mass per length is 60 kg/m and the rail pad stifness is
900MN/m.

4. Characteristics and Transmission Law of
Ground Vibrations

4.1. Removal of Background Vibration. While the acceler-
ometer picks up the vibration signal caused by the passage of
the train, it also picks up background vibrations caused by
ambient vibrations such as ground pulsations. In the sub-
sequent processing of the test data, the infuence of back-
ground vibration on HSR-induced ground vibrations needs
to be removed frst. During the feld test, a number of
background vibration data were collected. Take the vertical
ground vibration at D� 24m as an example, the collected
original ground vibration with an HSR train passing through
the bridge at the speed of 337 km/h and the collected
background vibration without train passing are shown in
Figures 6(a) and 6(b), respectively.

To remove the disturbance of background vibration,
both the measured ground vibration and the measured
background vibration are transformed by the fast Fourier
transformation to obtain the Fourier spectrum (Figures 6(a)
and 6(b)). It can be clearly seen that there is a disturbance at
the frequency of 49.8Hz from the ambient vibration. Ten,
the amplitudes of two spectra corresponding to the same
frequency are subtracted to remove the background vibra-
tion components. After the treatment of the background
vibration, the real vertical ground acceleration of D� 24m
can be obtained, as shown in Figure 6(c).

4.2. Vibration Characteristics Analysis. Te measured
ground vibration induced by an HSR train running at the
speed of 337 km/h is taken as an example.

4.2.1. Histories and Frequency Spectra of Beam Bottom and
Pier Top. Figure 7 shows the time histories and Fourier
spectra of the vertical vibration acceleration at the beam
bottom and on the top of the pier.

As shown in Figure 7(a), the periodic loading phenom-
enon with nine obvious peaks can be observed from the
history curves, which is due to the train composition with
a total of eight segments, and the peaks correspond to axle

loads. In addition, Figure 7(b) refects that the vibration energy
of the beam bottom is mainly distributed between 30Hz and
100Hz, but that greater than 50Hz slightly dissipates from the
beam bottom to the pier top because of the energy con-
sumption of the beam structure and support system.

4.2.2. Histories and Frequency Spectra of Ground Vibrations.
Te vertical acceleration histories and frequency spectra of
D� 1m, 6m, 11m, 16m, 24m, and 32m on the ground
surface are shown in Figures 8(a) and 8(b). Simultaneously,
the vertical ground velocities at D� 1m, 6m, and 11m are
also shown in Figure 8(c).

Generally, either acceleration or velocity can be adopted
as the evaluation index of ground vibration. According to
international standards ISO 14837-1 [44] and ISO8041-1
[45], the metrics for evaluating ground vibration and human
whole-body vibration are usually acceleration, so the sub-
sequent response representations are mainly based on ac-
celeration signals. As you can see from Figures 7 and 8, the
vertical acceleration amplitude of HSR train-induced vi-
bration shows a very obvious attenuation from the beam
bottom toD� 11m on the ground, and the attenuation tends
to gradually slow down with the distance increase from
D� 11m to D� 40m.

On the other hand, the vertical acceleration spectrum of
the beam bottom (D� 0m) has a wide frequency distribu-
tion (0–100Hz). When the vibration is transferred from the
bridge deck to the pier and then from the pier to the ground,
the high-frequency components above 80Hz in the vibration
are greatly attenuated. From the vertical acceleration
spectrum of each measurement point on the ground, it can
be seen that as the vibration wave propagates in the soil, the
frequency components of 50−100Hz are greatly fltered by
soil media and rapidly attenuate, while those vibration
components between 8Hz and 50Hz decay gradually and
can be transmitted to a farther distance. Although the vi-
bration components below 8Hz also keep continuous decay,
the attenuation rate is less than the 50−100Hz components
and almost invariant behind D� 11m. So, the ground vi-
brations with diferent frequencies have diferent decay
characteristics. Hereafter, three frequency ranges of around
0–8Hz, around 8−50Hz, and around 50−100Hz are dis-
tinguished by low frequencies, medium frequencies, and
high frequencies [46].

Te diferent decay characteristics are closely related to
soil properties. Above all, the soil damping has a signifcant
energy consumption efect on the propagation of high-
frequency vibration components. Next, the vibration of
the layered soil has often a low-frequency cutof with small
amplitudes at the low frequencies. Ten, the attenuation of
mid-frequency vibration is between these two situations, so
it has little attenuation during the transmission process and
plays a dominant role in the far feld [47]. Moreover, it
should be noted that, in the normal operation of high-speed
railway, the irregularities of the vehicle (such as out-of-
round wheels) are an important part of the high-frequency
excitation, while the track irregularities and train-track
dynamic interaction can explain the medium-frequency
ground vibrations to a certain extent [48].
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Figure 5: Type and parameters of the HSR train. (a) CRH380A high-speed train. (b) Characteristic lengths of the HSR train. (c) CRTSII-
track slab.
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Figure 6: Background vibration treatment of ground acceleration (D� 24m). (a) Collected original ground vibration. (b) Background
vibration. (c) Ground vibration after removing background vibration.
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Figure 7: Histories and spectra distribution of vertical vibrations at beam bottom and on pier top. (a) Time histories. (b) Frequency spectra.
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From the acceleration spectrum of vertical ground vibra-
tion, it can be seen that there are some dominant frequencies.
First, the frst dominant frequency is about 49.1Hz. According
to the existing research [49], the vibration caused by wheel-rail
forces under the efect of track irregularity will have a corre-
sponding spectral component, and the peak frequency fm of
wheel-rail force can be approximated to be:

fm �
1
2π

�����������������������

2
�
2

√
(EI)

0.25
S
0.75

kH

2
�
2

√
(EI)

0.25
S
0.75

+ kH mw

,




(5)

where EI is the bending stifness of the rail; S is the supporting
stifness of the rail per linear metre; kH is the simplifed spring
stifness of wheel-rail linear Hertzian contact;mw is the mass of
a single wheel.Te peak frequency of the wheel-rail force in this

test is calculated to be 48.32Hz by equation (5), which is very
close to the peak frequency in the spectrogram.

Second, other dominant frequencies are related to the
periodic excitation frequency from the train. According to
the existing research by Zhai et al. [9] and Ju et al. [50], the
periodic excitation frequency from the running train can be
calculated by fi � nv/(3.6∗Li), i � 1, 2, 3, 4, n � 1, 2, 3 . . .,
where v is the train speed (unit: km/h) and Li is the char-
acteristic length of the train (unit: m). According to the
characteristic dimensions of the train (Figure 5), when n
equals one, the periodic excitation frequencies are, re-
spectively, f1 � 37.4Hz, f2 �12.3Hz, f3 � 5.4Hz, and
f4 � 3.74Hz, in which f1 is very close to the peak value of
38Hz marked in the spectrogram. Similarly, f2, 7 f3, 4 f2, and
2 f1 are also very close to the peaks of 11.4Hz, 38Hz, 49Hz,
and 75.5Hz in the spectrogram (Figure 8(b)). Tis indicates
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Figure 8: Histories and spectra of vertical ground acceleration and velocity (v � 337 km/h). (a) Vertical acceleration histories of ground
vibrations. (b) Vertical acceleration spectra of ground vibrations. (c) Vertical velocity histories of ground vibrations.
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that the train loading frequency fi and its integer multiplier
have a signifcant impact on the dominant frequencies of
ground vibration.

4.2.3. Time-Frequency Characteristics by CWT. In order to
observe the change of the spectrum with the passing time of
the train, the Morse wavelet is utilized in the CWT of the
signals. At the same time, it is also possible to perform
a multiangle analysis of vibration characteristics. Figure 9
shows the time-frequency diagram of each measuring point.

From the time-frequency diagram of vertical accelera-
tion at the beam bottom, it can be seen that the vibration
energy of the beam bottommainly distributes in the range of
30−100Hz, and the peak frequency occurs near 50Hz, which
is consistent with the result of Fourier spectrum (Figure 8).
Moreover, the vibration energy at the pier top is concen-
trated around 50Hz, and the percentage of frequency
components below 30Hz at the pier top is smaller than the
beam bottom, which can be indicated from the color
brightness of the time-frequency energy map as shown in
Figure 9.

For the time-frequency diagrams of ground vibrations,
the time and frequency at which the train passes correspond
to the area with the highest energy, so the number of
brightest areas in Figure 9 corresponds to the train for-
mation, refecting nine energy accumulation points in the
time-frequency diagrams. In addition, it can be observed
from Figure 9 that the time-frequency signal of the ground
vibration response shows obvious shock characteristics and
the vibration energy mainly concentrates in some local
frequency bands. Te peak frequency is concentrated in the
vicinity of 50Hz, corresponding to the excitation frequency
of wheel-rail force as shown in equation (5). Moreover, as
the distance between measuring points increases, the energy
decreases and the impact characteristics of ground vibration
weaken gradually. By comparing Figures 8 and 9, one can
fnd that the ground vibration characteristics obtained by the
CWTanalysis method have a good agreement with those by
Fourier spectrum analysis, but the results of CWT are more
intuitive, which can refect the change of spectrum char-
acteristics with time.

4.2.4. Ground Vibrations at Diferent Train Speeds. In the
experiment, the vibration signals were collected under six
diferent train speeds of 200 km/h, 250 km/h, 290 km/h,
300 km/h, 320 km/h, and 337 km/h. Figure 10 gives the
ground vibrations of D� 11m and D� 16m under
v � 200km/h, v � 300km/h, and v � 337km/h. It can be seen
that the higher train speed generally induces the greater
ground vibration amplitudes. Figure 11 shows the time-
frequency diagrams of ground vibration at v � 200 km/h and
v � 300 km/h, and the energy concentration frequency band
can be observed obviously.

According to fi � nv/(3.6∗ Li), i � 1, 2, 3, 4, n � 1, 2, 3
. . ., the wheel-axle excitation frequencies f1 are 37.4Hz
(v � 337km/h), 22.2Hz (v � 290km/h), and 33.3Hz
(v � 300km/h). By comparing the peak frequencies in
Figures 9 and 11, it is easy to fnd that the spectral

characteristics of the ground vibration are greatly
infuenced by the wheel-axle excitation frequency f1 and
the peak frequency fm � 48.32 Hz of wheel-rail force
together.

In order to further explore the impact of train speed on
the vibration response in the frequency domain, the vertical
vibration acceleration level (VALZ) with one-third octave
band [45] at diferent train speeds is conducted, as shown in
Figure 12.

From Figure 12, it can be seen that the maximum vi-
bration levels at diferent train speeds concentrate on about
49Hz for all the measurement points. Tis is very consistent
with the conclusions in 4.2.2 and 4.2.3. Overall, the vibration
level increases with frequency before 50Hz and decays
rapidly after 50Hz, in which the vibration fuctuates between
increasing and decreasing between 4Hz and 16Hz. Under
diferent train speeds, the tendency of vibration response
with frequency can maintain good consistency before 4Hz
and after 16Hz, but it changes with the change of train speed
between 4Hz and 16Hz (the amplifcation can be seen in
Figure 13).

It can be seen from Figure 13 that the variation tendency
of ground vibrations with 4−16Hz is the same at
v � 200km/h and v � 250km/h, and it is also approximately
the same at v � 290km/h, v � 300 km/h, and v � 320km/h,
but there is obvious diference at v � 337km/h. Similarly, it
can be seen that there may be a “watershed” between
250 km/h and 290 km/h, as well as between 320 km/h and
337 km/h, resulting in the variation relationship between
vibration response and frequency with the increase of train
speed.Tis “watershed” may be related to certain parameters
of the soil layer.

4.3. Wavelet Energy Analysis of Ground Vibrations. By
superimposing the CWT amplitude of the vibration signal,
the wavelet energy curves of ground vibrations at each
moment can be obtained, as illustrated in Figure 14.

Figure 14 gives the specifc energy distribution at each
single moment. At D� 1m, the carriage number of trains
corresponding to the peak section can be obviously seen, and
the time of each train passing through the measurement
point can also be observed. For the vibrations at diferent
distances on the ground, the peaks of the vibration curve are
consistent in time when the train is passing.

In order to fully demonstrate the vibration energy
characteristics, the results of the wavelet transform are
further processed (accumulating over time), and the cu-
mulative curves of the main energy bands can be obtained in
the time domain, as shown in Figure 15.

As shown from the dashed lines in Figure 15, there are
nine obvious “step” jumps (between each pair of dashed
lines) in the energy accumulation curves of the D� 0m to
D� 40m. Te “step” jump indicates the local concentration
of vibration energy, which corresponds to eight carriages in
this test and the nine energy accumulation points (Figure 7)
of the time-frequency energy spectrum. It shows that the
local energy concentration is caused by diferent train
compartments passing through the coordinate origin O,

10 Shock and Vibration
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Figure 9: Time-frequency distribution of vertical acceleration (v � 337 km/h).
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a phenomenon that is related to the composition of train
vehicles.

In Figure 15, it is also obvious that the energy decays with
the distance increasing.Te decay ranges from beam bottom
to ground surface and from D� 1m to D� 6m is larger. Te
total energy from D� 6m to D� 40m decays continuously,
but the decay range is much smaller than that from the closer
distance.

In order to further refect the distribution of vibration
energy in the low-frequency band, the vibration acceleration
response at D� 1m, D� 6m, D� 11m, D� 16m, D� 24m,
D� 32m, and D� 40m is analyzed by 1/3 octave band

spectra. Take the ground vibrations at train speed
v � 337km/h as an example, the vertical vibration acceler-
ation levels in the 1/3 octave band are shown in Figure 16 in
the form of a broken line diagram and ladder diagram,
respectively.

It can be seen from Figure 16 that the vibration accel-
eration level has peak values in the central frequency bands
of 4Hz, 12.5Hz, and 50Hz, which is consistent with the
previous time-frequency analysis. In addition, for low-
frequency components below 8Hz, the vibration accelera-
tion level shows signifcant attenuation from D� 0m at
beam bottom to D� 11m on the ground, while the
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Figure 10: Comparison of ground vibrations at diferent train speeds. (a) D� 11m. (b) D� 16m.
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attenuation fromD� 11m toD� 40m gradually slows down
and tends to stabilize. Te high-frequency components
above 50Hz rapidly decay with distance, while frequency

components within the range of 8−50Hz decay slower. Tis
corresponds well to the conclusion in Sections 4.2.2 and 4.3.
Moreover, the vibration energy continuously increases with
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Figure 11: Time-frequency diagrams of ground vibration at v � 200 km/h and v � 300 km/h. (a) D� 11m (v � 200 km/h). (b) D� 11m
(v � 300 km/h). (c) D� 16m (v � 200 km/h). (d) D� 16m (v � 300 km/h).
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Figure 12: One-third octave spectrum of ground vibrations at diferent train speeds.
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Figure 13: Local amplifcation of 4−16Hz in one-third octave spectrum.
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Figure 14: Wavelet energy diagrams at each single moment (v � 337 km/h). (a) All measuring points. (b) Beam bottom and pier top.
(c) D� 1m to D� 11m. (d) D� 16m to D� 40m.
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Figure 15: Wavelet energy cumulative curve (v � 337 km/h). (a) All measuring points. (b) Beam bottom and pier top. (c) D� 1m to
D� 40m. (d) D� 6m to D� 40m.
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frequency in the low-frequency range of 1 to 50Hz and
shows a decreasing trend in the high-frequency range greater
than 50Hz.

5. Conclusion

In this paper, the environmental vibration caused by the
viaduct section of Daxi HSR is measured, and the experi-
mental acceleration response signals of the beam, pier, and
site soil are obtained. By the analysis of time domain, fre-
quency domain, time-frequency domain, and time-
frequency energy, the following conclusions can be obtained:

(1) Te vibration response of each measuring point
has obvious nonstationary characteristics. Te
peak frequencies of the ground vibration are
mainly infuenced by the excitation frequencies of
the axles and the peak frequencies of the wheel-rail
forces. Te periodic loading from the train is
obvious at the ground observation point near the
centerline of the pier, while it is not obvious at the
far observation point due to the infuence of
ambient vibration.

(2) Te high-frequency components with 50−100Hz of
the ground vibrations will rapidly decay with in-
creasing distance. Te low-frequency components
with 0−8Hz decay faster near the vibration source,
while the middle-frequency components with
8−50Hz decay slowest and can propagate further,
playing a dominant role in the far-feld frequency
components. Te variation relationship between
vibration response and frequency at diferent train
speeds can maintain good consistency before 4Hz
and after 16Hz, but between 4Hz and 16Hz, the
infuence of train speed on ground vibration is
obvious.

(3) Te ground-borne vibration has a discontinuous
localized concentration band corresponding to train
formation, so the time-frequency energy analysis of
the signal is a more accurate description in dealing
with the problem of environmental vibration in-
duced by railway trafc.

Te CWT makes a great contribution to the mutual
correspondence of time and frequency and can provide
more accurate and intuitive analysis in the time-frequency
domain than the traditional Fourier transform. So, it is
a promising analysis tool for studying ground vibrations
induced by elevated HSR train.
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Figure 16: One-third octave band spectra of vertical acceleration level (VAL). (a) Broken line diagram. (b) Ladder diagram.
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