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To clarify the action mechanism of parameter change on system stability, the chaotic property of BTA deep-hole machining
system under the efect of inner cutting fuid was analyzed. According to the kinematic characteristics of the internal cutting fuid
and the equation of themoment of momentum of the system, the kinematic equation of the boring bar considering the efect of the
internal fuid was established.Te critical conditions of chaos were deduced according to the Hamiltonian function andMelnikov
function of the plane near-Hamilton system. Te mechanism of the liquid flling ratio, cutting fuid fow velocity, and frequency
ratio parameters on the system’s critical instability surface is investigated. Te correlation and sensitivity of infuencing factors,
such as flling ratio and frequency ratio, and cutting fuid fow velocity to the sensitivity of system chaos are explored. Te results
show that in precision machining, the change of liquid flling ratio is positively related to the stability of the system, the change of
cutting fuid fow velocity is negatively correlated with the stability of the system, and the change of frequency ratio has no
monotonicity efect on the stability of the system. Te sensitivity of the chaotic characteristics of the system to each parameter is
bounded by the flling liquid ratio h� 0.58. When 0≤ h≤ 0.58, frequency ratio ω> flling ratio h> cutting fuid fow velocity V0;
when 0.58< h≤ 1, flling ratio h> frequency ratio ω> cutting fuid fow velocity V0. Tese research conclusions can lay a certain
theoretical foundation for the analysis, control, and optimization of the complex mechanical behavior of BTA deep-hole
machining systems in engineering practice.

1. Introduction

With the development of science and technology, mankind
needs to face the constant challenges of aerospace, deep-sea,
deep-earth, and other extreme environments; at the same
time, in these extreme environments, there are many parts of
scientifc exploration equipment which are also facing the
challenge of a high, precision, sharp limit bottleneck. Te
nonlinear characteristics of these high-precision parts
during service have become a major factor afecting the
overall dynamic stability of extreme equipment [1–3],
among which the impact and application of high-precision
deep-hole components with the large length-diameter ratio
is particularly prominent in the abovementioned felds
[4–7].

Te Boring Trepanning Association (BTA) deep-hole
machining can be classifed into three categories: BTA
system drilling, BTA trepanning drilling, and BTA boring.
Among them, the former two are commonly used for
processing solid components with low machining accuracy
that require secondary precision machining, while the latter
is often employed to expand holes in components with high
machining accuracy and capability of achieving precision
machining [8]. BTA deep-hole processing technology is an
important means of processing deep-hole parts. Its system is
a typical complex nonlinear process system that involves the
coexistence and interaction of mechanical, electrical, and
hydraulic felds.Te complexity of its motion state lies in the
simultaneous rotation and axial feed of the boring bar,
accompanied by the infow and outfow of cutting fuid. Te
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analysis of the chaotic characteristics of the system is crucial
in elucidating the impact of parameter changes on system
stability, which is essential for overcoming the quality
bottleneck in deep-hole parts processing [9–12]. At present,
there is no general analytical paradigm for analyzing
a complex nonlinear dynamic system [13–16], which also
brings great challenges to the dynamic stability analysis of
complex BTA deep-hole machining systemwith mechanical,
electrical, and hydraulic multifeld coupling.

Chin et al. [17–19] studied transverse vibration fre-
quency characteristics of BTA deep-hole boring bar under
internal cutting fuid and axial pressure using the
Euler–Bernoulli beam and Timoshenko beam as models,
respectively. It is found that the natural frequencies of the
same order modes under the two models are quite diferent,
and the diference becomes more and more obvious with the
change in boring bar speed. At the same time, the change of
external force can also change the natural frequency of the
system. Matsuzaki et al. [20, 21], on the premise of ignoring
the infuence of torsional vibration, axial force, and cutting
fuid, established the motion equation of the bending boring
bar and found that the natural frequency and natural mode
of the boring bar will change complicated with the length of
boring bar entering the workpiece.Tis means that when the
bending vibration frequency of the boring bar is close to or
lower than the natural frequency of the system, there will be
rifing marks. To suppress the vibration of the system, Raabe
et al. [22, 23] studied the futter disturbance and spiral
regeneration efect in the deep-hole machining system and
simulated the correlation between the stability and in-
stability of the system on the futter and spiral through
modeling. On this basis, Messaoud et al. [24–26] further
proposed an online futter monitoring strategy based on
control chart through dynamic modeling of the nonlinear
time series of the deep-hole machining system, and in-
vestigated the infuence of the position of the adjusted guide
block and drilling depth on the system chatter. Steininger and
Bleicher [27] adopted a continuous multidimensional sensor
system to monitor the dynamic disturbance of diferent pa-
rameter changes on the deep-hole machining system, and
adjusted the parameter changes to deal with the system futter
and rotary vibration, which proved that variable speed cutting
plays a role in improving the system stability.

Te actual production system for BTA deep hole
machining involves the rotation of the boring bar, which
is accompanied by the infow and outfow of cutting fuid.
Tis creates a typical fuid-structure coupling system with
multi-energy feld nonlinear action between the boring
bar and fuid. Tis further increases the complexity of the
system analysis. Hu and Miao [28] derived the nonlinear
expression of the cutting fuid reaction force acting on the
rotating boring bar, established the basic motion equation
of the rotating boring bar under the fuid-structure
coupling, and obtained the basic criterion of the half-
frequency vortices and instability of the boring bar caused
by the cutting fuid, which laid a foundation for the
subsequent in-depth analysis of the nonlinear charac-
teristics of the fuid-structure coupling system in BTA
deep-hole machining. In the nonlinear study of the fuid-

structure coupling system, Utsumi [29] studied the
nonlinear vibration characteristics of the simply sup-
ported cylindrical rotor under the fuid-structure cou-
pling efect by the semianalytical method. Te results
show that increasing the fuid volume will reduce the
excitation efect of nonlinear pressure gradient on the
fuid velocity, and make the stability of the whole system
stronger. Wang et al. [30, 31] analyzed the stability of
a fexible rotor based on a Bernoulli–Euler beam. It is
found that the unstable region of the system will gradually
move to the low-speed region with the increase of the ratio
of fuid mass to rotor mass. Firouz-Abadi et al. [32–34]
applied the frst-order shear deformation shell theory and
quasi-dimensional linear Navier–Stokes theory to analyze
the stability of rotating cylindrical shells under fuid-
structure coupling and found that the stability of the
system increases with the increase in the ratio of fuid
mass to rotor mass. Zhao et al. [5, 35–37] combined the
rod beam theory and the fuid-structure coupling theory
and applied the system dynamics analysis method to
establish the lateral nonlinear vibration model of the
deep-hole boring bar containing the cutting fuid dis-
turbance; analyzed the infuence of the cutting fuid free
surface, dynamic viscosity, system damping ratio and
system cubic stifness, and other parameters on the system
vibration characteristics; and clarifed the mechanism of
the cutting fuid disturbance on the nonlinear vibration of
the BTA deep-hole machining system. At the same time,
the research on the external cutting fuid in the process of
BTA deep-hole machining can be compared to the fuid
motion between the slender ring gaps in the liquid-flled
state, which has been thoroughly studied in fuid dy-
namics. While the inner cutting fuid is the fuid move-
ment in the slender cylindrical cavity with an incomplete
flling, its fuid state is complex [38–42] and its infuence
mechanism on the stability of the BTA deep-hole ma-
chining system is not clear. Terefore, it is necessary to
further study the mechanism of the fuid-structure cou-
pling efect formed by the internal cutting fuid on the
BTA deep-hole machining system.

To explore the chaotic property of the BTA deep-hole
machining system under the fuid efect of internal cutting
fuid, this paper frstly established the system’s equation of
motion by considering the dynamic characteristics of the
system under the fuid efect of the internal cutting fuid,
and then based on the Hamiltonian function and Mel-
nikov function under the near-Hamilton plane system, the
critical conditions for the chaos of the system are deduced.
Secondly, digital simulation was used to study the
mechanism of the efect of the liquid flling ratio of the
internal cutting fuid, the fow rate of the internal cutting
fuid, and the frequency ratio on the critical unstable
surface of the system in the processing system is studied.
Finally, through the change of the flling ratio and the
frequency ratio, the joint action relationship between the
torque coefcient and the resultant force of the fuid force
and the cutting force is explored, and the theoretical
analysis conclusion is checked and verifed with the
physical experimental results.
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2. Chaos of Lateral Vibration in BTADeep-Hole
System under the Effect of Inner Cutting
Fluid

To describe the motion state of the boring bar, the co-
ordinate system of the BTA deep-hole machining system, as
shown in Figure 1, is established according to the actual
working conditions of the BTA deep-hole machining system
under the consideration of the fuid efect of internal
cutting fuid.

In Figure 1, o-xyz is the coordinate system of the boring
bar body, o-xayaza is the boring bar axis coordinate system,
o-xcyczc is the coordinate system of boring bar velocity, o-ξηζ
is the rotating coordinate system of the boring bar, α is the
nutation angle, β is the precession angle, c is the angle of
rotation, u and v are the radial and tangential disturbance
velocities of fuid in the cylindrical coordinate system, re-
spectively, r and θ are polar coordinates in the cylindrical
coordinate system, o′ is the axis of the boring bar under ideal
condition, Ω is the speed at which the boring bar rotates
around its axis of symmetry (zc) in the velocity coordinate
system (o-xcyczc), Fxa and Fya are the components of the
combined force of fuid force and cutting force in the di-
rection of xa and ya, respectively, and P1 is the total axial
pressure (P1 � Pxa+Pya, Pxa, and Pya are the components of
the additional axial force of boring bar in the direction of xa
and ya, respectively).

2.1. Motion Equation of BTA Deep-Hole Machining System
under Internal Cutting Fluid Efect. When only considering
the fuid efect of the internal cutting fuid, the motion state
of the cutting fuid at any position in the fow feld can be
represented by polar coordinates (as shown in Figure 1), and
the relative disturbance velocity of the cutting fuid ( v

→
r) can

be expressed as follows:

v
→

r � u r→ + v θ
→

. (1)

Tus, the linearized motion equation and continuity
equation of ideal incompressible fuid can be obtained as
follows:

z v
→

r

zt
+ 2ω→2 × v

→
r � −
∇P2

ρf

− a
→

e, (2)

div v
→

r � 0, (3)

where P2 � P3 − ρfω2
2(r2 − b2)/2 is the radial disturbance

pressure feld, ρf is the cutting fuid density, P3 is the radial
fuid pressure of the cutting fuid, which is a function of
(r, θ), ω2 is the disturbance frequency of cutting fuid, b is
the radius of the free liquid surface, and a

→
e is the im-

plicated acceleration at any point.
Substitute equations (3) into (2) and take div to get

∆P2 � 0, (4)

where ∆ is the Laplace operator.
Te boundary conditions of the fow feld are determined

as follows:

u|r�d1/2 � 0, (5)

where d1 is the inner diameter of the boring bar.
In the BTA deep-hole processing system, r� b+ τ(θ, t),

where τ is a frst-order small quantity and the radial dis-
turbance velocity on the free surface is u|r�b � zτ/zt.
Considering that the relative pressure on the free surface in
the boring bar is zero, the radial disturbed pressure feld is
P2|r�b � −ρfω2

2bτ, and the boundary conditions on the free
surface can be fnally determined as follows:

zP2

zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌r�b
� −ρfω

2
2bu|r�b. (6)

Assuming that the xa, ya, and z axes coincide with the
central inertia axis of the system to the center of mass, K is
the polar moment of inertia, N is the lateral moment of
inertia, and the moment of momentum of the system can be
expressed as follows:

Q � Kωxa + Q2xa Nωya + Q2ya Nωz + Q2z􏽨 􏽩
T
, (7)

where ωxa � − _β sin α, ωya � _α, ωz � _c + ωza, and
ωza � _β cos α. Te projections of the relative disturbance
velocity vr of the cutting fuid on the xa, ya, and z axes are vr1,
vr2, and vr3, respectively; Q2xa, Q2ya, and Q2z are, re-
spectively, represented as follows:

Q2xa � ρf􏽚
τ

z
2

+ y
2
A􏼐 􏼑ωxa − zxaωx + yavr3 − xayaωya − zavr3􏽨 􏽩dt,

Q2ya � ρf􏽚
τ

z
2

+ x
2
a􏼐 􏼑ωxa + zvr1 − zyaωz − xayaωxa − xavr3􏽨 􏽩dt,

Q2z � ρf􏽚
τ

x
2
a + y

2
a􏼐 􏼑ωz + xavr2−􏽨 zxaωxa − zyaωya − yavr1􏽩dt.

(8)

Ten, the components Mxa, Mya, and Mz of the mo-
mentum moment equation on the xa, ya, and z axes are
follows:
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Mxa � N _ωxa + Kωzωya − Nωyaωza + _Q2xa + Q2zωya − Q2yaωza

Mya � N _ωya + Nωzωxa − Kωxaωza + _Q2ya + Q2xaωza − Q2zωxa

Mz � K _ωz + Q2z + _Q2yaωxa − Q2xaωya

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (9)

Equation (9) is the global motion model of the BTA
deep-hole machining system considering various factors in
the working process. Te analysis of this equation needs to
be combined with equations (2) and (3), taking into account
the boundary conditions of cutting fuid motion, that is,
equations (5) and (6).

In actual production processes, precision deep hole
processing typically employs a post-guidance mode in
technology. Tis involves installing the guide key behind the
tool with the feed direction of the tool as its front. When
considering the fuid efect, Mxa �Mya �Mz � 0. It is also
assumed that the viscosity of cutting fuid μ� 0. In the
generalized coordinates α, β, c, xa, ya, and z, the kinetic
energy of the system can be written as follows:

T �
1
2

Kω2
z + Nω2

xa + Nω2
ya + Q2zωz+􏽨 Q2xaωxa + Q2yaωya􏽩 +

ρf

2
􏽚
τ

v
2
r1 + v

2
r2 + v

2
r3􏼐 􏼑dτ

�
1
2

K( _c + _β cos α)
2

+ N _β
2
sin2 α + _α2􏼒 􏼓 +􏼔 Q2z( _c + _β cos α) − Q2xa

_β sin α + Q2ya _α􏽩

+
ρf

2
􏽚
τ

v
2
r1 + v

2
r2 + v

2
r3􏼐 􏼑dτ.

(10)

According to the Lagrange principle, β and c are cyclic
coordinates. After cyclic integration, we can get

K( _c + _β cos α) + Q2z � φc,

K( _c + _β cos α) cos α + N _βsin2 α + Q2z cos α − Q2xa sin α � φβ.

⎧⎪⎨

⎪⎩
(11)

Te reaction torque of the internal cutting fuid on the
system is as follows:

MLxa + iMLya � mfd
2
1cω2 FLSM + iFLIM􏼂 􏼃e

iω2t sin2 α,

MLya � mfd
2
1cω2 sin α FLSM sinω2t + FLIM cosω2t􏼂 􏼃,

MLz � mfd
2
1 _cω2FLRMsin

2 αe
i2Ωt

,

(12)

where mf is the mass of cutting fuid, FLRM � −FLSM is the
gyro torque coefcient, and FLIM is the phase plane torque
coefcient. All these can be expressed as functional relations
related to the vibration frequency of cutting fuid, boring bar
size, liquid flling ratio, viscosity coefcient of cutting fuid,
and other parameters, which can refect the relationship
between the fuid characteristics of internal cutting fuid and
torque coefcient in the internal structure of the boring bar.

Under the general working condition, the damping
moment generated by considering the deviation of boring
bar axis is as follows:

My � NV2
0ky sin α − NV0kyy _α, (13)

where ky is the characteristic number of the static moment,
kyy is the characteristic number of damping torque, and V0 is
the fow velocity of the inner cutting fuid.

Combined equation (11) can be deduced as follows:

φc − Q2z � φcL,φc − Q2z cos α + Q2xa sin α � φβL. (14)

Substituting it into f equations (11), (12), and (9), we get
the motion equation of the boring bar defection angle (α) as
follows:

N€α +
φcL φβL − φcL cos α􏼐 􏼑

N sin α
−

φβL − φcL cos α􏼐 􏼑
2
cos α

N sin3 α
� NV

2
0ky sin α − NV0kyy _α + MLya.

(15)
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2.2.CriticalConditionsofChaos inBTADeep-HoleMachining
System under the Internal Cutting Fluid Efect. Te strong
nonlinear term in equation (15) near zero point exists as
follows:

φc � φβ � K _c, Q2z � KL _c, Q2xa � Q2ya � 0. (16)

Performing a Taylor expansion on equation (15), and
utilizing the approximation sinα� α – α3/6 + o(α)5, equation
(15) can be simplifed to:

€α + Df _α/V0 + ηω2
0 −

σpF sin ω2t + υ0( 􏼁

V0
􏼢 􏼣α − ϕω2

0 −
σpF sin ω2t + υ0( 􏼁

6V0( 􏼁
􏼢 􏼣α3 � 0, (17)

where

ηω2
0 �

φ2
c

4N
2 −

φcKLc

2N
2 − V

2
0ky

⎛⎝ ⎞⎠,

ϕω2
0 �

1
6

43φ2
c

4N
2 +

φcKLc

4N
2 − V

2
0ky

⎛⎝ ⎞⎠,

Df � V
2
0kyy,

σp �
mfd

2
1cω2V0

(4N)
,

F �

����������

F
2
LSM + F

2
LIM

􏽱

,

υ0 � tan− 1 FLIM

FLIM
􏼠 􏼡,

KL � πρfL
d
4
1

32
,

N �
πρsL

192
3 d

4
2 − d

4
1􏼐 􏼑 + 4L

2
d
2
2 − d

2
1􏼐 􏼑􏽨 􏽩,

φc � πρsL _c
d
4
2 − d

4
1􏼐 􏼑

32
,

mf �
d
2
1
4
π 1 − h

2
􏼐 􏼑Lρf,

(18)

A

A
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θ
o
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y
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Fxa

η
Ωt

o´

ξ

Figure 1: Coordinate system of BTA deep-hole machining system.
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where KL is the polar moment of inertia of the internal
cutting fuid.

According to the universality condition of the system
operation, there exists ε � 1/V0≪ 1, and by substituting
z1 � α, z2 � _α, and υ�ω2t+ υ0 as follows, equation (17) can
be transformed into

_z1 � z2

_z2 � −ηω2
0 + ϕω2

0z
3
1 + ε σpF sin υ z1 − z

3
1/6􏼐 􏼑 − Dfz2􏽨 􏽩

_υ � ω2

⎫⎪⎪⎬

⎪⎪⎭
.

(19)

Determining ε� 0, there is a Hamiltonian function for
(z1, z2) components:

H �
z
2
2
2

+
ηω2

0
2

z
2
1 −

φω2
0

4
z
4
1.

(20)

Tus, equation (20) has hyperbolic periodic orbits in
z1-z2-υ phase space:

X � z1, z2, υ(t)􏼂 􏼃 �
���
η/ϕ

􏽱
, 0,ω2t + υ0􏼒 􏼓 � −

���
η/ϕ

􏽱
, 0,ω2t + υ0􏼒 􏼓, (21)

and connected by a pair of the heteroclinic orbits:

z
±
1h(t), z

±
2h(t), υ(t)􏼂 􏼃 � ±

��η
ϕ

􏽲

tan h
��
η
2

􏽲

ω0t􏼠 􏼡, ±
ηω0

2

��
2
ϕ

􏽳

sec h2
��
η
2

􏽲

ω0t􏼠 􏼡,ω2t + υ0⎡⎣ ⎤⎦, (22)

when z2> 0, “+” is taken in equation (22); when z2< 0, “−” is
taken in equation (22); and the components of (z1, z2) can be
obtained by the plane curve of H � η2ω2

0/(4ϕ).

When ε≠ 0, the hyperbolic periodic orbit also exists in
equation (19), denoted as Xε, in which the stable manifold is
denoted as Rs(Xε), and the unstable manifold is denoted as
Ru(Xε). By the Melnikov function method, we can get

X
±

t0, υ0, σp, F, Df,ω2􏼐 􏼑

� 􏽚
∞

−∞
x
±
2h(t) σpF x

±
1h(t) −

1
6
x
±3
1h(t) sin ω2 t + t0( 􏼁 + υ0􏼂 􏼃−􏼔􏼚 Dfx

±
2h(t)􏽩􏽯dt

�
σpFπω2

2

φω2
0

csch
πω2

ω0
��
2η

􏽰􏼠 􏼡 cos ω2t0 + υ0( 􏼁 −
2Dfη

��
2η

􏽰
ω0

3ϕ

−
σpFηπω2

2

9φ2ω2
0

1 −
3ω2

2

4ηω2
0

􏼠 􏼡csch
πω2

ω0
��
2η

􏽰􏼠 􏼡 cos ω2t0 + υ0( 􏼁.

(23)

Te condition for the intersection of Rs(Xε) and Ru(Xε) is
as follows:

R
0 ω2( 􏼁 �

2
�
2

√
ω3
0η

(3/2) sin h πω2/ω0
��
2η

􏽰
( 􏼁

3πω2
2 1 − η/(9ϕ) + ω2( 􏼁/ 12ω0ϕ( 􏼁􏼂 􏼃

. (24)

From the intersection of stable and unstable manifolds of
hyperbolic fxed points on the cross section [43], it can be
seen that, when σpF/Df>R0(ω2), two manifold cross sections
intersect; when σpF/Df<R0(ω2), the cross sections of the two
manifolds never intersect; and when σpF�DfR0(ω2), the
quadratic heterologous bifurcation occurs.

So, the critical condition for chaos in BTA deep-
hole machining system is σpF/Df < R0(ω2). Substitute
equations (18) and (24) into this critical condition to
obtain

mfd
2
1 _cω2

4NV0kyy

����������

F
2
LSM + F

2
LIM

􏽱

<
2

�
2

√
ω3
0η

(3/2) sin h πω2/ω0
��
2η

􏽰
( 􏼁

3πω2
2 1 − η/(9ϕ) + ω2( 􏼁/ 12ω0ϕ( 􏼁􏼂 􏼃

.

(25)

Let h� 2b/d1 and ω � ω2/ω0, equation (54) can be
converted into
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����������

F
2
LSM + F

2
LIM

􏽱

<
32

�
2

√
η(3/2)

NV0kyy sin h(
��
2η

􏽰
πω)

3π2ω3
[1 − η/(9ϕ) + ω/(12ϕ)] 1 − h

2
􏼐 􏼑Lρfd

4
1 _c

. (26)

Let f � (32
�
2

√
η(3/2)NV0kyy sin h (

��
2η

􏽰
πω))/(3π2ω3

[1 − η/(9ϕ) + ω/(12ϕ)](1 − h2)Lρfd4
1 _c), then the critical

condition for chaos in the BTA deep-hole machining system
is as follows:

����������

F
2
LSM + F

2
LIM

􏽱

<f. (27)

2.3. Chaotic Characteristics of the System with Parameter
Changes. Combined with the actual BTA deep-hole ma-
chining system, the simulation parameters are selected as
follows: d1 � 30mm D1 � 46mm, ρs � 7.87×103 kg/m3,
ρf � 0.865×103 kg/m3, _c � 25, kyy � 10−3, ky � 0.05, 0≤ h≤ 1,
0≤ω≤ 6, and 0≤V0≤15m/s. Trough the change of flling
ratio h, frequency ratio ω, and cutting fuid fow velocity V0,
equation (27) is numerically simulated, and the chaotic
characteristics of the system are analyzed. Te numerical
simulation is shown in Figures 2 and 3.

Under diferent cutting fuid fow velocities, the efects of
the flling ratio and frequency ratio on the chaotic characteristics
of the system are shown in Figures 2(a)–2(c). From Figure 2(a),
it can be seen that with the increase of the liquid flling ratio h,
the torque coefcient

����������

F2
LSM + F2

LIM

􏽱

value represented by the
curved surface f decreases continuously, which means that the
area of chaos in the system becomes smaller. Figures 2(b) and
2(c) show the infuence of cutting fuid fow velocity V0 change
on the chaotic characteristics of the system. Te results show
that the torque coefcient

����������

F2
LSM + F2

LIM

􏽱

value represented
by surface f increases with the increase of cutting fuid velocity
V0. Tis means that the region where chaos occurs gradually
becomes larger and the instability of the system is intensifed.
Terefore, the increase of cutting fuid velocity in the boring bar
will accelerate the transition process from laminar fow to
turbulent fow, which makes the fuid disturbance enhance and
aggravate the instability of the system.

Te physical meaning of the positive and negative fre-
quencies in the complex frequency is the frequency when the
rotation factor is rotated counter clockwise, it is a positive
frequency, and the frequency when it is rotated clockwise, it is
a negative frequency. In Figure 2(a), the infuence of fre-
quency ratio ω change on chaotic characteristics of the system
is as follows: when the absolute value of frequency ratio ω
decreases monotonically within the interval −6≤ω≤ − 3, the
torque coefcient

����������

F2
LSM + F2

LIM

􏽱

value represented by surface
f decreases. Tis shows that the decrease of frequency ratio ω
in this range will promote the stability of the system. When
the absolute value of frequency ratio ω decreases mono-
tonically within the interval −3< ω≤ − 1, the torque co-
efcient

����������

F2
LSM + F2

LIM

􏽱

value represented by the surface f
increases, which means that the chaotic region of the system
becomes larger. It shows that the decrease in the frequency
ratio value in this region will intensify the instability and

chaos of the system. When the frequency ratio ω continues to
decrease in the absolute value of interval −1< ω≤ − 0.6, the
value of the surface f decreases, that is to say, the chaotic
region of the system becomes smaller. Tis indicates that the
reduction of frequency ratio ω in the interval will promote the
stability of the system. In the interval −0.6< ω≤ 0, the surface
f value increases with the decrease of the frequency ratio ω
value, which indicates that the chaotic region of the system
becomes larger and the instability of the system is intensifed.
In the interval 0 < ω≤ 1.4, the value of the surface f decreases
with the increase of the frequency ratio ω value, which means
that the chaotic region of the system becomes smaller. Tis
indicates that the increase of frequency ratio ω in the interval
is benefcial to the stability of the system. In the interval
1.4 < ω≤ 6, the surface f value increases with the increase of
frequency ratio ω, which indicates that the chaotic region of
the system becomes larger and the instability of the system is
intensifed. Similarly, in Figures 2(b) and 2(c), the infuence
trend of frequency ratio ω changes considering diferent
cutting fuid fow velocities on chaotic characteristics of the
system is consistent with the abovementioned law.

Te efects of cutting fuid fow velocity and frequency
ratio on the chaotic characteristics of the system under
diferent flling ratios are shown in Figure 3. According to
the comprehensive analysis of Figures 2 and 3, the following
conclusions can be drawn from the physical mechanism.Te
increase of the liquid flling ratio reduces the chaotic
characteristics of the system. Te increase in cutting fuid
velocity changes the fuid motion pattern, intensifes the
chaotic characteristics of the system, and makes the stability
of the system deteriorate. When the frequency ratio changes
in the small value interval, it is not easy to trigger the fre-
quency doubling relationship between the disturbance fre-
quency and the system frequency, which reduces the
probability of resonance of the system, so the stability of the
system is better; when the frequency ratio changes in a large
value range, the frequency doubling relationship between
the disturbance frequency and the system frequency is easy
to trigger, and the probability of resonance of the system
increases, so the stability of the system is poor.

To further clarify the sensitivity of the chaotic charac-
teristics of the system to the frequency ratio, the liquid flling
ratio, and the cutting fuid fow velocity, a sensitivity analysis
of equation (26) is carried out, as shown in Figure 4:

In Figure 4(a), to further clarify the boundary region, the
expression of the critical curve can be obtained by data
ftting the intersecting lines of two sensitive surfaces as
follows: f(V0, h)�V0 − 0.2631h−1.239. Furthermore, it can be
seen that in Figure 4(a), when coordinate (V0, h) makes
function f(V0, h)> 0, the sensitivity of chaotic characteristics
of the system to liquid flling ratio h is greater than that of
cutting fuid fow velocity V0. When the coordinate (V0, h)
makes the function f(V0, h) ≤0, the sensitivity of the chaotic
characteristics of the system to the liquid flling ratio h is less
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than or equal to the sensitivity of the cutting fuid fow
velocity V0.

In Figure 4(b), the sensitivity of the chaotic character-
istics of the system to the frequency ratio ω is greater than
that of the cutting fuid fow velocity V0 in most regions.
Only in the frequency ratio ω when the value is taken near
1.5 or the cutting fuid fow velocity V0 is taken in the range
of 0≤V0≤ 0.67, the chaotic characteristics of the system are
more sensitive to the frequency ratio ω than to the velocity of
cutting fuid V0. To further clear the boundary area, the
critical curve is obtained by data ftting expression as follows:
when 0< ω < 1.5, f(V0,ω) � V0 − 0.0586e3.8746ω; when
6≥ω≥ 1.5, f(V0,ω) � V0 − 14.92ω− 2.286. Furthermore, it

can be seen that in Figure 4(b), when coordinate (V0, ω)
makes function f(V0, ω)> 0, the sensitivity of chaotic
characteristics of the system to the frequency ratio ω is
greater than that of cutting fuid fow velocity V0. When the
coordinate (V0, ω) makes the function f(V0, ω)≤ 0, the
sensitivity of the chaotic characteristics of the system to the
frequency ratio ω is less than or equal to the sensitivity of the
cutting fuid fow velocity V0.

In Figure 4(c), the sensitivity of chaotic characteristics of
the system to the frequency ratio ω and cutting fuid fow
velocity V0 is bounded by the liquid flling ratio h� 0.58.
When the liquid flling ratio 0≤ h≤ 0.58, the sensitivity of
chaotic characteristics of the system to the frequency ratio ω
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Figure 2: Infuence of liquid flling ratio and frequency ratio on system chaotic characteristics under diferent cutting fuid fow velocities.
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Figure 3: Efects of cutting fuid fow velocity and frequency ratio on chaotic characteristics of the system under diferent flling ratios.
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Figure 4: Sensitivity analysis of f to h, V0, and ω: (a) 0≤ h≤ 1, ω� 0.382, sensitivity of f to h and V0 when 0≤V0≤15m/s. (b) h� 0.25,
0≤ω≤ 6, sensitivity of f to ω and V0 when 0≤V0≤15m/s. (c) 0≤ h≤ 1, 0≤ω≤ 6, sensitivity of f to h and ω when V0 � 5.2061m/s.
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is greater than that to the liquid flling ratio h in most areas.
When the liquid flling ratio is 0.58< h≤ 1, the sensitivity of
chaotic characteristics to the frequency ratio ω is less than
that to the liquid flling ratio h in most regions. To further
clear the boundary area, the critical curve is obtained by data
ftting expression as follows: when 0< ω < 1.5,
f(h,ω) � h − 0.0399ω2 + 0.3872ω − 0.3482; when
6≥ω≥ 1.5, f(h,ω) � h + 0.209ω2 + 0.4008ω − 0.9541.
When coordinate (h, ω) makes function f(h, ω)> 0, the
sensitivity of chaotic characteristics of the system to the
frequency ratioω is greater than that of the liquid flling ratio
h. When the coordinate (h, ω) makes the function f(h, ω)≤ 0,
the sensitivity of the chaotic characteristics of the system to
the frequency ratio ω is less than or equal to the sensitivity of
the liquid flling ratio h.

To sum up, in most regions, the sensitivity of the chaotic
characteristics of the system to liquid flling ratio h is greater
than that of cutting fuid fow velocity V0, and the sensitivity
of the chaotic characteristics of the system to the frequency
ratio ω is greater than the sensitivity to the cutting fuid fow
velocityV0, while the sensitivity of the chaotic characteristics
of the system to the liquid-flled ratio V0, and the frequency
ratio ω needs to be judged based on the position of the
coordinate point in the function. Given a set of parameters,
the sensitivity order of the chaotic characteristics of the
system to the liquid flling ratio h, cutting fuid fow velocity
V0, and frequency ratio ω can be quickly determined by the
abovementioned method. From the perspective of qualita-
tive analysis, it can be considered that in most of the value
regions, the chaotic characteristics of the system are sensitive
to frequency ratio, liquid flling ratio, and cutting fuid fow
velocity in the following order: when 0≤ h≤ 0.58, the sen-
sitivity of chaotic characteristics of the system to each

parameter from strong to weak is frequency ratio ω, flling
ratio h, and fow rate of cutting fuid V0; when 0.58< h≤ 1,
the sensitivity of chaotic characteristics of the system to each
parameter from strong to weak is flling ratio h, frequency
ratio ω, and cutting fuid fow velocity V0.

3. Experimental Demonstration

3.1.ExperimentalEquipmentandScheme. Select a boring bar
made of 30CrMnSi and make a precision boring process for
a deep hole with an inner diameter of ∅50mm
(d2 �∅50mm), in which the boring bar size is
D1 �∅46mm, d1 �∅30mm, and L� 9m. Te workpiece
material is 35CrNiMoV, where the elastic modulus
E� 214×103MPa, shear modulus G� 82.9×103MPa, and
Poisson’s ratio μ� 0.3. By changing the test condition, the
infuence of parameter change on the dynamic stability of
the system is studied.

3.1.1. Experimental Equipment. Te test equipment is
composed of a deep-hole processing machine tool, power
module, signal acquisition module, and signal analysis
module. Te test platform built is shown in Figure 5.

In Figure 5, the tool system employs a hard alloy boring
tool with machine clip. Te tool angles are as follows: rake
angle of 5°, relief angle of 8°, end relief angle of 10°, tool
cutting edge angle of 45°, tool minor cutting edge angle of 3°,
and inclination angle of 0°. Te workpiece bore diameter is
50mm and the drill length is 3m. Te cutting speed of the
tool during the machining process is 10meters per minute,
with a depth of cut of 0.1millimeters and a feed rate of
0.1millimeters per revolution.

Magnetic
powder brake workpiece spindle

box
power
oil seal

acquisition
instrumentdisplay

charge
amplifer

acceleration
sensor

vibration
exciter

eddy current
sensor

power
amplifer

function 
generator

(a)

gearbox center bearing
bracket

boring bar

velocity
transducer

(b)

Figure 5: Te experimental platform of BTA deep-hole processing: (a) the left half of the experimental platform and (b) the right half of the
experimental platform.
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3.1.2. Experimental Scheme. First, set the environment pa-
rameters of the system to be the same as those of the nu-
merical simulation, and then collect the single variable signal
with the flling ratio (h) and cutting fuid fow velocity (V0) as
the variables, respectively. Finally, determine the infuence
of each parameter change on the system stability through
power spectrum analysis. Te selection of variable param-
eters is shown in Table 1.

3.2. Experimental Data Analysis. In this paper, the infuence
of parameter changes on the stability of the system is studied
through the power spectrum characteristics of the transverse
vibration amplitude. Te full name of the power spectrum is
the power spectrum density function, which is defned as the
signal power in the unit frequency band. It can transform the
vibration description in the time domain into the vibration
description in the frequency domain, so it can be used as an
efective tool for the analysis of system vibration charac-
teristics [44, 45].

According to data analysis, when the liquid-flled ratio h
changes, the power spectrum of transverse vibration am-
plitude is shown in Figure 6:

It can be seen from the power spectra in Figure 6 that
with the increase of the liquid flling ratio h, although the
frequencies of each order of resonance in the system remain
unchanged, the spectral peaks of each order of frequency
gradually decrease. Tis indicates that the vibration char-
acteristics of the system are weakened and the stability of the
system is enhanced with the increase of liquid flling ratio h.
Tis is consistent with the efect of liquid-flled ratio h
change on system stability in Figures 2 and 3.

When cutting fuid velocity changes V0, the power spec-
trum of transverse vibration amplitude is shown in Figure 7.

From Figure 7, with the increase of the cutting fuid fow
velocity, although the resonance point of the system is
unchanged, the system’s discrete spectrum peak gradually
increased, and the peak value is getting larger. Tis shows
that the increase of the cutting fuid velocity aggravates the
chaotic characteristics of the system, which is consistent with
the numerical simulation results in Figures 2(b) and 2(c).

4. Conclusion

In this paper, the nonlinear lateral vibration motion equa-
tion of the BTA deep-hole machining system is established
by analyzing the internal cutting fuid efect. On this basis,
the chaotic characteristics of the system are studied sys-
tematically; and by combining numerical simulation and
physical experiment, the mechanism of the dynamic stability
of the system under the changes of flling ratio, cutting fuid
fow velocity, and frequency ratio was preliminarily
obtained.

(1) In precision boring, the increase of the liquid
flling ratio improves the system quality, reduces
the system frequency, and causes the resonance
frequency of the system to decrease, which reduces
the resonance area and weakens the chaotic
characteristics of the system. Terefore, in the
actual machining process, increasing the flling
ratio is one of the measures to improve the stability
of the machining system.

(2) In precision boring, the increase of cutting fuid
velocity will change the movement of fuid and
aggravate the chaotic efect of the system. Terefore,
under the condition of meeting the production de-
mand, the cutting fuid velocity should be reduced as
much as possible to improve the stability of the
system.

(3) When the frequency ratio changes in a small range,
the frequency doubling relationship between the
disturbance frequency and the system frequency is

(a) h=0.25

(b) h=1/3

(c) h=0.5
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Figure 6: Power spectrum of transverse vibration amplitude under
diferent liquid flling ratio.

Table 1: Values of variable parameters.

Parameters First Second Tird
h 0.25 1/3 0.5
V0 5m/s 10m/s 15m/s

(c) V0=15 (m/s)

(b)V0=10 (m/s)

(a) V0=5 (m/s)
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Figure 7: Power spectrum of transverse vibration amplitude at
diferent cutting fuid fow velocities.
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not easy to trigger, the probability of resonance of the
system is reduced, and the system stability is good.
When the frequency ratio changes in a large nu-
merical range, the frequency doubling relationship
between the disturbance frequency and the system
frequency is easy to trigger, which increases the
probability of resonance of the system, and the
system stability is poor. Terefore, in the actual
processing process, the resonance region can be
avoided by adjusting the frequency ratio value range
to improve the stability of the system.

In summary, the research conclusions of this paper on
the dynamic stability of the BTA deep-hole machining
system under the consideration of the internal cutting fuid
efect can lay a certain theoretical foundation for the
analysis, control, and optimization of its complex me-
chanical behavior in engineering practice.
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