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Te vibration signal of rolling bearing fault is nonlinear and nonstationary under the interference of background noise, and it is
difcult to extract fault features from it. When feature mode decomposition is used to analyze signals, prior parameter settings can
easily afect the decomposition results. Terefore, a fault feature extraction method based on improved whale optimization
algorithm is proposed to optimize feature modal decomposition parameters. Te improved WOA integrates Lévy fight and
adaptive weight, and envelope entropy is used as ftness function to optimize feature modal decomposition parameters. Te
feature mode decomposition of the original signal is performed using the optimal combination of parameters to obtain multiple
IMF components. Te optimal IMF component envelope demodulation analysis is selected according to the kurtosis value, and
the fault feature is extracted through the envelope spectrum. Comparing the LMWOA method with PSO and WOA methods by
simulated and experimental signals, the results show that the optimization speed of LMWOA is faster than that of other methods.
Compared with CEEMD, VMD, and FMD methods, the improved WOA-FMD method has higher fault feature ratio and can
accurately extract fault features under noise interference. Tis method can efectively solve the parameter adaptive ability and
improve the accuracy of fault diagnosis, which has practical signifcance.

1. Introduction

As a standard component in industrial production feld,
bearing is widely applied in aerospace, energy, trans-
portation, manufacturing, and other felds [1–3]. Because the
bearings are used to support the rotating parts of machinery
and bear various dynamic loads, they are prone to various
faults during their operation [4, 5]. Terefore, it is necessary
to monitor the running state of the bearing and diagnose the
fault types in time.Tis is of great signifcance to the safe and
reliable operation of mechanical equipment and the re-
duction of equipment loss.

In the process of collecting vibration signals, the complex
working environment makes the vibration signal mixed with
a lot of noise. Te signal usually presents a nonlinear and
nonstationary state [6]. In order to solve this problem, EMD,
EWT, and VMD have been widely studied and applied in
fault diagnosis [7–9].

Huang et al. [10] proposed a time signal decomposition
method called EMD, which can adaptively decompose the
signal into several intrinsic mode functions according to the
characteristics of the data. Guo et al. [11] combined the
shape controlling parameter based on cubic spline in-
terpolation with EMD, and it has been applied to fault di-
agnosis of rolling bearing and achieved good results.
However, the application efect of EMD in mechanical fault
diagnosis is limited by mode overlap and boundary efect
[12, 13]. Wu et al. [14] proposed EEMD, which decreases the
efect of mode mixing by adding white noise, but it cannot
efectively solve the problem of endpoint efect [15]. Yeh
et al. [16] proposed that CEEMD can decompose such
nonstationary signals very well. Although the decomposition
ability has been improved, a large number of noise residues
still exist in the signal.

Gilles [17] proposed EWT based on wavelet transform.
EWT is generated by splitting the Fourier spectrum, and
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binary band allocation may divide feature signals into dif-
ferent modes [18]. To solve the above problems, Drag-
omiretskiy and Zosso [19] proposed a VMD algorithm
which can adaptively decompose through center frequency
and bandwidth constraints. VMD essentially sets a set of
Wiener flters, which adaptively decompose the signal into
multiple narrowband signals with diferent frequencies. Tis
avoids mode aliasing [20]. Jiang et al. [21] used the con-
vergence trend phenomenon to quickly and adaptively
determine the number of potential modes and the optimal
initial center frequency of the signal. Based on this research,
central frequency mode decomposition is proposed to better
solve the problem of parameter adaptation [22]. Song et al.
[23]overcame the problem of model parameter predefned in
multivariate variational mode decomposition by using smart
multichannel mode extraction and manifold learning
methods.

Miao et al. [24] proposed a new decomposition
mode—FMD, inspired by adaptive signal decomposition
and deconvolution techniques. FMD is deduced from
multiple FIR flter banks and calculating the maximum
correlation peak deconvolution. It can consider the pulse
property and periodicity of the signal at the same time and has
good noise robustness. FMD algorithm requires manual input
parameters, and diferent parameters have diferent efect on
the fnal results, so it is not applicable. Yan et al. [25] proposed
a PSO method to optimize the decomposition number of
mode and flter length of FMD, which guarantees the para-
metric adaptability of feature mode decomposition. However,
the infuence of the number of frequency bands on the de-
composition results is neglected, and the iteration of PSO is
prone to premature phenomenon and falls into local optimal
solution [26, 27]. Mirjalili and Lewis [28] proposed WOA to
observe and simulate the predatory behavior of whales in
2016. WOA has the advantages of simple structure, fast
searching speed, less parameters, and strong global conver-
gence. In WOA, with the number of iterations increasing, the
convergence speed of the algorithm gradually increases. It is
easy to fall into a local optimal solution [29, 30].

Under the interference of background noise, the EMD,
CEEMD, and VMD algorithms are difcult to extract the
fault characteristics of rolling bearings. When the signal is
decomposed by the FMDmethod, in addition to the number
of decomposed modes and the length of the flter, the
number of frequency bands will also afect the de-
composition results. Terefore, the number of frequency
bands should also be included in the parameter optimiza-
tion. Although whale optimization algorithm has advantages
over particle swarm optimization algorithm in optimization
speed and accuracy, it is easy to fall into local optimization in
the process of optimization. Tis leads to the failure to
achieve the optimal decomposition efect. In order to
overcome the above problems, this paper proposes an im-
proved WOA-FMD algorithm. Tis method introduces
adaptive weights and Lévy fight into WOA. Te envelope
entropy is used as the ftness function of the algorithm to
optimize the FMD parameters. Te kurtosis value is used as
an index for Hilbert envelope demodulation analysis to
extract the fault characteristic frequency of the signal.

2. Fundamental Algorithms

2.1. Feature Mode Decomposition. FMD is a new non-
recursive signal decomposition method, mainly including
the steps of designing FIR flter bank, updating flter, cal-
culating cycle, and calculating decomposition mode. By
initializing the flter bank and iteratively updating its co-
efcients, diferent modes can be selected simultaneously
and adaptively. Figure 1 displays the fowchart of FMD
algorithm, and the algorithm is as follows:

(1) Step 1. Read the collected raw signal x and set FMD
decomposition mode n, FIR flter bandwidth L, and
iteration number I of FMD.

(2) Step 2. Te FIR flter bank is initialized using K

Hanning windows, and set start iteration i � 1.
(3) Step 3. Use ui

k � x∗fi
k to obtain a signal to remove

interference, that is, the IMF components obtained
after decomposition, where k � 1, 2, ......K, and ∗
represents the convolution operation.

(4) Step 4. Te flter coefcients are periodically updated
based on the initial input signal x, the number of
decomposed modes ui

k, and the estimated fault
frequency Ti

k. Ti
k is the time delay when the auto-

correlation spectrum Ri
k of ui

k reaches a local max-
imum after the frst zero crossing.

(5) Step 5. Determine whether the current number of
iterations has reached the maximum number of
iterations. If it is not satisfed, go back to step 3
and repeat the iteration. Otherwise, proceed to
step 6.

(6) Step 6. Calculate the CC between two adjacent
components and construct a correlation matrix with
CC(K×K). Select two adjacent modal components
with the largest correlation coefcient and calculate
their correlation kurtosis according to the estimated
fault period . Finally, the modal component with
large correlation kurtosis is selected as the modal
component of FMD, set K � K − 1.

(7) Step 7. Determine if the specifed n is the same as the
number of modes K. If not, go back to step 3.
Otherwise, the iteration stops and the modal com-
ponent of the output FMD is n, which is the fnal
decomposition result.

2.2. Whale Optimization Algorithm. Te WOA algorithm
mainly includes three kinds of predator-prey behavior
simulation methods: surrounding prey, bubble net predator,
and prey search. Te specifc steps are as follows:

(1) Step 1. When searching the prey position is un-
known, the WOA assumes that the solution with the
smallest ftness among individuals in the current
population is the target or closest prey and updates
the position of other search individuals after defning
the optimal solution. When p< 0.5 and |A|< 1, the
behavior of surrounding prey is executed, and the
update formula is
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a � 2 − T ·
2

Tmax
􏼠 􏼡,

A � 2 · a · rand() − a,

C � 2 · rand(),

D � C · X
∗
(t) − X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

X(t + 1) � X
∗
(t) − A · D,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a linearly decreases to 0 in the iteration
process; T is the current iteration number; and Tmax
is the maximum iteration number; A and C are
synergy coefcients; rand() is a random number
generated from the (0, 1) interval; D is the distance

between the optimal whale and the current whale;
X∗(t) is the current optimal solution position; X(t)

is the current solution position; and X(t + 1) is the
position of the whale after moving to the optimal
solution position.

(2) Step 2. When p≥ 0.5, the precontraction behavior of
the bucket net predation of whales is simulated, and
the position update formula is

X(t + 1) � D · e
bl

· cos(2πl) + X
∗
(t),

D � X
∗
(t) − X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

⎧⎨

⎩ (2)

where b is a constant and assumes a spiral shape and
L is a random number that oscillates at [− 1, 1].

(3) Step 3. When p< 0.5 and |A|≥ 1, WOA will enter the
global search and randomly fnd the position of
a search body in the population to replace the found
optimal position. It no longer updates the position
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mode ui

k 

Update the FIR filter coefficient
using x, ui

k and Ti
k ; i = i + 1

Whether maximum number
of iterations is reached?
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Obtain the decomposition
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Y
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N

Fault period estimation

Find the local maximum value of Ri
k

to get estimated period Ti
k

Compute autocorrelation Ri
k

of decomposed mode ui
k

Mode selection

Calculate the correlation kurtosis for 
all mode components

 Select the mode component with a
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component of FMD

Load raw signal x, Input decomposed
 mode number n , filter length L

Figure 1: Flowchart of FMD.
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according to the found optimal position, which
enhances the search energy of the algorithm. Te
formula is

a � 2 − T ·
2

Tmax
􏼠 􏼡,

A � 2 · a · rand() − a,

C � 2 · rand(),

D � C · X1(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

X(t + 1) � X1(t) − A · D,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where X1 is the random selection of the whale
position.

(4) Step 4. When T � Tmax, max reaches the maximum
number of iterations, and the convergence factor
a linearly decreases to 0, the best search agent is
output. If not, return to continue iteration.

3. Feature Extraction Based on Improved WOA

3.1. Improved WOA. WOA is simpler and more efective
than other algorithms, but it is easy to fall into local opti-
mum in the optimization process, resulting in a decrease in
the accuracy of the results.Te Lévy fight process adopts the
search method of long-term small steps and occasional long-
distance jumps, which helps WOA to expand the search
scope and enhance the global exploration and search ability.
Tis can prevent the solution from producing local optima
and accelerate the convergence speed [31]. Te formula for
Lévy fight random step is calculated as follows:

levy: u � t
− λ

, 1≤ λ≤ 3. (4)

Random numbers are solved using the Mantegna [32]
method of normal fractions to generate a random step of the
Lévy distribution, which is formulated as

s �
μ

|v|
1/β , (5)

where β Is constant, and the value range is 0< β< 2. Take
β � 1.5; u ∼ N(0, σ2); v ∼ N(0, 1). Te formula for calcu-
lating σ is given by

σ �
Γ(1 + β) · sin(πβ/2)

βΓ(1 + β/2) · 2(β− 1)/2

⎧⎨

⎩

⎫⎬

⎭. (6)

After introducing Lévy fight strategy, the position up-
date formula of whale optimization algorithm is

X(t + 1) � X(t) + levy(λ)⊕A · D. (7)

In the WOA, the global search ability needs to be im-
proved in the early stage, and the local search ability needs to
be improved in the late stage. As the iteration time increases,

the convergence speed of the algorithm increases. It will be
prone to fail to jump out of the local optimal solution. In
order to solve the problem, the inertia weight parameter,
which can adjust the algorithm, is designed. Te larger
weight can be used for global optimization in a wide range,
and the smaller weight can be used for local optimization
near the optimal solution. Te calculation principle of ω is

ω � cos
π
2

× 1 −
t

TMAX
􏼠 􏼡, (8)

where t is the current iteration number.
Te improved whale optimization algorithm position

update formula is

X(t + 1) � ω · X(t) + levy(λ)⊕A · D. (9)

In order to verify the performance of LMWOA, 10 basic
standard test functions are used for experiments. Te results
are shown in Table 1 and Figure 2. Comparing the minimum
value of the test function with the optimization results of the
three algorithms, the optimization results of LMWOA are
closer. According to Figure 2, it can be seen that the opti-
mization speed of LMWOA is faster than that of the other
two algorithms. After improvement, WOA can jump out of
the local optimum faster, ensuring the accuracy of the
algorithm.

3.2. Feature Extraction Process. Te parameter de-
composition mode n, flter length L, and frequency band
number K in FMD have great infuence on signal de-
composition results. For example, if the flter length is too
short, it may lead to poor fltering results. If the flter length
is too long, it may lead to distortion and further increase the
computational burden. If there are too many decomposed
modes, the result may be redundant modes. Te larger the
number of bands is, the heavier the computational burden
will be, which afects the decomposition performance to
a certain extent.

Terefore, this paper uses LMWOA to optimize the
parameters of FMD algorithm in order to get rid of the
dependence of FMD on the prior knowledge of the fault
cycle of the original signal and avoid the infuence of human
factors on the decomposition results. Tis can achieve the
best decomposition efect. Its fowchart is shown in Figure 3.
Te LMWOA-FMD algorithm is implemented as follows:

(1) Step 1. Input the collected rolling bearing signal and
put up (n, L, K) as the optimization parameters of
the WOA. Te optimization dimension is 4, the
number of iterations Tmax � 20, and the number of
search population is 15. In order to avoid under-
decomposition or over-decomposition, the search
space of decomposition mode number n is [3, 7]. In
order to achieve a sample number that includes two
adjacent repetitive transients related to bearing
faults, the search space for the flter length L is as-
sumed to be [10, rand(fs/fg)], where rand() is
a rounding operation, and fs and fg are sampling
frequency and bearing failure frequency,
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Table 1: Results and comparison of diferent algorithms on 10 benchmark functions.

Function Range fmin PSO WOA LMWOA

F1(x) � 􏽐
n
i�1x

2
i [− 100, 100] 0 9.79e − 4 1.10e − 74 8.33e − 290

F2(x) � 􏽐
n
i�1|xi| + lim

x⟶∞
􏽑

n
i�1|xi| [− 10, 10] 0 0.020 3.73e − 51 1.31e − 160

F3(x) � 􏽐
n
i�1ix

2
i + random (0, 1) [− 1.28, 1.28] 0 0.163 8.66e − 4 1.21e − 05

F4(x) � − 20 exp(− (1/5)

���������

1/n􏽘
n

i�1x
2
i

􏽱

)

− exp(− (1/n)􏽘
n

i�1 cos(2πxi)) + 20 + e
[− 32, 32] 0 5.66e − 3 4.44e − 15 8.88e − 16

F5(x) � (1/4000)􏽐
n
i�1x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1 [− 600, 600] 0 1.84e − 06 0 0

F6(x) � (1/500 + 􏽐
25
j�1(j + 􏽐

2
i�1(xi − aij)

6)− 1)− 1 [− 65, 65] 1 0.998 1 1

F7(x) � 􏽐
11
i�1[ai − (x1(b2i + bix2)/b

2
i + bix3 + x4)]

2 [− 5, 5] 3e − 4 9.95e − 4 3.57e − 4 3.07e − 4

F8(x) �
π
n

10 sin(πy1) + 􏽘
n− 1
i�1 (yi − 1)

2
× [1 + 10 sin2(πyi+1)] + (yn − 1)

2
􏼚 􏼛

+ 􏽘
n

i�1u(xi, 10, 100, 4)

[− 50, 50] 0 0.103 0.023 0.016

F9(x) � [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2) + 3x2

2]

[30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

[− 2, 2] 3 3 3 3

F10(x) � 􏽐
4
i�1ci exp(− 􏽐

3
j�1aij(xj − pij)2) [1, 3] − 3.86 − 3.862 − 3.862 − 3.859
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Figure 2: Convergence curve of the average ftness value of some selected functions.
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respectively; K must be greater than n for the mode
to decompose, so the search space of K is set
as [4, 10].

(2) Step 2. Set the envelope entropy as the judgment
value of the ftness function. When the complexity of
vibration signal is low and the noise interference is
small, the envelope entropy is also small. On the
contrary, when the feature information is small, the
noise interference is larger and the envelope entropy
is larger [33].

(3) Step 3. Obtain the optimal parameter combination
(n, L, K) by using LMWOA to optimize the pa-
rameter combination.

(4) Step 4. Input the optimal parameter combination
(n, L, K) into the FMD algorithm, disintegrate the
signal into several IMF components, and use kurtosis
value as the parameters of the target mode. Ten, the
kurtosis value of each component is calculated sepa-
rately. When a bearing fault occurs, the vibration signal
will deviate from the normal distribution under the
action of fault impact, and the larger the kurtosis value,
the richer the impact component and fault information.

(5) Step 5. Select the component with the highest kur-
tosis value as the target mode and calculate the
envelope spectrum by Hilbert transformation to
extract fault characteristics.

4. Case Study

4.1. Simulated Signal Analysis. Te feasibility of the
LMWOA-FMD method was verifed by constructing the
simulation signal of the inner ring fault of the rolling
bearing, and the simulation signal expression is

Ai � A0 cos 2πfrt( 􏼁,

h(t) � e
− ct sin 2πfnt( 􏼁,

S(t) 􏽘
i

Ai t − iT − τi( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

where A0 is the amplitude, A0 � 0.5; fr is frequency con-
version, fr � 20Hz; c is the attenuation factor, c � 800; fn is
the resonance frequency, fn � 4000Hz; S(t) is a periodic
shock component; τi represents the small fuctuation of the
ith shock with respect to period T; and fault frequency
fi � 1/T, fi � 120Hz. In the simulation signal, 1dB

Gaussian white noise interference is added, the sampling
points are selected as 10240, and the sampling frequency
fs � 12kHz. Te time-domain waveform diagram and sum
spectrogram of the simulation signal after adding noise are
shown in Figure 4.

Te PSO, WOA, and LMWOA methods are, re-
spectively, used to search the optimal parameter combina-
tion of FMD, and the minimum envelope entropy is used as
the ftness function. Te value change of ftness function is
shown in Figure 5. In the fgure, LMWOA-FMD converges
to obtain the best solution when the number of iterations
reaches 5 and fnal ftness function value is 9.08. Compared
with PSO and WOA, LMWOA has better search ability, has
faster convergence speed, and can seek the optimal FMD
parameters faster. It is verifed that Lévy fight and adaptive
weights can efectively avoid falling into local optimum and
improve algorithm performance, which can save a lot of time
for optimization.

After optimization by LMWOA, the fnal optimal pa-
rameter combination is as follows: decomposition mode
n � 4, flter length L � 15, and frequency band number
K � 5. Te parameters are input into FMD, and the de-
composition efect is shown in Figure 6. Te frequency of
each mode component in the decomposition result is uni-
formly distributed, which avoids the appearance of mode
aliasing and avoids losing some important information.

Te kurtosis values of the four IMF components obtained
after LMWOA-FMD treatment were calculated, respectively,
and the results are shown in Table 2. After comparison of
kurtosis values, IMF3 component is selected for Hilbert
transform analysis of envelope demodulation, and its enve-
lope spectrum is shown in Figure 7. According to the fgure, it
can be seen clearly that the extracted fault frequency is 120Hz.
At the same time, the dual frequency of 240Hz and the triple
frequency of 360Hz are also accurately extracted. Te inner
ring failure frequency extracted by this method is near to the
theoretical value, which means that the rolling bearing has
inner ring damage. It is verifed that this method can accu-
rately identify fault characteristics under background noise
and has certain noise robustness.

Te FMD of prior parameters was compared, where
decomposition mode number n � 5, flter length L � 100,
and frequency band number K � 6. In Figure 8, there is no
mode aliasing during FMD decomposition. However, most
components have passband ripple, which has a certain
impact on the fnal decomposition result.

At the same time, the CEEMD and VMD methods are
also used to compare and verify. Te number of mode
decomposition of VMD is 5, and the penalty factor is 1500.
Te component with the maximum kurtosis value is con-
tinued to be used for envelope demodulation. Te envelope
spectra of the CEEMD, VMD, and FMD are shown in

Start

Collect rolling bearing vibration 
signal

Set the parameter of LMWOA

Perform FMD, get multiple 
IMFs components

Calculate the kurtosis of each 
mode and select the largest IMF 

component

Designing an objective function 
for FMD parameter optimization

Hilbert transform to find the 
envelope spectrum

Find fault characteristic 
frequencyOptimal parameter combination 

obtained by LMWOA algorithm 
(n, L, K)

End

Figure 3: Flowchart of LMWOA-FMD algorithm.
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Figure 9. In the fgure, the envelope spectrum of CEEMD
and FMD can extract the fault frequency under the in-
terference of noise. However, there are many interference
lines and the efect is not ideal. Further processing is re-
quired if the fault frequency is to be accurately extracted.Te
envelope spectrum of VMD method can accurately extract
the fault frequency. However, the efect is not obvious due to
the infuence of the interference spectral line at the position
of the second and third harmonic, and the robustness to
noise is poor.

In order to further compare the advantages of these four
methods, FFR is used as the evaluation index of the four
methods. Te larger the FFR value is, the more the periodic

impact components are included in the IMF component
[34]. Te FFR is defned as

Rf �
􏽐

m
k�1S(kf)

S
, (11)

where S is the sum of the amplitude of the envelope spec-
trum; f is fault characteristic frequency; and S(kf) is the
amplitude of the envelope spectrum corresponding to each
octave of the fault characteristic frequency.

Table 3 shows the FFR values corresponding to the four
methods. Te FFR value of LMWOA-FMDmethod is 0.059,
which is higher than that of CEEMD, VMD, and FMD. Tis
proves the superiority of this method.
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Figure 6: LMWOA-FMD result of simulated inner ring fault signal.

Table 2: Kurtosis value of each IMF component of simulated inner ring fault signal.

IMF IMF1 IMF2 IMF3 IMF4
Kurtosis value 2.88 3 3.92 3.05
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Figure 7: Te analysis result by LMWOA-FMD method for the simulated inner ring fault signal.
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4.2. Experimental Signal Analysis. For the sake of further
verifying the performance of the LMWOA-FMD method in
practical application, the bearing dataset provided by
CWRU [35] was used for experimental verifcation. Te
CWRU rolling bearing test stand is shown in Figure 10.

In the test bench, the driving end bearing of the in-
duction motor with rated power of 1.5 kW and speed of
1797 r/min was selected as the research object. Te bearing
model was SKF6205-2RS deep groove ball bearing, and the
sampling frequency was 12 kHz. Te inner ring, outer ring,
and roller components of the bearing were processed by the
EDMmethod to produce tiny pits with the size of 0.117mm
to simulate the fault of the bearing. Te bearing rotational
frequency is 29.95Hz, and the outer ring fault frequency is
107.3Hz according to its parameters. Te time-domain
waveform and spectrum diagram with Gaussian white
noise are shown in Figure 11.

Te PSO, WOA, and LMWOA methods are, re-
spectively, used to optimize FMD. Te minimum envelope
entropy is used as the ftness function to fnd the optimal

parameter combination.Te change of ftness function value
is shown in Figure 12. Te LMWOA-FMD in the fgure
converges to the optimal solution when the number of it-
erations reaches 3. Te fnal ftness function value was 9.05.
It is proved that the method avoids falling into local opti-
mum and can accurately search the optimal solution.
Compared with PSO and WOA, it has stronger searching
ability, faster convergence speed, and faster searching for
FMD optimal parameters.

Te decomposition mode number n � 4, flter length
L � 34, and frequency band number K � 5 are optimized
by LMWOA.Te parameters are input into FMD, and the
decomposition efect is shown in Figure 13. Te fre-
quency belt of each modal component in the de-
composition result is narrow, avoiding the phenomenon
of mode overlap.

After carrying out LMWOA-FMD, four IMF compo-
nents were obtained to calculate their kurtosis values, re-
spectively, and the results are shown in Table 4. Te
component IMF3 with the largest kurtosis value is selected
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Figure 8: FMD result of simulated inner ring fault signal.
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Figure 9: Analysis results of the simulated inner ring fault signal in diferent ways. (a) Result of CEEMD. (b) Result of VMD. (c) Result of
FMD.

Table 3: Te FFR of envelope spectra obtained by diferent methods for the analysis of simulated inner ring fault signal.

Method LMWOA-FMD FMD VMD CEEMD
FFR 0.059 0.024 0.043 0.025

Fan and bearing Drive end bearing

Induction motor Coupling

Torque transducer/encoder
Self-aligning coupling

Dynamometer

Figure 10: Rolling bearing fault simulation experimental device.
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Figure 11: Time-domain waveform and spectra of experimental signals. (a) Inner race fault bearing vibration signal. (b) Outer race fault
bearing vibration signal.
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Figure 12: Fitness function value change of experimental outer ring fault signal.
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Figure 13: LMWOA-FMD decomposition result of experimental outer ring fault signal.

Table 4: Kurtosis values of IMF components of experimental outer ring fault signal.

IMF IMF1 IMF2 IMF3 IMF4
Kurtosis value 3.516 3.119 6.182 3.049
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Figure 14: Te analysis result by LMWOA-FMD method for experimental outer ring fault signal.
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Figure 15: Te analysis result by FMD method for experimental outer ring fault signal.
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Figure 16: Continued.
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to perform Hilbert transform for envelope demodulation
analysis, and its envelope spectrum is shown in Figure 14. It
can be clearly seen in the fgure that the extracted fault
frequency is 107.8Hz, which is close to the theoretical value
of 107.3Hz. Te frequency doubling characteristics can be
clearly seen in the fgure, and the spectral lines evenly
distributed on both sides of the frequency doubling are low.
It can be seen that this method can accurately extract the
fault frequency under the noise while suppressing the in-
fuence of frequency conversion signal and noise on the fault
signal and has certain robustness to noise.

Te FMD of prior parameters was compared, where
decomposition mode number n � 5, flter length L � 100,
and frequency band number K � 6. Te result is shown in
Figure 15. In the fgure, IMF2 and IMF5 have passband
ripple and IMF3 and IMF4 have mode mixing. Te signal
is not well decomposed, and redundant information
appears.

Furthermore, CEEMD and VMD methods are used to
compare and verify the advantages of this method. Te
number of mode decomposition of VMD is 5, and the
penalty factor is 1500. Te envelope spectra of the CEEMD,
VMD, and FMD are shown in Figure 16. In the fgure, the
envelope spectra of the three methods accurately extract the
fault frequency. However, the amplitude efects of the sec-
ond and third harmonic of the envelope spectrum are not
signifcant. Compared with LMWOA-FMD, the overall
extraction performance of the three methods is not ideal.

In order to further compare the advantages of these four
methods, FFR is used as the evaluation index of the four
methods. Table 5 shows the FFR values corresponding to

other three methods. Among the four methods, the FFR
value of the LMWOA-FMD algorithm is 0.122, which is
greater than that of other three methods. It has been proven
that this method has better noise resistance than other three
methods.

Te LMWOA-FMD method is used to decompose the
inner ring signal of rolling bearing with Gaussian white
noise. Te optimized decomposition results are the number
of decomposition modes n � 4, the flter length L � 20, and
the number of frequency bands K � 7. Te parameters are
input into the FMD, and the decomposition result is shown
in Figure 17. LMWOA-FMD divides the signal into four
parts, avoiding redundant information and mode aliasing
and avoiding the loss of important information.

After carrying out LMWOA-FMD, four IMF components
were obtained to calculate their kurtosis values, respectively,
and the results are shown in Table 6. Te component IMF3
with the largest kurtosis value is selected to perform Hilbert
transform for envelope demodulation analysis, and its en-
velope spectrum is shown in Figure 18. Although the spec-
trum line is cluttered under the infuence of noise in the
fgure, the extracted fault frequency is prominent in the
envelope spectrum, which is only 0.5Hz diferent from the
theoretical value of 162.2Hz, and twice the frequency of the
fault feature can be extracted. It can be seen that the method
can accurately extract the fault frequency under noise and has
certain noise robustness.

After the same FMD parameters are imputed manually,
the results are as shown in Figure 19. Passband ripple occurs
in IMF2 and IMF5 components, which may cause a large
amount of interference information in the signal after
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Figure 16: Analysis results of experimental outer ring fault signal in diferent ways. (a) Result of CEEMD. (b) Result of VMD. (c) Result of
FMD.

Table 5: Te FFR of envelope spectra obtained by diferent methods for the analysis of outer ring fault signal.

Method LMWOA-FMD FMD VMD CEEMD
FFR 0.122 0.096 0.106 0.084
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decomposition.Tis will afect the fnal result of fault feature
extraction.

Also, input the signal to CEEMD and VMD, where the
number of mode decomposition of VMD is 5 and the
penalty factor is 1500. Te envelope spectra of the three
methods are shown in Figure 20. Te fault frequencies of the
envelope spectra of three methods in the fgure are com-
pletely submerged by noise frequency and there are many
interference lines, which make it impossible to extract fault

features accurately. Compared with LMWOA-FMD, the two
methods have poor noise resistance and cannot be applied in
bearing fault diagnosis under noise background.

Table 7 shows the FFR values of four diferent methods.
Among the four methods, the FFR value of the
LMWOA-FMD algorithm is 0.022, which is greater than that
of other three methods. It has been proven that the
LMWOA-FMD method has better noise resistance than
other three methods.
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Figure 17: LMWOA-FMD decomposition result of experimental inner ring fault signal.

Table 6: Kurtosis value of each IMF component of experimental inner ring fault signal.

IMF IMF1 IMF2 IMF3 IMF4
Kurtosis value 2.911 3.177 3.22 3.018
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Figure 18: Te analysis result by LMWOA-FMD method for experimental inner ring fault signal.
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Figure 19: FMD decomposition result of experimental inner ring fault signal.
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5. Conclusion

Te improved WOA-FMD algorithm is proposed for fault
feature extraction of rolling bearing under noise in this
paper. Te main contributions of the paper are as follows:

(1) Te improved WOA with Lévy fight and adaptive
weight can fnd the optimal value faster and more
accurately than PSO and WOA in the optimization
process of test function. It can fnd the optimal
solution before 5 iterations in FMD optimization,
which has stronger search ability and avoids falling
into local optimal solution.

(2) Te LMWOA-FMD algorithm successfully de-
composes the original signal into multiple IMF
components without mode aliasing and passband

ripple. Tis overcomes the problem of input pa-
rameters by prior values and may realize the pa-
rameter adaptation of FMD. It can extract fault
features better and improve the accuracy of signal
decomposition.

(3) Trough the analysis of simulated and experimental
signals, the fault feature ratio extracted by this
method in the background noise reaches 0.059 and
0.122. Tis is larger than the fault feature ratio of
CEEMD, VMD, and FMDmethods. It is proved that
this method has strong noise robustness and can
extract fault features more accurately.

Abbreviations

LMWOA: Lévy fight-based modifed whale optimization
algorithm

FMD: Feature mode decomposition
IMF: Intrinsic mode function
EMD: Empirical mode decomposition
EWT: Empirical wavelet transform
VMD: Variational mode decomposition
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Figure 20: Analysis results of experimental inner ring fault signal in diferent ways. (a) Result of CEEMD. (b) Result of VMD. (c) Result of
FMD.

Table 7: Te FFR of envelope spectra obtained by diferent
methods for the analysis of experimental inner ring fault signal.

Method LMWOA-FMD FMD VMD CEEMD
FFR 0.022 0.016 0.015 0.013
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EEMD: Ensemble empirical mode decomposition
CEEMD: Complementary ensemble empirical mode

decomposition
WOA: Whale optimization algorithm
FIR: Finite-impulse response
CC: Correlation coefcient
PSO: Particle swarm optimization
FFR: Fault feature ratio
CWRU: Case Western Reserve University
EDM: Electric discharge machining.
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fight search patterns of wandering albatrosses,” Nature,
vol. 381, no. 6581, pp. 413–415, 1996.

[33] R. Gu, J. Chen, R. Hong et al., “Incipient fault diagnosis of
rolling bearings based on adaptive variational mode de-
composition and Teager energy operator,” Measurement,
vol. 149, Article ID 106941, 2020.

[34] W. He, Y. Zi, B. Chen, F. Wu, and Z. He, “Automatic fault
feature extraction of mechanical anomaly on induction motor
bearing using ensemble super-wavelet transform,” Mechani-
cal Systems and Signal Processing, vol. 54-55, pp. 457–480,
2015.

[35] W. A. Smith, R. B. Randall, A. Smith, and R. B. Randall,
“Rolling element bearing diagnostics using the CaseWestern
Reserve University data: Rolling element bearing diagnostics
using the Case Western Reserve University data: A bench-
mark study benchmark study,”Mechanical Systems and Signal
Processing, vol. 64-65, pp. 100–131, 2015.

Shock and Vibration 19




