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Railway axle box bearing fault signal contains high Q-factor resonance and low Q-factor transient shock components with
periodic transient shock features that can characterize bearing faults. However, extracting fault features is usually difcult due to
noise, transmission paths, and high-amplitude accidental shocks. Terefore, to address the abovementioned problems, the
multilevel feature extraction method for adaptive fault diagnosis of railway axle box bearing was proposed. Tis paper used the
maximum second-order cyclostationary blind convolution (CYCBD) to weaken the infuence of disturbances, enhancing weak
transient shock components. Resonant sparse decomposition(RSSD) is used for the selection of quality factor Q due to its excellent
fault feature separation property. Considering the strict fault frequency component periodicity in the envelope spectrum, the
envelope spectrummultipoint kurtosis (ESMK) is proposed as a metric.TeQ factor is optimized using the gray wolf optimization
algorithm (GWO) to obtain an adaptive sparse decomposition method (GWO-RSSD) for extracting bearing transient fault shocks
to eliminate the signal efects of high-amplitude disturbance shocks and background noise. Te simulation results and measured
signal analysis of railway axle box bearing show that ESMK can efectively measure periodic transient shocks under strong shock
interference compared with the MED-RSSD method. Tus, GWO-RSSD can adaptively separate the optimal low-Q resonance
components, verifying the methods’ efectiveness and superiority.

1. Introduction

Rolling bearings are widely used in machinery, trans-
portation, aerospace, and other felds and are an important
part of rotating machinery [1]. However, their harsh
working environments can easily lead to fault, which can
cause serious consequences if not detected on time.
Terefore, an accurate determination of the rolling bearing
health status is essential to improve the reliability and
availability of mechanical equipment and ensure the safe
operation of equipment [2, 3].

Periodic transient pulses capable of characterizing lo-
calized bearing faults are disturbed by transmission paths,
strong background noise, and high-amplitude incidental
shocks during signal acquisition, leading to difculties in
periodic transient-shock feature extraction [4].Terefore, an
efective feature extraction method is essential for bearing-

fault detection. Empirical mode decomposition (EMD), as
a band decomposition method, can efectively decompose
a signal into several approximate and detailed signals. Su
used EMD to preprocess the original signal for noise re-
duction and a kurtogram for resonance fltering [5].
However, the kurtosis index used by the kurtogram cannot
consider the periodic nature of the fault features, and EMD
lacks a theoretical basis for the decomposition process,
endpoint efects, andmodal aliasing. Selesnick [17] proposed
a signal resonance sparse decomposition (RSSD) method,
which is diferent from linear methods based on band or
scale decomposition, that decomposes the signal by the
signal resonance properties (that is, quality factor size dif-
ference) of the fault signal into a high-Q resonance com-
ponent consisting of a continuous oscillation component
and a low Q resonance component consisting of a transient
shock component [6]. Tis method is being rapidly applied
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to the feld of rotating machinery fault diagnosis because of
its unique pulse extraction advantages.

Wang frst performed the overall empirical modal de-
composition of the original signal with the maximum
kurtosis as the index and further used RSSD to decompose
the selected optimal Imf component to complete the fault
diagnosis [7]; Li et al. [8] frst used the kurtosis as the
optimization index and intrinsic characteristic-scale de-
composition (ICD) to preprocess the original signal. Tey
further selected the best RSSD component for analysis based
on the characteristic frequency domain ratio. Although the
processing efect of the RSSD method is improved by some
extent, the selection of its quality factor Q plays a decisive
role in the fnal decomposition result; therefore, the selection
of a suitable index to evaluate the Q value is a key to ensure
the fnal decomposition efect. Te abovementioned studies
mostly use the kurtosis, which is susceptible to accidental
disturbance shocks, as the optimization index. However, this
index does not consider the characteristics of periodic
rolling bearing fault shock characteristics, which afects
diagnosis.

Vibration signals collected by sensors are usually the
convolution between the fault transient impulses and
background noise, and the impulse response function
(transmission path) of the bearing system. To remove the
interference of the transmission path on bearing fault
characteristics, a series of deconvolution methods have
emerged [9–11]. Barszcz and Sawalhi used minimum en-
tropy deconvolution (MED) to eliminate the infuence of the
transmission path and achieve fault diagnosis by envelope
spectrum analysis [12]. Ricci considered that it is difcult to
efectively remove the infuence of strong interference noise
by a single signal processing method and proposed the use of
EMD and MED to improve rolling bearing fault diagnosis
[13]. Although the abovementioned methods can have an
efect, MED takes the minimum entropy (the maximum
kurtosis) as the measure, which has the same drawback as
the kurtogram; that is, it does not consider the periodic
characteristics of the fault impact characteristics and
therefore prefers to extract a single transient pulse. To ad-
dress these problems, maximum correlation kurtosis
deconvolution (MCKD) has been widely used in recent
years. Cheng et al. optimized the flter coefcients of the
MCKD using the particle swarm algorithm and achieved
better results [14]. However, the MCKD method sometimes
fails because of strong background noise and variations in
the fault cycle caused by speed fuctuations. McDonald et al.
proposed the multipoint optimal minimum entropy
deconvolution-adjusted (MOMEDA) method in recent
years [11]. Shang et al. combined MOMEDA with IEWT for
the feature extraction of vibration signals, further enhancing
the efect of single MOMEDA feature extraction [15]. In
recent years, BUZZONI proposed the maximum second-
order cyclostationary blind deconvolution (CYCBD) algo-
rithm, which uses the maximum second-order indicators of
cyclostationary (ICS2) as the basis for fnding the best in-
verse flter to extract the fault signal [16]. A comparison of
MED, MCKD, and MOMEDA shows that CYCBD has
a stronger fault feature extraction capability.

Based on the abovementioned analysis, this study pro-
poses a new metric of periodic shock characteristics that is
immune to accidental shocks and strong background noise-
envelope spectral multipoint kurtosis (ESMK), based on the
typical periodic characteristics of the fault characteristic
frequency and its harmonic components in the bearing fault
signal envelope spectrum. First, CYCBD is used to weaken
the infuence of transmission paths in the signal. Further-
more, to address the shortcomings of the existing RSSD
method in which the quality factor Q relies on manual
experience selection, the new metric—ESMK is used as the
ftness function, and the gray wolf optimization algorithm
(GWO) is used to optimize the quality factor Q. Ten, an
adaptive sparse decomposition method PSO-RSSD is ob-
tained for transient shock feature extraction, which efec-
tively eliminates noise interference such as chance shocks,
and further realizes rolling bearing fault diagnosis using the
envelope spectrum.Te main innovations of the method are
as follows: (i) a new index—ESMK that can efectively
measure the periodic fault shock features despite the high
amplitude of the chance shock interference is proposed; (ii)
to reduce the RSSD quality factor reliance on manual ex-
perience, GWO is employed to optimize the Q factors; and
(iii) both pre- and postprocessing steps take into account the
periodic occurrence characteristic of fault shock features,
which is expected to provide better diagnostic results. Te
rest of this paper is structured as follows: Section 2 is devoted
to describe the basic principles of CYCBD. Section 3 in-
troduces a brief description of RSSD and its drawbacks.
Section 4 presents the principle of GWO and its advantages.
Section 5 introduces the proposed new index—EASMK.
Section 6 describes the detailed procedure of the proposed
method and performs simulation experiments. In Section 7,
the suggested approach is further examined for the detection
of simulated signals, experimental signals, and railroad
locomotive-bearing data. Finally, Section 8 presents the
conclusions.

2. Maximum Second-Order Cyclostationary
Blind Deconvolution

Similar to the other deconvolution algorithms, the main
objective of the maximum second-order cyclostationary
blind deconvolution (CYCBD) is to extract the fault signal
from the complex observed signal. We assumed that the
acquired vibration signals were as follows:

x � g∗ s0 + n, (1)

where n is the Gaussian white noise, s0 is the transient
impulse of the fault, g is the response of the transmission
path of the bearing system, ∗ denotes convolution, and x is
the original fault signal.

Te essential part of the CYCBD is to establish an op-
timal FIR flter to restore the fault transient shock signal s by
deconvoluting the collected signal x. Te fault signal is
extracted by determining the optimal inverse flter based on
the maximum second-order cyclostationary index (ICS2).
Te deconvolution process can be expressed as
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s � x∗g ≈ s0, (2)

where x is the measured signal, s is the deconvoluted signal,
and ∗ denotes the convolution operator.

Te matrix form of equation (2) is as follows:
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(3)

where S is the discrete signal, L is the length of s, g is the
inverse flter, and N is the length of h. Tus, ICS2 can be
defned as

ICS2 �
g

H
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WXg

g
H

X
H
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, (4)

where RXWX is the weighted correlation matrix and RXX is
the correlation matrix. Te representation of the weighted
matrix W is shown as follows:
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(5)

where k is the sample index and Ts is the length of the fault
cycle. Because the cycle frequency is considered to be the
frequency associated with signal energy fuctuations which
can be related to phenomena such as bearing or gear fault,
the cycle frequency of a discrete signal can be defned as k/Ts

[16], where k(n − 1)/Ts in the superscript of any term of the
vector ek can be rewritten as kfstN− 1/Ts, where tN− 1 is the N-
1th data corresponding to the time, fs is the sampling
frequency, and fs/Ts is the rolling bearing fault.

Te maximum ICS2 can be attained by resolving
a generalized eigenvalue issue, where the maximum ICS2 is
the maximum eigenvalue λ [16].

RXWXh � RXXhλ. (6)

Because the weighting matrix is initialized by pre-
conditioning the initial flter h, the largest ICS2 value must
be obtained by the following iterative process:

(1) Use the autoregressive (AR) model to initialize the
whitening flter h for obtaining the flter coefcients

(2) Te weighting matrix W is calculated using the
observed signals x and h

(3) Equation (6) is used to obtain the maximum ei-
genvalue λ and corresponding h

(4) Return to step (2) and use the newly obtained flter h
to recalculate until convergence

3. Resonance Sparse Decomposition (RSSD)

In 2011 [17], Selenick proposed a sparse nonlinear de-
composition method for signal resonance based on the
tunable quality factor wavelet transform (TQWT) [18],
which no longer uses the traditional method to divide the
signal into diferent frequency bands but uses morphological
component analysis (MCA) based on the quality factor Q
diference corresponding to the harmonic and shock signals
in the signal. Component analysis (MCA) [19] was used to
separate the components possessing diferent oscillatory
characteristics and obtain a low-quality resonant component
containing the shock signal and a high quality resonant
component containing the harmonic component. Te
quality factorQ is defned as the ratio of the center frequency
to the bandwidth.

Q �
fw

BW

, (7)

where fw is the center frequency of the signal oscillation and
BW is the bandwidth.
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In resonance sparse decomposition, the quality factor Q
defnes the resonance properties of a signal. If the transient
shock is a single oscillation signal, the lower the quality
factor Q, the lower the resonance property of the signal. If
the harmonic part is a continuous oscillation signal, the
higher the quality factor Q, the higher the resonance
property of the signal. Te resonance sparse decomposition
method is based on the resonance properties of the signal
and uses a double bandpass flter bank to implement the
decomposition process, as shown in Figure 1. Te basis
function banks of high and low Q are obtained separately by
the TQWT, and the corresponding transform coefcients
are obtained by iterative calculations. Te expressions of the
low-pass and high-pass flter bank scale parameters are
shown in the following equation (8):

α � 1 −
β
r
, β �

2
Q + 1

, (8)

where r denotes the degree of redundancy. From equation
(8), the low-pass and high-pass flters are determined by the
scale factor, which in turn is determined by the quality factor
and redundancy. Terefore, diferent quality factors and
degrees of redundancy determine diferent wavelet flters.

In Figure 1, Hi�0,1(ω) and H∗i � 0, 1(ω) are the frequency
response functions of the flter decomposition and re-
construction, respectively; VO(n) and V1(n) are the fltered
subband signals, and y(n) is the synthesized signal. Te
original fault signal x is expressed as

x � x1 + x2 + e, (9)

where x1 is the harmonic signal, x2 is the fault shock signal,
and e is the background noise. Because x1 and x2 have
diferent quality factors, morphological component analysis
is used to perform the nonlinear decomposition of the
original signal x. Te sparse representation process is
a minimization problem, assuming that s1 and s2 denote the
flter sets with high- and low-quality factors, respectively.
Te sparse decomposition objective function is constructed
according to the morphological component analysis as
follows:

argmin
w1,w2

x − S1W1− S2W2
����

����
2
2 + c1 W1

����
����1 + c2 W2

����
����1, (10)

where W1 and W2 denote the transformation coefcients of
x1 and x2 under the basis functions S1 and S2, respectively,
and c1 and c2 are regularization parameter vectors.

Sparse decomposition can be viewed as the process of
determining the optimal transformation coefcients W1 and
W2 optimized using the split-increasing Lagrangian con-
traction algorithm to minimize the objective function.
Terefore, the high- and low-resonance components ob-
tained from the decomposition can be expressed as

􏽢x1 � S1W
∗
1 􏽢x2 � S2W

∗
2 . (11)

4. Gray Wolf Optimization (GWO)

In 2014, Seyedai proposed the GWO algorithm, which was
inspired by the division of labor in wolf foraging [20]. Tis
new community optimization algorithm simulates the wolf
ranking system and foraging behavior. Te highest ranked
wolf is species A, which is the top position of the pack and is
able to lead and make decisions for other wolves. Tis is
followed by species B, C, and E. Although wolves B and C are
not at the top position, they can take over as new leaders
when wolf A lost leadership. Wolf E is the lowest ranking
wolf in the pack and is responsible for balancing the re-
lationships in the pack.

Every wolf in the GWO method is taken as a possible
solution, where wolf species A is the frst optimal choice,
while wolf species B and C are the second and second best
choices, respectively. Te GWO algorithm searches for prey
by updating the distances and positions between them
through an iterative optimization process in which the
positions of wolf species A, B, and C are constantly updated,
and the expressions are as follows:

D � C × Xp(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X(t + 1) � Xp(t) + D,
(12)

where D represents the distance between the gray wolf and
the prey, Xp and X represent the prey as well as the location
of the gray wolf, respectively, and the initial location co-
ordinates are defned as (c, g). Te expressions for wolves A
and C are A � 2a × r2 − α and C � 2r1, respectively. Te
gray wolf will expand the search range in order to fnd the
prey when |A|> 1. And the gray wolves will narrow the
enclosure in order to search for nearby prey when |A|≤1. For
a � 2 − (2t/tmax), an increase in the number of iterations
leads to a decrease in the convergence coefcient from 2 to 0.
r1 and r2 are chosen randomly in the interval [0, 1].

Wolf A leads wolves B and C to catch prey when wolves
detect the location of prey; since wolves A, B, and C are
nearest to the prey, they catch the prey according to

Da � C1 × Xa(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

Db � C2 × Xb(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

Dc � C3 × Xc(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(13)

where Xa represents the current position of wolf A, Xb that
of wolf B, and Xc that of wolf C. C1, C2, and C3 are random
variables. X(t) denotes the present position of the wolf. Te
step length and direction of wolf E to wolves A, B, and C are
determined by equations (14)–(16), while the fnal position
of wolf E is defned by equation (17).

X1 � C1 × Xa − A1Da

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (14)

X2 � C2 × Xa − A2Db

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (15)
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X3 � C3 × Xa − A3Dc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (16)

X(t+1) �
X1 + X2 + X3

3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (17)

During the hunting process, wolves A, B, and C have
diferent levels of adaptation to their prey. Te diferent
adaptation degrees are calculated to arrive at the frst,
second, and third optimal solutions and retain its current
location information. Meanwhile, the wolf decides to move
in the direction through this location information and fnally
approaches the prey and hunts successfully. Afterwards, the
position of the wolf is updated. Te location corresponding
to the optimal solution is defned as (Cbest, bbest).

5. Envelope Spectrum Multipoint Kurtosis

It is known from the cyclostationarying theory that the
transient shocks of rolling bearing fault signals have typical
second-order cyclostationarying characteristics; that is, their
time-domain signals are not strictly periodic, but the
transient energy components id their frequency spectra are
periodic. Based on this, the fuctuation of the transient
energy can be examined by calculating the multipoint
kurtosis of the signal envelope spectrum.

Let the original signal be x(t) and the fltered signal be
represented as

xan(t) � xf iltered(t) + j􏽢xf iltered(t), (18)

where xfiltered(t) is the real part of the fltered signal and
􏽢xfilterted(t) is the Hilbert transform, so that the envelope of
the fltered signal can be obtained according to equation (7).

S(t) �

����������������������

xfiltered(t)
2

+ 􏽢xfilterted(t)
2
.

􏽱
(19)

Te envelope spectrum of S(t) is represented as follows:

V(m) � 􏽘
N− 1

n�0
S(n) exp

− i2πmn

N
􏼒 􏼓. (20)

Te envelope spectrum multipoint kurtosis ESMK is
used as a metric for the periodic shock characteristics of
localized bearing faults, and the standardized ESMK can be
defned as

Ekurt �
􏽐

N− L
n�1 t

2
n􏼐 􏼑

􏽐
N− L
n�1 t

8
n

􏽐
N− L
n�1 tnV(m)( 􏼁

4

􏽐
N− L
n�1 V(m)

2
􏼐 􏼑

2 . (21)

When the signal contains only one transient shock com-
ponent, the signal has a large kurtosis value; when the signal
contains multitransient shock sequences with a periodic
distribution, the kurtosis value of the signal is smaller. Te
ESMK overcomes the disadvantage that the kurtosis index is
easily disturbed by high-amplitude accidental shocks and
can efectively identify faulty periodic transient shocks under
strong disturbances.

6. The Proposed Bearing Fault
Diagnosis Method

Periodic transient pulses that can characterize bearing faults
are often disturbed by the transmission path, strong back-
ground noise, and high-amplitude incidental shocks during
signal acquisition, making it difcult to extract the char-
acteristics of periodic transient shocks, while the selection of
the quality factor of the resonant sparse decomposition
parameters seriously afects the decomposition results. Te
larger the quality factor Q, the higher the corresponding
resonance, and the opposite corresponds to a lower reso-
nance property. Q value that is too large or too small will
afect the decomposition results. In the traditional RSSD
method, the selection of the Q factor relies heavily on priori
knowledge, and most of the current fault metrics are sus-
ceptible to disturbances, such as high-amplitude chance
shocks. For example, it is difcult to efectively measure the
periodic characteristics of cyclic transient shocks. Terefore,
to address the abovementioned problems, the multilevel
feature extraction method for adaptive fault diagnosis of
rolling bearings is proposed. Tis method was developed
considering the typical periodic characteristics of the fault
feature frequencies and their harmonic components in the
fault bearing envelope spectrum and the excellent perfor-
mance of GWO global search. Te implementation process
is given below and the specifc fow is shown in Figure 2:

(1) Perform CYCBD deconvolution for the original
signal to eliminate the transmission path efects and
initially highlight fault shocks.

(2) Set the initial conditions of the gray wolf optimi-
zation: the population sizeM� 10 and the maximum
number of iterations to 10. Furthermore, the vari-
ation ranges of the high- and low-quality factors Q1
and Q2 are [1.0, 3.0] and [4.0, 12.0], respectively, and
the redundancy factor r is 3.0.

Low pass
scaling

High pass
scaling

Low pass
scaling

High pass
scaling

H0 (ω)

H1 (ω)

v0 (n)

v1 (n)

x (n) y (n)
H0

*
 (ω)

H1
*
 (ω)

α

β

1/α

1/β

Figure 1: Te two-channel flter bank.
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(3) Using the maximum ESMK of the low-resonance
component as a metric, the optimal parameters of
RSSD, high and low Q factors Q1 and Q2, were
optimized using GWO to acquire the optimal low-
resonance components containing transient shock
features.

(4) Find the envelope spectrum of the best low-
resonance transient component and compare it
with the theoretical fault frequency of the bearing to
complete fault diagnosis.

Te simulation signal of the pure inner race fault
transient shock is shown in Figure 3(a), where the char-
acteristic frequency of the inner race fault is 90Hz, and the
signal sampling frequency is 20480Hz. In order to make the
simulated signal closer to the actual working condition, the
Gaussian white noise component is further incorporated.
Te amplitude is 0.4, and the results are shown in
Figure 3(b). Te fnal signal obtained by convolving the
impulse response function of the transmission path is shown
in Figure 3(c), where the fault transient shock of inner race is
no longer identifable from the time domain under the
interference of Gaussian noise. Figure 3(d) shows the en-
velope spectrum of Figure 3(c), fromwhich the efective fault
characteristic frequency components could not be found.

From the method shown in Figure 2, CYCBD is frst used
to preprocess the original signal to eliminate the infuence of
the transmission path, and the result is shown in Figure 4(a),
indicating that the fault shock component is initially enhanced,
but the shock component periodicity is still not sufciently
apparent to detect a bearing fault owing to the serious noise
interference. Furthermore, the GWO-RSSD proposed in this
study is used for transient shock feature extraction, and the
parameters of the GWO algorithm are set with the variation
range of high- and low-quality factors Q, as described in the
previous section. With ESMK as the objective function, the
optimal quality factors obtained were Q1� 11.3488 and
Q2�1.0367, respectively.Ten, the RSSD decomposition of the
CYCBD deconvoluted signal is performed according to the
optimalQ factor.Te obtained optimal resonance components
as well as the residual signals are shown in Figure 5. Te fnal
decomposition of the obtained Q1 signal is shown in
Figure 5(b), and it includes mainly harmonic components.
Figure 5(c) shows the signal corresponding to Q2, where the
shock component is relatively obvious and contains mainly
transient shock information. It can be observed that the
transient shock component is distinctly augmented. Te en-
velope spectrum is presented as Figure 4(c). It reveals that the
frequency component of 90Hz, with obvious amplitude and
side bands, and obvious harmonic components, such as 181Hz
and 269Hz.Terefore, we can conclude that an inner race fault
happened in the bearing. Terefore, the simulation signal
analysis outcome validates the feasibility of the proposed
bearing fault feature extraction method.

Aiming to solve the problem that the early weak fault
features of bearing are easily overwhelmed by strong
background noise, MED was used to flter and denoise the
acquired vibration signals, which improved the signal-to-
noise ratio of vibration signals and underlines the early weak

fault features of bearing. To show the advantages of proposed
method, MED is used as the preprocessing method, and the
postprocessing is optimized using PSO with the RSSD
quality factor as a metric to compare and analyze the
methods.Te results of the analysis are shown in Figure 6. In
the best low-resonance-component time-domain waveform
shown in Figure 6(b), no periodic fault transient shock is
found, and the envelope spectrum in Figure 6(c) does not
have any obvious fault characteristic frequency component,
which is afected by the high-amplitude interference shock
and cannot determine whether the rolling bearing has
a fault, which confrms the efectiveness of the proposed
method.

7. Experimental Results and Discussion

7.1. Experimental Signal Analysis of Inner Race Fault. To
simulate the local bearing fault in actual railroads, ma-
chinery, and other large equipment, the experimental signal
of the outer race fault generated by the homemade rotor-
bearing fault simulation test bench shown in Figure 7 is frst
used for the analysis, which can simulate diferent rolling
bearing and rotor faults. Te experimental bench included
a servo motor and controller, support bearing, disc, bearing
seat, accelerometer, computer, and data acquisition card.
Te vibration signal was collected by the accelerometer and
saved on a computer. Te bearing type used for testing was
the N205. To simulate the local fault of the bearing, a 0.5mm
wide groove was machined in the outer race of the bearing
using wire-cutting technology. Te motor speed during the
test was 1000 rpm, and the acceleration sensor was mounted
directly above the experimental bearing housing, as shown
in Figure 7(a). Te sampling frequency is 12 000Hz, the
inner race fault is shown in Figure 7(b), the bearing pa-
rameters and speed are not repeated, and the formula can be
calculated by the inner race bearing fault characteristic
frequency BPFI� 129.15Hz.

Te time-domain waveform of the bearing outer-ring
fault signal collected by the sensor is shown in Figure 8(a),
which is the result of the convolution of the periodic
transient shock caused by the fault with the transfer function
of the bearing system. Te fault shock component in
Figure 8(a) is more obvious, which is owing to the more
standard manual machining groove, resulting in a larger
fault shock amplitude. To bring the collected vibration signal
closer the on-site situation, the signal is shown in Figure 8(b)
after adding Gaussian random noise with an amplitude of 4.
Te bearing inner-ring fault shock characteristics, such as
Gaussian noise, have not been clearly identifed.

Te results obtained using the method presented in this
study are shown in Figure 9. First, CYCBD preprocessing
was performed on the original signal, and the results are
shown in Figure 9(a). Compared with Figure 8(c), the fault
shocks were initially enhanced. Furthermore, GWO-RSSD is
used for the secondary enhancement of transient shocks, and
the optimal high- and low-quality factors are Q1� 4.76 and
Q2� 2.94, respectively, after setting the parameters of the
GWO algorithm and the range of high- and low-quality
factors Q.
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CYCBD-based signal preprocessing
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Theoretical fault
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Figure 2: Flowchart of the proposed method.
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spectrum.
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Te RSSD decomposition of the preprocessed signal
according to the optimal Q factors and the high- and low-
resonance and residual components is shown in Figure 10.
Figure 10(b) shows the best Q1 signal obtained, which
consists mainly of harmonic components. Figure 10(c)
shows the fnal obtained Q2 signal, looking to see the

apparent repetitive transient shock component. Figure 9(c)
presents the envelope spectrum, in which a frequency
component of 129Hz with prominent amplitude can be
observed. In addition, there are obvious harmonic com-
ponents, such as 258Hz and 387Hz. At this point, it can be
judged that an outer race fault happens in the bearing.
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Figure 4: Simulated signal results using the proposed method.
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Figure 5: Results on sparse decomposition of simulation signal.
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Terefore, the results of the experimental data of the bearing
outer race fault confrm the feasibility of the suggested
approach to extract periodic defect characteristics under
strong disturbances (such as accidental shocks with high
amplitude).

For comparison, MED was used as the preprocessing
method, and PSO was used as the optimization index for the
RSSD quality factor in postprocessing, and the results are
shown in Figure 11. Te best low-Q resonance component
time-domain waveform is shown in Figure 11(b), and there
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Servo Motor Variable frequency controllerComputer
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Figure 7: (a) Self-made rotor-bearing fault simulation test bench and (b) physical drawing of inner race fault bearing.
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Figure 9: Results on the analysis of experimental signal using the proposed method.
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is a large amount of noise in its envelope spectrum in
Figure 11(c). Furthermore, its feature extraction is poor
compared with that of the proposed method.

7.2. Engineering Practical Application of Railway Axle Box
Bearing Fault Data Analysis. Te bearing used in this ex-
periment was a faulty bearing of the DF4 internal com-
bustion locomotive. DF4 locomotive is the most widely used
diesel locomotive in China’s railway history. Before the
experiment, the outer ring failure bearings were divided into
severe fault bearings with peeling outer ring, moderate fault
bearings with chafng outer ring, and minor fault bearings
with burns. Figure 12(a) shows the JL-501 locomotive wheel-
to-wheel bearing fault test bench. Te JL-501 locomotive
bearing testing platform used in this manuscript comes from
China Railway Group Limited. Te test bench mainly in-
cludes four parts: headstock, hydraulic system, electrical
system, and body. Te platform uses a motor to drive the
spindle, and the spindle speed range is 120 to 1200 r/min.

Te maximum radial loading force of the tested bearing is
7500N, and the radial force is applied by the hydraulic
system. Te minimum diameter of the inner ring is 120mm
and the maximum outer diameter of the outer ring is
340mm, it can meet most engineering feld practical axle
box bearing models. Te locomotive bearing model was
NJ2232WB, and Figure 12(b) shows a faulty bearing with
a fault size of 30mm× 4mm on the outer race. Te local
bearing fault diagram is shown in Figure 12(c). Tree CA-
YD-187T accelerometers were installed in the vertical and
parallel directions on the outer race of the locomotive
bearing, and vibration signals were collected using a national
instrument data acquisition card. Te bearing speed was
500 rpm and the sampling speed was 20,000Hz. From the
size of each component of the locomotive bearing and speed,
the bearing outer race fault frequency was calculated as
BPFO� 60.12Hz.

Figure 13(a) shows a segment containing 12,000 sam-
pling points randomly intercepted from the original data,
and the original signal is cluttered and the shock component
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Figure 10: Results on sparse decomposition of experimental signal.
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Figure 11: Results on inner race fault for comparison.
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is completely covered by noise. Figure 13(b) shows its en-
velope spectrum, and the inner race fault characteristic
frequency cannot be clearly determined due to serious noise
interference. Te analysis results obtained using the pro-
posed method are shown in Figure 14. First, CYCBD was
used to preprocess the original signal, and the result is shown
in Figure 14(a), indicating that the fault impact component
was initially enhanced but not sufciently for detecting
bearing fault. Furthermore, GWO-RSSD was used for the
secondary enhancement of transient shock characteristics,
and the optimal high- and low-quality factors obtained were
Q1� 8.04 and Q2� 2.34, respectively, using the ESMK as the
objective function. Te time-domain waveform of the op-
timal low-resonance component is shown in Figure 14(b),
showing that the shock component was signifcantly

enhanced, and its envelope spectrum is shown in
Figure 14(c).Te fgure shows that the frequency component
of 61Hz coincides with the characteristic frequency of the
inner race fault BPFI� 61Hz with an obvious amplitude
allowing with signifcant harmonic components such as
122Hz and 183.9Hz, indicating inner race bearing fault.Te
results of the experimental data analysis of the inner race
fault verify the efectiveness of the method in the bearing
vibration signal feature extraction in this paper.

For comparison, MED method was used as the pre-
processing, and PSO was used as the optimization index for
the RSSD quality factor in postprocessing, and the results are
shown in Figure 15. Te time-domain waveform of the
optimal low Q resonance component is shown in
Figure 15(b), and there is a large amount of noise in its
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Figure 12: (a) JL-501 locomotive bearing testing platform; (b) bearing outer race fault; and (c) outer ring fault of partial enlargement.
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envelope spectrum in Figure 15(c), while its feature ex-
traction efect is poor compared with the proposed method.

8. Conclusions

To improve current rolling bearing transient shock feature
extraction methods mostly not considering the bearing
transient shock cycle characteristics and the transmission
path, accidental shock, interference noise, and other serious
impacts on the fault diagnosis of the actual problem,
a multilevel feature extraction method for adaptive fault
diagnosis of rolling bearings was proposed. Te following
conclusions were drawn:

(1) Signal resonance sparse decomposition (RSSD) can
efectively separate high resonance and transient
shock induced by fault. Considering the excellent
performance of the GWO global search, using GWO
for optimizing high and low Q-factors can efectively
overcome the subjectivity of the RSSD quality factor
relying on manual selection.

(2) Considering the periodic characteristics of the fre-
quency components in the ideal fault-bearing en-
velope spectrum, a new index of ESMK is proposed
as the GWO optimization objective function, which
can accurately eliminate the efects of strong dis-
turbances, such as high-amplitude chance shocks.

(3) Te multilevel feature extraction method for adap-
tive fault diagnosis of rolling bearings can efciently
eliminate the impact of external accidental shocks
and reduce the signal transmission path and noise
interference. Te proposed method can guarantee
the efectiveness of fault diagnosis efectively and has
greater advantages in bearing fault diagnosis com-
pared with MED-RSSD method.
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