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Coal mining activities have intensifed, and underground mining depths have increased, posing signifcant challenges for
mitigating rock burst hazard. To address this issue, this paper proposes an improved comprehensive weighting prediction (CF-
TOPSIS) method that predicts weight and grade indices for rock burst evaluation.Te study introduces a novel variable coefcient
method to optimize the confict response problem and employs correlation forward and other techniques to minimize errors
caused by large data diferences. Based on these, the CRITIC objective weight algorithmmodel is established, and FAHP is used to
optimize weighting factors to make the index weight of rock burst more reasonable, thus enhancing the accuracy of hazard
assessment for working faces. Results from engineering examples show that the prediction results combined with feld drill cutting
methods and microseismic monitoring data verify the accuracy of the proposed method, indicating its feasibility and efectiveness
in predicting rock burst hazard in underground coal mines.

1. Introduction

Coal is a pivotal source of energy in China’s energy portfolio
[1]. However, with the gradual exhaustion of shallow coal
seams, deep mining has become increasingly prevalent,
leading to a higher probability of deep rock bursts [2, 3].
Tus, to ensure the safety of coal mining operations, accurate
and efective prediction of rock bursts in deep mining must
be based on scientifc and rigorous principles [4].

Numerous scholars have conducted extensive research
on predicting rock bursts [5]. Teir proposed measures can
be categorized into mine-wide prediction (intelligent
hazard-level judgement), regional prediction (utilizing three
spatialtemporal monitoring methods), and local prediction
(employing a multiparameter monitoring and early warning
index system for rock bursts) [6–10]. Given the complexity

of factors contributing to rock bursts, evaluating the level of
rock bursts in mines can be challenging. Wu et al. [11]
judged rock burst hazard levels by utilizing a rock com-
prehensive prediction model, which involved determining
the hazard index of rock bursts. To predict the static
properties of coal and rock mass, Jiang et al. [12] developed
a possibility index diagnosis method that considers mining
stress and the burst tendency of coal seams as primary
indices. Zhu and Zhang [13] introduced the Lagrange
function to optimize the decision model and address the
issue of determining the weight of rock burst disaster system
evaluation models. Han et al. [14] established the division
method of geological dynamic zones, incorporating fault
structure and coal rock characteristics to enable accurate
coal mine prediction. Based on the cloud model and D-S
theory, Chen [15] evaluated the hazard of rock burst, while
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Cai et al. [16] further developed the spatiotemporal fore-
casting method for rock bursts using multidimensional
microseismic information. To address the challenge of
predicting dynamic disasters caused by various factors and
the heterogeneity of coal and rock in mining operations,
Meng et al. [17] studied the general patterns and hazard
control factors of rock bursts. Additionally, in regional
prediction methods that involve “strong time and space”
considerations, several techniques such as the generalized
artifcial neural network [18], particle swarm optimization
KNN, cloud model, and decision tree [19, 20] have yielded
promising results in rock burst prediction. However, each
prediction method has its limitations. For instance, the
convergence speed of intelligent algorithms like generalized
neural networks may be slow. Decision tree algorithms can
be prone to overftting and may overlook correlations, while
the analytic hierarchy process may exhibit strong sub-
jectivity. Similarly, the conventional objective weighting
method may fail to account for interindicator correlations
[21–25].

Given that rock bursts can be afected by numerous
factors [26, 27], this study optimizes the correlation and
confict of CRITIC and constructs the CF comprehensive
weight evaluation index through a combination of the
FAHP’s subjective weight approach [28]. Te improved
TOPSIS rock burst closeness evaluation and prediction
model yields more accurate and reasonable predictions of
rock burst grade.Te accuracy of these predictions is verifed
through a practical example, highlighting the efectiveness of
the proposed approach.

2. Comprehensive Weighted Prediction Model

Rock bursts occur due to the infuence of multiple factors,
and the rock burst of each factor on rock bursts can vary. As
such, determining a reasonable comprehensive evaluation
model for rock bursts and assessing the hazard level of the
working face are of paramount importance.

2.1. Improved Objective Weighting Method. Te entropy
weight method (EWM) is an important means of reducing
subjective factors in the evaluation process. However, EWM
has limitations in refecting the interrelationship between
criteria, which may afect the accuracy of the evaluation
results. To address this issue, a new approach called criteria
importance through intercriteria correlation (CRITIC) was
proposed by Diakoulaki in 1995. CRITIC serves to optimize
the weighting procedure and improve the objectivity of the
evaluation process by taking into account the in-
terrelationship between criteria [29, 30]:

(1) Te index data matrix X � (xij)m×n is established,
and indicator types are unifed.

xij � xij
(1)

,
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(3) Te correlation coefcient between the infuencing
factors is obtained by the processed matrix.
Tere is a connection between the infuencing fac-
tors, and the deviation product can well measure the
degree of correlation between the two variables:
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ξij indicates that (i � 1, 2, 3 · · · n; j � 1, 2, 3 · · · n) is
the correlation coefcient between the ith indicator
and the jth indicator, and the value of ξij is between
(0, 1). Te greater the value of ξij, the greater the
correlation between the two factors.

(4) Te information amount of the comprehensive
measurement index is as follows:
Information measure Cj is defned based on contrast
strength and confict concepts:

Cj � σj 

n

i�1
1 − ξij, (4)

where Cj represents the defnition of information
measure, σj represents variance, and ξij represents
the correlation coefcient.
In the present study, an optimized criteria impor-
tance through intercriteria correlation (CRITIC)
approach is proposed to enhance the objectivity of
weight determination. While Zhang and Xiao [31]
proposed the use of CRITIC, this method has not
been applied in the feld of rock burst hazard as-
sessment. Te signifcant diferences in infuencing
factors of rock burst pressure are addressed by op-
timizing the CRITIC approach in order to account
for these diferences. Due to the large variations in
rock burst pressure infuencing factors, the value of
the consistency coefcient (Cj) may become too
large, leading to errors in the determination of
weight factors. Te coefcient of the variation
method is utilized to enhance the CRITIC approach
and address errors stemming from excessively large
Cj values. Furthermore, the method is optimized to
accommodate situations where notable variations in
indicator values pose challenges in implementing the
coefcient of the variation approach:
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xj �
xmax1j + xmax2j  − xmin1j + xmin2j 

2
, (5)

vi �
σj

xj

, (j � 1, 2, · · · , n), (6)

where j is the number of index values and σj is the
variance.
In Zhao et al. [32] evaluation of power quality
classifcation, the 1 − ξij value refects the confict
between diferent evaluation indicators. However,
when the relationship between indicators is negative,
weighting may become disproportionately large. To
address this issue and account for the conficts
among coefcient values, a positive confict trans-
formation method is introduced to optimize the
weight determination process. By applying this ap-
proach, the issue of disproportionately large weights
resulting from negative correlations between in-
dicators is efectively mitigated:

Cj � vj 

n

i�1
1 − ξij



, (7)

where vi is the introduced coefcient of variation and
ξij is the correlation coefcient.

(5) Calculation of the index weight of the information
measure index is

wAj �
Cj


n
j�1Cj

, (8)

where wAj represents the weight value of the index j.

2.2.Determining SubjectiveWeight by FAHP. Te traditional
AHP method fails to maintain consistency in thinking when
facing multiple evaluation indicators. It is difcult to test the
consistency of the judgment matrix, which fails to provide
a strong scientifc basis. In order to further optimize the
reliability of the subjective weight, the author uses the fuzzy
analytical hierarchy process (FAHP) to establish a multi-
objective, multilevel structure of the subjective weight of the
rock burst subjective decision model [33].

A number of experts with rich work experience compare
and judge the two factors of rock burst, construct the
judgment matrix J � (aij)n×n, and calculate the average value
of each aij obtained by many experts to obtain A � (aij)n×n.
Te subjective weight wBj is obtained by summing the fuzzy
judgment matrix A by rows and exchanging them
mathematically:

rij �
ri − rj

2n
+ 0.5,

aij � rij.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Te subjective factor weight calculation equation is as
follows:
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2.3. CF-TOPSIS Regional Static Prediction before Mining.
Te technique for order preference by similarity to ideal so-
lution (TOPSIS) can better describe the strength of multifactor
comprehensive infuence of rock burst without the objective
function and test [34]. TOPSIS avoids errors caused by sub-
jective factors in data and is often used for multiple indicators
and evaluation units [35]. In this paper, through the optimized
CF combination weight, according to the distance between the
positive and negative ideal solutions, the rock burst pressure
level and the working face to be measured are sorted to realize
the prediction of the rock burst hazard level of the working face
before rock burst pressure mining.

Te optimized objective weight and the subjective weight
are combined to obtain the CF comprehensive weight:

WAB �

������
wAjwBj




n
j�1

������
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 , (11)

where WAB is the comprehensive index weight coefcient
and wAj and wBj represent the values of the objective weight
and subjective weight after optimization, respectively.

2.3.1. Original Judgment Matrix. Te rock burst level
scheme set is set as G � G1, G2, · · · , Gm, and the index set to
be evaluated is e � e1, e2, · · · , em . Te binary comparison
decision matrix, as presented in equation (10), serves as
a means of identifying the internal correlated signifcance of
factors [36]. Te evaluation index eij represents the jth
evaluation index of the ith scheme.

Te initial evaluation matrix is as follows:

G � eij 
m×n

�
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⋮–⋱ ⋮
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

2.3.2. Standardized Decision Matrix. Te evaluation index
can be divided into the consumption index and proftability
index. For the consumption index, the smaller the value, the
better. For the proftability index, the larger the value, the
better. Because each evaluation index has diferent di-
mensions and units, it has no comparability, so eij is stan-
dardized to get the decision matrix B � (bij)m×n:
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, (13)
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where b∗ij is the proftability index and bij is the
consumption index.

2.3.3. Weighted Standardized Decision Matrix. Te
weighted standardized decision matrix E is obtained by
multiplying the column vector of matrix B with the total
ranking weight Wn of the determined comprehensive weight
index layer:

E � eij 
m×n

�

w1b11– · · · wnb1n

⋮–⋱ ⋮

w1bm1– · · · wnbmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (14)

2.3.4. Close Degree Analysis. Te positive ideal solution of
the proftability index set l1 is the maximum value of the row
vector, the negative ideal solution is the minimum value of
the row vector, and the value of the consumption index set l2
is the opposite:

E
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where E+ and E− are the positive ideal solution and the
negative ideal solution, respectively. In order to better op-
timize the distance between the evaluation object and the
ideal solution, the infuence of each infuencing factor on the
rock burst of low pressure is diferent. Te greater the
weight, the greater the possibility of rock burst.

Zhu and Zhang [13] incorporated the weighting co-
efcients wAB into the positive and negative ideal solutions to
develop the CF-TOPSIS model. Trough this approach, they
were able to optimize the rock burst of the weight coefcients
on the evaluation of the rock burst of ground pressure while
also conducting proximity analysis. Te deviation equation
resulting from the weighting coefcients and the Euclidean
distance of the ideal solutions were also examined:
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where e+
i and e−

i are the element corresponding to the positive
and negative ideal solutions and F+

i and F−
i represent the

distance between the positive and negative ideal solutions.
Te calculation equation of closeness analysis is as

follows:

H
+
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F
+
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+
i ≤ 1( , (17)

where H+
i is the value of the closeness degree of the evaluation

object, and the range is (0, 1), which refects the degree of
closeness of the evaluation object to the positive ideal solution.

Te evaluation matrix is constructed by the close degree
analysis of the TOPSIS method. Te comprehensive evaluation
result vectorQ of the CF-TOPSISmodel is calculated as follows:

Q � W × H, (18)

where Q is the comprehensive evaluation result vector, H is
the evaluation matrix formed by the closeness degree be-
tween each evaluation object and the positive ideal solution,
and W is the criterion layer weight calculated by the
comprehensive weight method. Te CF-TOPSIS compre-
hensive evaluation model is shown in Figure 1.

3. Comprehensive Prediction of Rock Burst
Hazard in Working Face

3.1. General Situation of Working Face. Taking the 8003
working face of a coal mine in Shanxi as an example, the coal
seam thickness ranges from 94 to 104meters and contains
multiple interbedded gangues, which are extracted through
layered mining. Te ground elevation of the 8003 working
face ranges from +925 to +945meters, with an average coal
seam thickness of 5.67meters and a dip angle of −2° to −5°
along the roadway. Within the range of 440meters and
554meters ahead of the return airway and roadway of 8003
comprehensive caving, there exist SF14 and SF15 normal
faults.Te geological conditions of the 8005 working face are
similar to those of the 8003 working face, and rock burst and
frequent mine tremors occurred during mining.

According to the indicators in Table 1, the FAHP criteria
layer can be divided into the following levels First, the stability
level of the goaf support layer, which includes indicators such
as the distance between the hard and thick rock layers and the
coal seam inside the overlying fracture zone, mining depth,
and thickness of the remaining coal seam, is used to evaluate
the stability of the goaf support layer. Second, the stability
level of the working face, which includes indicators such as the
historical number of occurrences of the same level of coal
seam rock bursts, the ratio between the stress increment of the
structure and the normal stress %, the uniaxial compressive
strength/MPa, and the elasticity index are used to evaluate the
stability of the working face. Tird, the level of mining
technology, which includes indicators such as the working
face length, the width of the segment coal pillar, and the
relationship between the working face and the adjacent goaf,
is used to evaluate the rationality, efciency, and safety of
mining technology. Terefore, the basic parameters of the
8003 working face are entered in Table 1, and the CF-TOPSIS
evaluation model is employed to predict its rock burst hazard.

3.2. Comprehensive Weighting Prediction and Rock Burst
Hazard Assessment. Table 1 is imported into the improved
CRITIC objective weighting model and then substituted into
equation (7) together with the subjective weight obtained by
FAHP, which yields the ideal evaluation index for rock burst
factor assessment, as presented in Table 2.
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Comparison of the weights in Table 1 reveals diferences
in the degree of infuence of diferent rock burst criteria on
rock burst events. Specifcally, the relationship between the
primary and secondary factors afecting rock burst is
A3>A2>A4>A1. Tis analysis is of signifcant value in
guiding the optimal selection of rock burst criteria.

Equations (1)–(4) are utilized for the creation of a line
chart showcasing index weights for the unoptimized CRITIC
model. In order to optimize said model, the integration of
equations (5) and (8) is carried out to obtain the optimal
CRITIC objective weight. Once the optimized objective
weight and the FAHP subjective weight wBj are substituted
into equation (12), the weight curve is derived and compared
with real-life conditions. Figure 2 is obtained by comparing
the outcomes of the unoptimized and optimized CRITIC
models with the optimized CRITIC+ FAHP model.

Trough comparison of weight values before and after
optimization, as illustrated in Figure 2, slight increases in the
weight values of indicators A2, A4, and A5 are observed after
FAHP optimization, while the weight of indicator A3 de-
creases slightly. Te CF weight evaluation model enables
a more reasonable weight index to be applied that aligns with
actual site conditions, surmounting limitations encountered
by conventional models that exhibit signifcant diferences.
Verifcation of the optimized results through feld analysis
confrms their alignment with staf subjective evaluations.

In the comprehensive index method, rock burst events
are categorized into four grades: no, weak, medium, and
strong. Weak, medium, and strong critical values of rock
burst correspond to S1, S2, and S3, respectively, with the
value of S representing the working surface value to be
measured. When S< S1, there is no rock burst hazard, and

Onset

Evaluation and prediction model

Evaluation model of impact hazard

Comprehensive weight model

CRITIC FAHP

Optimization Decision Model FC

Coefficient of variation

Conflict co-directionalization

Topsis evaluation model

Relative closeness evaluation

Weight coefficient

FC-TOPSIS Comprehensive
Evaluation Model

Prediction of impact risk assessment grade of working face before mining

End

Figure 1: CF-TOPSIS comprehensive evaluation model.

Table 1: Evaluation criterion system of rock burst grade.

Evaluating indicators Weak Mid Strong 8003 working
face

Te same level of coal seam rock burst history times (times) 1 2 3 2
Mining depth h (m) 400 600 800 647
Te distance d between the hard thick strata
and the coal seam in the overlying fracture zone 100 50 20 15.85

Ratio of stress increment to normal stress in the mining area (%) 10 20 30 17.3
Uniaxial pressure resistance (MPa) 10 14 20 10.3
Elasticity index 2 3.5 5 1.58
Relationship between the working face and adjacent goaf 1 side goaf 2 side goaf 3 side goaf 1 side goaf
Working face length (m) 300 150 100 290
Section coal pillar width (m) 3 6 10 48
Bottom coal thickness (m) 0 1 2 0
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when S1≤ S< S2, it indicates weak rock burst hazard. For
values where S2≤ S< S3, it represents medium rock burst
hazard, and for values where S3≤ S, it represents strong rock
burst hazard.

Te CRITIC method is conducted without the inclusion
of the coefcient of the variation method and the confict
forward optimization method. Furthermore, the total
ranking of the TOPSIS hierarchy is not considered, and
weight and equation (17) with wAB are not added. Te
obtained TOPSIS model is unoptimized, as illustrated in
Figure 3(a). Subsequently, a comprehensive evaluation
model is established by combining FAHP with the unop-
timized TOPSIS model, as depicted in Figure 3(b). Ulti-
mately, the comprehensive evaluation results for the CF-
TOPSIS model are presented in Figure 3(c).

Figure 3(a) shows that the comprehensive evaluation
index of traditional CRITIC and traditional TOPSIS
methods for rock burst is w � (0, 0.3933, 1, and 0.5807) and
that the evaluation grade of the rock burst index is medium.
In contrast, Figure 3(b) shows that, with the combination of

FAHP and unoptimized TOPSIS, the evaluation index of
rock burst is weak and w � (0, 0.4594, 1, and 0.2056). Both
models exist, and when S< S1, it is difcult to accurately
predict the hazard of rock burst in the working face to be
measured, since the index cannot be negative. Moreover,
only when S� 1, a strong level of rock burst can be de-
termined. Terefore, the critical value interval of traditional
models has certain limitations.

Te CF-TOPSIS evaluation model produces an evalua-
tion index of w � (0.0569, 0.3638, 0.8360, and 0.5352), which
is medium in 8003 coal mine conditions. When no rock
burst danger exists, the result of the working face prediction
indicates no rock burst hazards when w< 0.0569. Con-
versely, when w≥ 0.8360, a strong rock burst hazard is
predicted, as shown in Figure 3(c). Tis method is only
suitable for research at coal mine experimental sites, and
there may be some special conditions or factors at other sites
that may not be applicable to other sites. Terefore, this
method cannot simply be applied to other sites and needs to
be adapted and improved according to the specifc situation.

3.3. Prediction of Rock Burst under Microseismic Monitoring
Technology. Te process of microseismic event evolution,
from a dispersed pattern in space to self-organized con-
centration, is a distinct characteristic of rock burst pre-
cursors.Te energy level of a single event per day is classifed
as moderate hazard, ranging between 104–106 J, with the
potential for a strong rock burst hazard exceeding 106 J.

Based on the microseismic monitoring data obtained
from the 8003 working face, as illustrated in Figures 4 and 5,
the majority of microseismic events recorded near the
working face possessed an energy range of 104–106 J, which
accounted for 88% of the total events within the considered
time period.Teweaker events with energy levels below 104 J
comprised 11.75% of the total events observed. Tere was
only one instance of a microseism event with an energy level
exceeding 106 J, which occurred during directional blasting
for decompression in the roadway at the site. Consequently,
based on a comprehensive assessment, the rock burst hazard
level for the 8003 working face can be classifed as medium.

3.4. Characteristic Analysis of Large Energy Signals. Te coal
mine in Shanxi, China, has a mining depth ranging from
+925 to +945meters. As multistage large-scale mining
methods are employed and mining depth deepens, safety
hazards such as rock burst become increasingly prominent.
To ensure mine safety, an independently developed mi-
croseismic monitoring system with a sensor sampling fre-
quency of 2000Hz is installed in the mine. During the safety
monitoring process, signifcant energy microseismic events
are detected. Trough eliminating irrelevant interference
signals, the collected on-site microseismic signals, coupled
with large energy vibration signals, are analyzed as depicted
in Figures 6 and 7.

It is evident from the decomposition results presented in
Figure 8 that the frequency of the microseismic signal
persists in the time domain. Additionally, the time-
frequency diagram illustrated in Figure 9 reveals that the

Table 2: Subjective and objective weight and comprehensive
weight index.

Infuencing
factors

Subjective
weight
FAHP

Objective weight
CRITIC

Combined
weight CF

A1 0.0936 0.0613 0.0940
A2 0.0923 0.0771 0.1045
A3 0.1028 0.2844 0.2167
A4 0.1360 0.0520 0.1015
A5 0.1165 0.0822 0.0883
A6 0.1164 0.0903 0.0882
A7 0.0865 0.0866 0.0761
A8 0.0864 0.0828 0.0757
A9 0.0893 0.0967 0.0817
A10 0.0802 0.0866 0.0733

A2 A3 A4 A5 A6 A7 A8 A9 A10A1
Rock burst index

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

In
de

x 
w

ei
gh

t

Not Optimized CRITIC
Optimized CRITIC
Optimized CRITIC+FAHP

Figure 2: Optimized and unoptimized indicators.
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Energy map of microseismic events from July to September 2022
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Figure 4: Energy map of microseismic events from July to September 2022.
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Figure 5: Microseismic event distribution map of the 8003 working face.
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Figure 3: Evaluation index of rock burst (a–c).
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large energy signal displays traits such as short time dura-
tion, discontinuity, and high frequency. Tese attributes are
indicative of a typical blasting signal. It is noteworthy to
remark that the fndings presented in this study provide
valuable insights into the characteristics of microseismic
signals, which can be leveraged for optimizing blasting
processes and enhancing safety measures in mining oper-
ations. From the perspective of a trigger mechanism,

microseismic events are the release of rock accumulated
energy, and the process is relatively slow, mostly in the form
of shear failure [37–39]. Te blasting signal mainly produces
longitudinal waves, with strong energy and fast attenuation,
which is a typical rock burst response [40–43]. Terefore, it
is preliminarily judged that the large energy signal is
a blasting signal. Trough subsequent feld verifcation, it is
further confrmed that the large energy signal is a blasting
signal [44].

3.5. Drill Cutting Method. Te current study focuses on the
solid coal side of the 8003 working face and aims to de-
termine and analyze the size of stress and the degree of rock
burst danger. To achieve this, the pressure relief blasting
method was utilized to measure the amount of pulverized
coal (in kilograms) in the borehole. Additionally, the
amount of drill cutting was measured at intervals of one
meter, and the drill cutting absorption index was measured
at intervals of two meters. If the measured amount of
pulverized coal at the test site exceeds the critical value or the
pressure of ∆h2 (drill cutting absorption index) exceeds
200 Pa, it indicates an increased hazard of rock burst oc-
currence. Te actual and critical values of the cuttings ab-
sorption index are depicted in Figure 10.

Te ∆h2 value serves as a comprehensive indicator of the
coal damage degree. To obtain this value, it is necessary to
extract drill cuttings at predetermined locations and sub-
sequently sieve them with apertures of 1mm and 3mm
before transferring the resultant particles to the coal sample
bottle. After waiting for 3minutes from the time of particle
generation to sampling, the coal sample bottle is started. Te
absorption reading, recorded 2minutes thereafter, equates
to the ∆h2 value. Te 8003 working face is subjected to
measurement of an average of once every three days. Based
on the August data analysis, 84% of the drill cuttings’ ab-
sorption index was lower than the critical value of 200MPa,
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Figure 6: Microseismic signal waveform of rock mass.
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Figure 8: Time-frequency diagram of the rock microseismic signal.
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Figure 9: High energy microseismic signal waveform.
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while 16% of the drill cutting absorption index (200MPa on
August 9th and 220MPa on August 22nd) reached the
critical absorption index value, necessitating further atten-
tion and assessment. Subsequent testing revealed that the
actual drill cuttings did not achieve peak values on August
9th and August 22nd. As such, it was concluded that there
was no imminent hazard of strong rock bursts. Overall, the
8003 working face poses a rock burst hazard.

4. Conclusion

(1) Te present study proposes the CF-TOPSIS model
for predicting rock burst hazard. To avoid any bias
resulting from a single model, FAHP and CRITIC
weight models are employed to determine the weight
of rock burst factors. By incorporating the TOPSIS
prediction model, the CF-TOPSIS prediction model
for rock burst is obtained.

(2) Te optimization of the traditional model is required
to address its inadequacy in assessing the nonrock
burst hazard phenomenon under rock burst con-
ditions. Additionally, there is a need for enhanced
accuracy in predicting the rock burst hazard asso-
ciated with the working face being measured. Fur-
thermore, it is important to compare the moderate
rock burst hazard with the traditional model.

(3) Te combination weighting method was utilized to
obtain the total ranking of the CF evaluation index,
revealing that distinct rock burst criteria exert
varying degrees of infuence on rock burst. Te
primary and secondary factors infuencing the rock

burst of the 8003 working face were determined as
follows: the distance between the hard and thick
strata in the overlying fractured zone and the coal
seam (A3) possesses the greatest impact, followed by
mining depth (A2), the ratio of stress increment to
normal stress in the mining area (A4), and the
number of rock bursts in the same horizontal coal
seam (A1).

(4) Tis study examines the factors infuencing rock
burst from multiple perspectives, optimizes the
traditional critical value interval, and proposes an
efective prediction method for rock burst. Field
practice is used to verify the feasibility and accuracy
of this method, ofering a novel approach to rock
burst prediction.
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