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To measure and evaluate the impact of vibration on the surrounding buildings and structures during highway rock burst removal
and to formulate scientifc and reasonable protective technical measures, the authors used the blasting perilous rock removal
project of the K2227+920–K2228+000 section of the Shaanxi G316 road as a case study. Te application of frequency modulation
blasting vibration damping technology adopting digital electronic detonators was investigated. Te diference in vibration peak
and frequency between the perforation-by-hole initiation of the detonator and the frequency modulation initiation of the digital
electronic detonator is compared. Te results showed that by adopting an accurate delay of digital electronic detonators and the
damping scheme of adjusting the blasting vibration frequency using the electronic detonators a reduction in blasting vibration
velocity can be achieved. For an unchanged blasting scale, hole mesh parameters, and explosive unit consumption, the total
blasting time was adjusted in the test. Compared to the hole-by-hole initiation, the blasting vibration velocity at a pier of the G85
Baohan highway bridge located 52m away was reduced from 0.367 cm/s to 0.229 cm/s, a decrease of 36.7%. Te feld test
demonstrated that frequency modulation and vibration attenuation using digital detonators can reduce blasting vibrations and
efectively reduce the infuence of blasting construction on surrounding buildings and structures.

1. Introduction

In recent years, numerous blasting accidents occurred during
road clearance activities that caused signifcant economic losses
and received bad press. Blasting in complex environmental
conditions has become a challenging problem restricting en-
gineering construction [1, 2]. Te main risks to surrounding
environment involved in road clearing blasting operations
include vibrations, fying rocks, and air shock waves [3–5].

At present, there is a lack of systematic research on the
infuence of blasting operations carried out during road
construction activities under complex environmental con-
ditions on the surrounding environment [6–8]. Terefore,
this study aims at closing this gap in knowledge. Blasting
risks can be controlled and preempted depending on the
specifc environmental conditions encountered during

construction, ensuring the safety of road clearing operations
and reducing the interference with the surrounding envi-
ronment. Under the same blasting vibration intensities, the
lower themain vibration frequency, the closer it is to the self-
vibration frequency of the protective object, and the greater
the possibility of causing damage to the building (structure)
[9, 10]. Terefore, by reducing the maximum detonation
dosage of a single sound and shortening the delay time, the
main vibration frequency can be efectively increased, so as
to improve the safety of blasting vibration. If the delay
between two holes is d, then the vibration spectrum of
millisecond blasting has an obvious peak at the frequency of
1/d interval; by changing the delay interval, the frequency
component of the blasting vibration can be changed, thus
avoiding the self-vibration frequency band of the con-
struction structure.
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Te use of a digital detonator makes the group holes
detonate continuously at a very small jet lag diference,
which is equivalent to adding blasting with a high base
frequency as a forced vibration source, which causes the
main vibration frequency in the near zone of blasting to tend
to the base frequency of the vibration source, greatly im-
proves the main vibration frequency, and reduces the
possibility of resonance of building (construct).

Tis study adopted the K2227+920–K2228+000 perilous
rock blast clearing project in the G316 road section in
Shaanxi province as a case study. A damping scheme of the
electronic detonator adjusting the actual blasting vibration
frequency (frequency modulated damping) was studied with
the aim of reducing blasting vibration velocity [11–13].
Using feld tests, it was demonstrated that digital detonators
can reduce blasting vibrations and protect the safety of
buildings and other structures adjacent to the blasting site.
Tis research will serve as a practical reference for scientifc
investigations and quantitative engineering design of road
blasting operations in similar complex environmental
conditions.

2. Project Background

2.1. Mechanism of the Electronic Detonator Priming System.
Te height of the building (above ground) exerts some
amplifcation efect on the vibration velocity of blasting
particles (in the horizontal direction), but the main fre-
quency of blasting seismic waves has a signifcant impact on
this amplifcation efect. Under the same conditions of
blasting vibration intensity, the lower the main frequency,
the closer it is to the natural frequency of the protected
structure, and the higher the amplifcation rate of the particle
vibration velocity, the greater the likelihood of causing
damage to buildings (structures) [4, 5]. Methods such as
reducing the maximum amount of initiating explosive per
shot and shortening the delay time can efectively increase
the main vibration frequency, thereby improving the safety
of blasting operations.

Te dependence of frequency on distance generally
exhibits a negative exponential change, and due to the high-
frequency fltering efect of soil, there will be a rapid de-
crease for high frequencies. Due to the fact that the low-
frequency blasting vibration waves are close to the natural
frequency of rock media, there will be a gentle decrease in
low frequencies in the far-feld region. Te fundamental
frequency of buildings is 3–10Hz, derived from a shear
cantilever model with a constant cross-section, and, based
on the measured results, the following empirical formula
for the natural vibration period of buildings (structures) is
recommended:

T � 0.0168 H0 + 1.2( , (1)

where T is the basic period, s, and H0 is the calculation
height of buildings (structures), m.

After the building (structure) is damaged by blasting
vibrations, the natural vibration period will signifcantly
increase in step with the severity of damage. Statistical data

analysis shows that the period of a building (structure) after
cracking may increase by 20% to 60% compared to the
original structure.

Digital detonator frequency modulation shock absorp-
tion refers to the change in the total duration, intrahole
delay, and interhole delay of blasting, which can be arbi-
trarily and accurately adjusted by using digital detonators
placed in multiple blasting holes together with considering
the actual rock mass engineering conditions. Te vibration
frequency of blasting and the diference in resonance fre-
quency compared to the surrounding rock mass and
buildings can be increased, while the cumulative efect of the
main vibration phases of each group of seismic waves
generated by each blasting hole charge is disrupted, to
achieve dynamic shock absorption.

If the delay between each two blasting holes is d, then the
vibration spectrum of millisecond blasting has a signifcant
peak at every 1/d frequency interval; by changing the delay
interval, the frequency component of blasting vibration can
be changed, thereby avoiding the natural vibration fre-
quency band of buildings (structures). By using digital
detonators, when a group of blasting holes are continuously
detonated with a small time diference, it is equivalent to
adding a higher fundamental frequency blasting as a forced
vibration source, resulting in the main vibration frequency
of the blasting near the area tending towards the funda-
mental frequency of the vibration source, greatly increasing
the main vibration frequency, reducing the possibility of
resonance of building (structure) protective structures, and
reducing the harm of blasting vibration.

2.2. Principle of Frequency Modulation Shock Absorption.
Frequency modulation shock absorption using digital
electronic detonators refers to multiple hole initiation
according to actual engineering rock mass conditions. By
changing the total blasting time, the initiation delay within
a hole, and the delays between multiple holes, the blasting
vibration frequency can be enhanced, increasing the gap
between it and the resonance frequencies of the surrounding
rock mass, buildings, and other structures. Te coherence
between the main vibration phases of the group of seismic
waves generated by each blasting hole charge is disturbed,
and dynamic shock absorption is achieved.

Compared to a large number of studies on blasting vi-
bration particle peak velocity, only limited results on
blasting vibration frequency are available [14–17].

Te main frequency of blasting vibrations changes as the
shock waves are attenuated away from the blasting center. To
optimize the digital electronic detonator frequency modu-
lation, the average frequency is adopted as the basis of
engineering design. Te defnition of average frequency is as
follows [18, 19]:

fc �


n
i�1 Aifi( 


n
i�1Ai

, (2)

where fc is the average frequency and Ai is the vibration
velocity amplitude corresponding to frequency fi.
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Experiments showed that the attenuation of the average
frequency of blasting vibration is more regular than that of
the main frequency. An inverse power function was used to
ft the data, and the correlation coefcient was close to 1,
showing a signifcant correlation [20–24].

2.3. ProjectOverview. On February 17, 2018, the upper slope
on the left-hand side of the G316 road in Wulipu Village
(K2227+920–K2228+000), Wuguanyi Town, Liuba County
suddenly collapsed. Te collapsed material spilled onto the
entire road surface and a part of it rushed into the nearby
river. At present, the upper part of the slope is isolated, and
the bedrock is overhanging, which poses a serious hazard to
trafc safety and a threat to the substructure of a bridge
located in the river on the right side of the highway along the
G85 Baohan expressway.

Te outcrop layer of this section of slope is Mesozoic
granite. Te rock mass is gray-yellow with a coarse crystal
structure, massive structure, and well-developed joints and
fssures. Te mineral composition includes feldspar, quartz,
and mica. Te rock is relatively hard, and its integrity is
relatively uncompromising.

Te slope strata dip is 300°, and the dip angle is 45°.Tere
are two main groups of joints: 140°∠85°: 2 pieces/m and
265°∠80°: 1 piece/m. Te joints and strata cut the rock into
blocks, which opened to form fssures after unloading.

Te intended perilous rock blast clearance area is shown
in Figure 1. It is about 8m higher than the G316 road surface
at Wulipu Village, Wuguanyi Town, Liuba County
(K2227+920–K2228+000). Along the north side of G316 is
the Bao River. According to the feld investigations, the
north side of the blasting construction area is 52m away
from the G85 Baohan Expressway bridge. Tere are resi-
dential houses on the west side of the intended perilous rock
blast clearance area at a distance of at least 50m. Six blasting
vibration measurement points, denoted #1–#6, were
arranged. Measurement points #1–#4 were arranged on the
G316 road surface and measurement points #5 and #6 at the
foundations of the adjacent expressway bridge piers, as
shown in Figure 1.

On March 9, 2018, the Shaanxi Provincial Trans-
portation Planning and Design Institute surveyed the site.
Te survey determined that the width of the slope is about
80m and its height is about 60m.Tere is still a large volume
of perilous rock on the slope, and the crack width exceeds
20 cm. Te collapse caused the upper part of the hill to lose
support so that it now forms an overhang. Te combined
volume of slope perilous rock and hilltop loose rock is about
1200m3. Te length of the adjacent rock mass is about 70m,
the width is 20–40m, the thickness is 2–8m, and the volume
is about 1.47×104m3. Te slope rock mass develops along
stratifed structural planes and opens inside the layer,
forming an inverted slope. It is afected by gravity, rainfall,
and heavy vehicle trafc vibrations, and there is a risk of
further collapse of rock strata and joints.

According to the construction drawings of G316 Road
Section K2227+920–K2228+000 Major Water Damage Re-
pair Project compiled by the Shaanxi Transportation

Planning and Design Institute in April 2020, the right hand
side overhanging rock (route K2227+955–K2227+985 left)
along the fracture surface (rock joint fracture inclination 45°)
was cleared by blasting. Te clearing range was from the left
side to the boundary of the collapsed slope, from the right
side to the gully, from the lower side to the road surface
about 8m high, and from the top to the top of the hill or no
inverted slope.Temaximum clearance thickness was 9.5m,
and the total clearance volume was about 7000m3, as shown
in Figure 2 for a photographic view.

3. Blasting Test Program

In the test, the blasting vibration monitoring data of the frst
and second blasting constructions in the blasting clearance
area were selected for analysis. In the frst experiment, the
detonators initiated hole-by-hole, whereas in the second
experiment, a digital electronic detonator frequency mod-
ulation vibration reduction plan was implemented, as shown
in Figure 1.

3.1. Analysis of Blasting Conditions and Experimental Design.
Te main hazards related to blasting operations include
blasting vibrations, fying rocks, harmful gases, blasting
shock waves, noise, and dust [3]. Considering the sur-
rounding environment of this blasting project, the main risk
was deemed to be blasting vibrations.

3.1.1. Analysis of Possible Hazards Caused by Blasting
Vibrations

① Te main structure at risk of damage due to blasting
vibrations in this project was the G85 Baohan Ex-
pressway bridge, which was 52m away.

② After the explosive material is detonated, a generated
stress wave will propagate through the rock or soil
layer.When the local seismic wave intensity is greater
than the strength of rock mass, it will cause damage
and cracking [25–27]. Blasting damagemay gradually
accumulate[28], until the pier foundation of G85
Baohan Expressway bridge eventually becomes
unstable.

③ Blasting vibrations can cause the opening, extension
and transfxion of original cracks in the rock sub-
grade slope [15]. As a result, large rock fragments

Figure 1: Blasting area surroundings.
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may roll down the slope and impact the G85 Baohan
Expressway bridge piers.

If the infuence of the blasting vibrations exceed the safe
thresholds, they will cause the foundation and walls of the
nearby residential homes located 50m away to crack and
potentially fall [3, 29].

3.1.2. Design Principles. Te blasting construction re-
quirements are demanding and the surrounding conditions
are complex. To ensure safe and efcient blasting, the digital
electronic detonator hole-by-hole initiation system was
implemented to achieve frequency modulation shock ab-
sorption, by precise control of explosive energy release,
medium movement, crushing and damage accumulation
[30], and reduce the amount of fying rocks [31].

3.2. Blasting Parameters Design. Te adjacent rock mass is
about 70m long, 20–40m wide, 2–8m thick, and its dip
angle is about 45°. According to the principles of hole layout,
70 mm diameter vertical holes in a triangular layout were
adopted in the blasting area [32–35]; see Figure 3.

Te charge holes were perpendicular to the surface of the
rock mass, hole spacing was A (m)× row spacing B (m)�

1.0m× 1.0m, resistance line W� 1.0m, west control re-
sistance line was ≥1.2m, and east resistance line was ≤1.0m.
Considering the perilous rock thickness of 2–8m, the
drilling was carried out to leave a 0.3 m thick protective layer
from the bottom of the hole to the main joint slide surface
[36]. Te average unit explosive consumption was less than
0.55 kg/m3. Te blasting parameters designed for the hole
depth of 6.0mare shown in Table 1.

3.3. Blasting Sequence

3.3.1. Detonation Tubes Detonated Hole-by-Hole.
Considering the rock mass properties, the delay time be-
tween holes was selected as 25ms (MS2), the delay time
between rows as 75ms (MS4), and the delay time of charge
in holes as 460ms (MS11). Because the actual and the
nominal delay of detonator have large discreteness [37–39],
there is normally a delay error. Terefore, in the actual
initiation process, a hole-by-hole initiation with a small
delay time was adopted [40–43]. Te time settings of hole
initiation sequence are shown in Figure 4.

3.3.2. Digital Electronic Detonator Frequency Modulation
Initiation. Tis scheme adopted hole-by-hole initiation
combined with a millisecond delay within each hole.
Considering the properties of rock mass, the delay between
holes was assumed as 6ms, the delay between rows as 27ms,
and the delay between charge packets in a hole as 5ms. Te
setting of hole delay 6ms and row delay 27ms was de-
termined according to the crushing efect of hole distance
1.0m and row distance 1.0m throwing efect test. Te
electronic detonator time settings of the uppermost charge
pack in each hole are shown in Figure 4.

If the amount of charge in a hole exceeded 2.0 kg, an
interval charge was adopted [21] by dividing the 2.0 kg
charge pack into sections. Te drug package was flled at
a 1.0m interval, and the delay from the orifce to the bottom
of the hole was 5ms.

4. On-Site Monitoring of Blasting Vibrations

4.1. Layout of Measurement Points. Te EXP3850 blasting
vibration instrument manufactured by Chengdu Zhongke
Dynamic Instrument Co., Ltd. was adopted in this study
together with velocity sensors, which collected, stored, and
analyzed data from the tangential, vertical, and radial

1.0 m

1.2 m

1.
0 

m

1.0 m

Figure 3: Schematic diagram of hole layout.

Table 1: Blasting hole array parameters.

Blasting parameters Design values
Critical thickness (m) 2–8
Hole depth (m) 1.7–7.7
Aperture (mm) 70
Rock angle (°) Perilous rock inclination 45
Hole dip angle (°) Vertical perilous rock surface
Line of least resistance (m) East side≤ 1.0; west side≥ 1.2
Pitch (m) 1.0
Array pitch (m) 1.0
Block length (m) ≥1.5
Unit explosive consumption
(kg/m3) 0.55

Single hole dosage (kg) 0.935–4.235

Figure 2: Cleared perilous rocks.
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channels. Te EXP3850 blasting vibration recorder is
a portable instrument that can record and analyze the
seismic waveform signals caused by blasting [44]. Te in-
strument was directly connected to the velocity sensors and
placed near each measurement point. Te instrument can
automatically record eight vibration events and their oc-
currence times and pass data through an RS232 interface to
a computer for data processing.

Te arrangement of measurement points plays a very
important role in blasting vibration testing, because it di-
rectly afects the observed data [45, 46]. Te number and
location of measurement points are determined mainly
according to the purpose of testing and feld conditions. Te
arrangement of measurement points should follow the
following principles [47]:

(1) To determine the impact of blasting vibrations on the
expressway bridge piers and residential house
foundation, representative measurement locations
should be selected.

(2) Te selected test site has uniform geological con-
ditions and essentially the same lithology. Near
a large fault zone, the measurement points should be
arranged on one side of the fault or fracture zone.

(3) Te observed data can refect the variation in seismic
wave characteristics.

Te measurement points in this experiment were
arranged on the highway bridge piers and highway foun-
dation, as shown in Figure 5. Te relative positions of
measurement points are shown in Table 2.

4.2. Vibration Data Analysis. Te vibration velocity of
a rock-soil medium can be decomposed into three mutually
perpendicular directions:vertical, horizontal radial, and
horizontal tangential [3]. A vector synthesis waveform in
three directions was shown as Figure 6.

Te spectrum and power spectrum wave forms in the X,
Y, and Z directions of measuring point 3 with moderate
location and blasting vibration velocity were selected for
analysis and explanation. Te monitoring data are shown in
Figure 7.

From the spectrum and power spectrum in the three
directions of X, Y, Z of measurement point 3, it can be seen
that the energy is mainly concentrated in the frequency
band of 20∼30 Hz and 30∼60 Hz only has less energy.
Moreover, the power spectrum shows that the energy of
the blasting seismic wave is concentrated in the lower
frequency band and is mainly concentrated in the
20∼25 Hz frequency band, as shown in Figure 7. And also
from the power spectrum in the Z direction, it can be seen
that the energy of the signal develops towards high fre-
quencies and energy distribution widens. In addition,
there are many subfrequency bands in the range of
25∼100 Hz, and the energy peaks of each subband are not
much diferent.

It can be seen from the original power spectrum that the
energy frequency of the blasting vibration signal is mainly
a low-frequency signal below 30Hz, and a small part of the
other part is 40∼100Hz. Te main reason is related to the
blasting vibration signal propagation medium in the con-
struction area, and the high-frequency signal is easy to flter
out or attenuate in the formation, and on the other hand, the
wave guide efect and the layered formation can propagate
the Z-direction frequency farther.

Te half-wave frequency corresponding to the peak of
blasting vibration is called the apparent dominant fre-
quency, which can better refect the frequency charac-
teristics of blasting vibrations [19]. As shown in Figure 8,
the apparent dominant frequency of blasting vibration at
each measurement point increased with the horizontal
distance from the blasting center, and the variations in the
apparent dominant frequency in the three directions show
a general attenuation trend. Table 3 shows the vibration
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Figure 4: Schematic diagram of the detonation array. (a) Hole-by-hole initiation of the detonating tube (surface initiation time: 250ms).
(b) Digital electronic detonator initiation (surface initiation time 118ms).
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monitoring statistics with adjusted total blasting time,
intrahole delay, and interhole delay by adopting the digital
electronic detonator initiation system. Te main vibration
frequency was between 30Hz and 60Hz. Te average
frequency in the three directions when the digital elec-
tronic detonator initiation system was used was 42.62 Hz,
which was nearly 41% higher than the average frequency
of 30.28 Hz in the three directions of the hole-by-hole
initiation system [48].

According to the above monitoring data of blasting
vibration velocity and feld investigation, the Shaanxi G316
Liuba section K2227+920–K2228+000 perilous rock blasting
removal project near the G85 Baohan Expressway bridge
pier area did not have adverse efects on surrounding
buildings and structures. Te experimental results show that
using the digital electronic detonator frequency modulated
initiation system can reduce the blasting vibration velocity
and ensure safe construction. [49].

Figure 5: Measurement point layout.

Table 2: Relative position of blasting vibration measurement points.

Measurement points
Distance from detonation center (m)

Horizontal distance Vertical distance
#1 41.5 24.1
#2 52.3 24.0
#3 70.3 23.4
#4 84.5 23.8
#5 56.2 27.5
#6 67.2 27.6
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Figure 6: Horizontal radial (X) tangential (Y) vertical (Z) vector synthesis waveform diagram.

6 Shock and Vibration



0. 012
0. 010
0. 008
0. 006
0. 004
0. 002
0. 000

–0. 001

0. 012
0. 010
0. 008
0. 006
0. 004
0. 002
0. 000

–0. 001

cm
 (s

)

cm
 (s

)

cm
 (s

)
cm

 2
 (s

)

cm
 2

 (s
)

cm
 2

 (s
)

0 25 50 75 100 125
Frequency (Hz)

150 175 200 225 250 275 300 0 25 50 75 100 125
Frequency (Hz)

150 175 200 225 250 275 300

0 25 50 75 100 125
Frequency (Hz)

150 175 200 225 250 275 300

0 25 50 75 100 125
Frequency (Hz)

150 175 200 225 250 275 300

0 25 50 75 100 125
Frequency (Hz)

150 175 200 225 250 275 300

0 25 50 75 100 125
Frequency (Hz)

150 175 200 225 250 275 300

0. 008

0. 006

0. 004

0. 002

0. 000
–0. 001

0. 000175
0. 000150
0. 000125
0. 000100
0. 000075
0. 000050
0. 000025
0. 000000

–0. 000018

0. 000150
0. 000125
0. 000100
0.000075
0. 000050
0. 000025
0. 000000

–0. 000016

0. 00008

0. 00006

0. 00004

0. 00002

0. 00000
–0. 00001

FFT main frequency : 20.5 Hz
FFT main frequency : 18.6 Hz

FFT main frequency:20.6 Hz main frequency:20.2 Hz

main frequency:20.1 Hz
main frequency : 20.7 Hz

X direction spectrum Y direction spectrum

Z direction spectrum X direction spectrum

Y direction spectrum Z direction spectrum

Figure 7: Analysis of blasting vibration velocity, frequency spectrum, and power spectrum of digital electronic detonator initiation about
measuring point 3.
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Figure 8: Comparison of dominant vibration frequencies between hole-by-hole initiation and frequency-modulated initiation using digital
electronic detonators. Note: dominant frequency shown is for the Z-direction.
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Table 3: Statistics of vibration monitoring data for digital electronic detonator initiation system.

Measurement points Direction Peak vibration
velocity (cm/s)

FFT frequency
(Hz)

Maximum time
(s) Strike (cm/s) Sensor number

#1
X 0.3772 53.0 0.0433 0.017 EMI53924
Y 0.2673 55.3 0.4446 0.017 151325.BST
Z 0.3051 50.0 0.2858 0.017

#2
X 0.3145 47.6 0.0865 0.017 EMI53925
Y 0.3132 50.7 0.0845 0.017 082031.BST
Z 0.3876 50.2 0.0877 0.017

#3
X 0.1723 50.7 0.0454 0.017 EMI53928
Y 0.2016 42.3 0.0332 0.017 151325.BST
Z 0.3432 50.2 0.1897 0.017

#4
X 0.1656 36.6 0.2954 0.017 EMI53927
Y 0.0754 41.6 0.3077 0.017 151137.BST
Z 0.1331 36.6 0.2643 0.017

#5
X 0.1107 36.9 0.3336 0.017 EMI53926
Y 0.1973 26.9 0.2847 0.017 175006.BST
Z 0.1813 39.2 0.2899 0.017

#6
X 0.1166 33.6 0.4670 0.017 EMI53923
Y 0.1262 33.7 0.3445 0.017 112505.BST
Z 0.2294 32.1 0.4753 0.017

Table 4: Statistics of vibration monitoring data of the detonator and detonator.

Measurement points Direction Peak vibration
velocity (cm/s)

FFT frequency
(Hz)

Maximum time
(s) Strike (cm/s) Sensor number

#1
X 0.4772 40.0 0.0453 0.017 EMI53924
Y 0.3683 40.0 0.4496 0.017 151325.BST
Z 0.3052 40.0 0.2898 0.017

#2
X 0.4182 37.6 0.3006 0.017 EMI53925
Y 0.3083 30.7 0.2862 0.017 082031.BST
Z 0.4915 30.2 0.2899 0.017

#3
X 0.2743 30.7 0.2952 0.017 EMI53928
Y 0.2186 32.3 0.3030 0.017 151325.BST
Z 0.4489 30.2 0.2133 0.017

#4
X 0.2618 26.6 0.0896 0.017 EMI53927
Y 0.1756 25.8 0.0867 0.017 151137.BST
Z 0.3330 28.6 0.0898 0.017

#5
X 0.2107 26.9 0.0452 0.017 EMI53926
Y 0.1973 26.9 0.0346 0.017 175006.BST
Z 0.2893 29.2 0.0127 0.017

#6
X 0.2166 23.6 0.4630 0.017 EMI53923
Y 0.2262 23.7 0.0011 0.017 112505.BST
Z 0.3666 22.1 0.4582 0.017

Z Z Z Z Z Z
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Figure 9: Comparison of peak vibration velocities between hole-by-hole initiation and frequency-modulated initiation using digital
electronic detonators. Note: particle vibration velocity shown is the maximum velocity in Z.
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Te on-site blasting vibration monitoring results (see
Tables 3 and 4) show that the blasting particle vibration peak
velocities at all measurement points in all three directions
were always less than the allowable threshold of 1.50 cm/s
stipulated in blasting safety regulations GB6722-2014.

As shown in Figures 8 and 9, the dominant vibration
frequency was between 20Hz and 60Hz [50, 51]. At mea-
surement point #6 (placed at bridge pier foundations), the
maximum frequency-modulated vibration velocity when the
digital electronic detonator initiation system was used was
0.2294 cm/s. On the other hand, the maximum vibration
velocity when the hole-by-hole detonation scheme was
adopted was 0.3666 cm/s, thus, a reduction of 36.7% was
achieved.

5. Conclusions

Tis paper used the Shaanxi G316 Road section
K2227+920–K2228+000 perilous rock blast clearance proj-
ect to investigate the application of digital electronic deto-
nator frequency modulation shock absorption blasting
technology. Te in-situ test results showed that by using
a precise digital electronic detonator delay scheme to adjust
the actual vibration frequency of blasting vibrations (fre-
quency modulated damping), it is possible to achieve a re-
duction in blasting vibration particle velocity. For
unchanged blasting scale, hole array parameters and ex-
plosive unit consumption, by adjusting the total blasting
time, digital detonator frequency modulated shock ab-
sorption can reduce blasting vibrations and guarantee better
safety of surrounding buildings and structures compared to
the traditional hole-by-hole initiation scheme.

Te conclusions and recommendations of this research
are as follows:

(1) Based on the resonant frequency of buildings and
structures, the response frequency of blasting vi-
bration, and the attenuation law of low-frequency
blast wave propagation, the delay time between
blastholes is adjusted using digital detonators to
change the blasting vibration frequency, so as to
achieve vibration reduction, which provides a basis
for safe planning of road blasting construction
projects under complex environmental conditions.

(2) By utilizing the high-precision and arbitrarily
delayed time characteristics of digital detonators,
a 5ms in-hole delay is used to form a 3D in-hole
charge initiation sequence through the joint action of
the surface initiation network and in-hole initiation
network during the initiation process of blasting.
Experimental results have shown that good crushing
and shock absorption efects can be achieved.

(3) According to the in situ monitoring data, the blasting
interval between holes was reduced from 50ms to
9ms, the initiation time of the whole explosion area
was reduced from 250ms to 118ms, the vibration
frequency increased from 20Hz to 40Hz, and the
intensity of the explosion source was reduced from
4.2 kg to 2.2 kg. At the pier of the G85 Baohan

Expressway bridge located 52m north from the
blasting area, the blasting vibration velocity de-
creased from 0.367 cm/s to 0.229 cm/s, i.e., by 36.7%.

(4) Te diference in timing accuracy between the digital
detonator initiation system and the detonating
network of the nonel detonator during the initiation
process results in a change in the superposition of the
residual stress of the frst detonating charge and the
explosive stress of the second detonating charge. Te
respective rock-breaking mechanisms are also dif-
ferent. If the blasting conditions are fxed, the digital
detonator initiation system and the detonating
network use the same initiation sequence. Due to the
large timing error, the detonating network of the
detonating tube disrupts the stress feld, and the
seismic efect of blasting is smaller than that of
blasting using the digital detonator initiation system.
Terefore, in the design and execution of blasting,
the design rules of the detonator initiation network
cannot be simply applied to the digital detonator
initiation system.
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