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A rolling bearing fault diagnosis method based on the Volterra series and kernel principal component analysis (KPCA) is
proposed. In the proposed method, frst, the improved genetic algorithm (IGA) is used to identify the Volterra series model of the
bearing in four states: normal, rolling element fault, inner ring fault, and outer ring fault. Te Volterra time-domain kernel is used
as the feature vector for kernel principal component analysis to classify and identify the faults. Te feasibility of the fault diagnosis
method of the Volterra level and kernel principal component analysis is verifed by the experimental results.

1. Introduction

Rolling bearings are widely used in various felds of na-
tional economy and national defense industry as they are
called “the joints of industry.” As the rolling relationship
between its main components makes it the most vul-
nerable component in machinery, therefore, the fault
diagnosis study of rolling bearings is very important. Te
failure diagnosis technique is essentially a process of
failure mode identifcation, commonly known as
a method of fnding fault classifcation [1–5]. Fault di-
agnosis technology has been developed since the middle of
last century. It has formed an interdisciplinary and
comprehensive technology that integrates many felds
such as advanced sensing technology, artifcial in-
telligence algorithms based on big data, and signal pro-
cessing technology. Using the data obtained from the
testing equipment and analyzed by the relevant intelligent
algorithm, fault diagnosis is carried out to diagnose the
fault status of the machinery and equipment in order to
fnd the location where the fault appears, so as to repair
the fault problem, achieve the purpose of eliminating the
hidden danger of the fault, and lay the foundation for
providing good maintenance decisions for the machinery

and equipment. Te verifcation of fault diagnosis based
on vibration analysis can achieve both online and ofine
monitoring, which is more efective for early fault di-
agnosis, high efciency of diagnosis, accurate fault lo-
calization, and thus reliable diagnosis results, making it
widely used in many felds [6–8]. Te prerequisite for
rolling bearing fault diagnosis is to obtain the vibration
signal with fault information, mainly by using vibration
sensors to measure the working status information of the
bearing, analyze the key indicators such as the amplitude
of the periodic pulse generated by the bearing fault vi-
bration signal, the frequency, and the characteristic fre-
quency of the fault, to determine the location where the
bearing fault occurs, and analyze the degree of the bearing
fault. Trough the sensors installed inside the bearing
housing or box, the vibration fault signal of the bearing is
collected using a data acquisition card (DSP) or the NI
board, and then the vibration data are analyzed by
computer software processing to diagnose the nature and
type of the fault [9, 10].

Te nonlinear fault diagnosis method based on the
Volterra level is a typical nonparametric model estimation
method. Te failure of rolling bearings usually exhibits
nonlinear characteristics, and the Volterra level model can
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visually express the dynamic behavior of nonlinear sys-
tems.Te input and output signals of the nonlinear system
are used to model the system and to discriminate whether
the system is in a fault state based on the changes in the
Volterra kernel. Research on fault diagnosis based on the
Volterra level theory has yielded some valuable results.
Mumolo et al. [11] described page sequences in the
truncated form of Volterra frequency domain kernels,
which can be used for fault prediction. Tan and Sepehri
[12] used a second-order Volterra frequency domain
model to describe a nonlinear hydraulic transmission
system and used a multiorder recursive estimation al-
gorithm to determine the parameters in the model, and
the simulation and experiments proved that the method
can correctly identify the diferent operating states of the
system. Tang et al. [13] used a genetic algorithm to identify
the Volterra time-domain kernel, through the mean
square value of the frst three orders of the time-domain
kernel and the number of cusps of the second-order kernel
surface map and efectively identifed the diference be-
tween the bumper fault and the normal state of the rotor-
bearing system. Jiang et al. [14] used a recursive least
squares algorithm to identify the frst three orders of the
Volterra time-domain kernel of a nonlinear system and
experimentally verifed with a normal state and a cracked
rotor, and the results demonstrated that the method can
accurately determine the changes in the system. Li et al.
[15] introduced the quantum particle swarm
optimization-based algorithm into the Volterra model
identifcation of rotating machinery, using the frst third-
order GIRF as the feature vector for classifcation and
identifcation using the SVM, and the experimental results
showed that the method can correctly distinguish the fault
states of rotating machinery.

Te vibration signal of the rolling bearing exhibits
nonlinear characteristics, the nonlinear characteristics are
more obvious when it fails, and with the development of
the faults, the nonlinearity of the system will gradually
increase. Tere are few fault diagnosis methods based on
the Volterra time-domain kernel. Tis paper focuses on
Volterra time-domain kernel identifcation based on in-
telligent algorithms and combines feature extraction
classifcation methods, which are applied to the fault
diagnosis of rolling bearings. First, an accurate and re-
liable Volterra kernel identifcation method needs to be
found, and many identifcation methods have been pro-
posed, including the classical least squares algorithm and
the least mean square algorithm but the identifcation
accuracy is not high and the noise immunity is poor
[16–19]. Terefore, in this paper, the improved genetic
algorithm (IGA) will be used to identify Volterra time-

domain kernels and the Volterra kernel chromosomes are
encoded with real numbers instead of binary, with
adaptive chromosome structure, and adaptive search
range, introducing restart strategy, which improves the
identifcation accuracy and makes the algorithm better
local convergence and facilitates the population to fnd the
global optimal solution. Te IGA can adjust the model
structure according to the degree of correlation between
the Volterra kernel and the system output to eliminate
interfering terms and obtain a simplifed Volterra time-
domain model of the system.

Kernel principal component analysis (KPCA) technol-
ogy can reduce the dimensionality of the dataset and in-
crease the interpretability of the data. Simultaneously, it can
retain most of the data features in the data. Map input data
from a low-dimensional space to a high-dimensional feature
space through nonlinear mapping, the PCA method, which
is mainly used in the feld of linear analysis, are extended to
the feld of nonlinear analysis, and linear principal element
analysis is performed on the obtained mapped data [20, 21].

Based on the abovementioned method, this article
proposes a KPCA fault identifcation method based on an
improved genetic algorithm for Volterra time-domain
kernel identifcation. Tis method frst obtains the Vol-
terra time-domain kernel, which is identifed by an im-
proved genetic algorithm and combined with KPCA. Ten,
the KPCA method is used to extract its features, and fnally,
the system faults are classifed and identifed. Te experi-
mental results demonstrate the efectiveness of this method.

2. IGA-Based Identification of Volterra Kernels

For a nonlinear system, u(k) and y(k) are the system inputs
and outputs, correspondingly, represented as the following
third-order Volterra series:

y(k) � 􏽘
M− 1

τ1�0
h1 τ1( 􏼁u k − τ1( 􏼁
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(1)

Formally, M ∈N is the memory length. hn(τ1, . . ., τn)
denotes the nth-order Volterra time-domain kernel of the
nonlinear system.

Te input matrix P of the system with the kernel vector
H and the output vector Y are defned, respectively, as
follows:
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P(k) � u(k), · · · , u(k − (M − 1)) ; u
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(2)

H � h1􏼂 (0), · · · , h1(M − 1); h2(0, 0), · · · ,

h2(0, M − 1), h2(1, 1), · · · , h2(M − 1, M − 1);

h3(0, 0, 0), · · · , h3(M − 1, M − 1, M − 1)
T

(3)

Y � [y(k), y(k + 1), · · · , y(k − (M − 1))] (4)

Ten, the input-output relationship of the nonlinear
system can be expressed as follows:

Y � PH + e. (5)

Here, Y ∈RL is the output vector (L is the data length),
P ∈RL×R is the input matrix, H ∈RR is the nonlinear
system Volterra kernel vector (R is the kernel vector
length), and N is the system nonlinearity. According to
equation (2), the nonlinear system identifcation based
on the Volterra level model is essentially solving the
nonlinear system Volterra kernel vector H with the
known system input and output data, and the goal is to
minimize the error term e.

Te improved genetic algorithm used to identify the
Volterra time-domain kernel in this paper can adaptively
adjust the model structure compared with the GA, to-
gether with the use of the restart strategy and search
range optimization, resulting in a better local search
capability and identifcation accuracy of the algorithm.
Te Volterra time-domain kernel identifcation process
based on the improved genetic algorithm is shown in
Figure 1.

Te Volterra system identifcation method based on an
improved genetic algorithm ensures a faster search process
and convergence speed compared to the traditional
gradient-basedmethod.Te new approach is improved from
the traditional genetic algorithm-based method in the fol-
lowing aspects.

(1) It uses real numbers instead of binary to encode
Volterra nuclear chromosomes. Te advantages of
using real-time encoding in Volterra level recogni-
tion include reducing the encoding and decoding
time and avoiding the “Hamming clif” phenomenon
caused by binary encoding.

(2) Adaptive chromosome structure: Chromosomes in this
paper, namely, the kernel vectors of the Volterra model,
are continuously removed in iterations except for items
that have no signifcant efect on the system output,
allowing the algorithm to fnd the optimal chromosome
structure and improve the discrimination accuracy.

(3) Te adaptive search range is defned as the upper and
lower bounds of the gene. During the iterative
process, the adaptation reaches a threshold and
continuously narrows the search range for better
local convergence of the algorithm.

(4) An elitist genetic algorithm based on a restart
strategy was introduced. Genetic algorithms are
likely to fall into a local optimum and be in an
evolutionary stagnation state during the iteration of
fnding the best. Restarting the population according
to appropriate rules expands the solution space of the
population and facilitates the population to fnd the
global optimal solution.

Volterra levels sufer from the “dimensional catastrophe”
problem, resulting in an enormous number of high-order
kernels, with a small percentage of key kernels contributing
to the output and a sparse distribution in the overall
structure. Tus, we wanted to fnd a way to determine the
structure of the Volterra hierarchy, excluding irrelevant
kernels in it that are less correlated with the output.

In the modifed genetic algorithm-based Volterra time-
domain kernel identifcation process, every chromosome
will be matched with an equal-length binary code, indicating
the nature of the corresponding kernel in this way, with 1
representing the critical kernel and 0 the irrelevant kernel.
To prevent the real critical kernels from being rejected, all
kernels of the chromosome were coded as 1 at the beginning
of the iteration. Obviously, the algorithm iterates to a certain
number of generations to obtain a better solution set. In this
algorithm, the irrelevant kernel rejection procedure is ini-
tiated when the ftness value of the optimal chromosome in
the population is higher than a preset threshold, that is, the
highest adapted chromosome is examined when each iter-
ation is completed, and the decision of whether to remove
the candidate gene depends on the degree of correlation
between the model output and the actual output of the
system after the candidate gene reduction. Assuming that
the system input has L points, the correlation level from the
model output to the system output for the removal of
candidate g is given by the following equation:

ρ(g) �
Cov Y,Yng􏼐 􏼑

�������������
var(Y)var Yng􏼐 􏼑

􏽱 , (6)

where Cov is the covariance, Y
⌢

� 􏽐
R
i�1,i≠gP(i) × H

⌢
(i) is the

output of the model after removing the candidate g, H
⌢

(i)

represents the i-th gene value of H
⌢
, p(i) stands for the i-th

column of the input matrix P, and var is the mean squared
error function, which tests all correlation coefcients
ρ(i), i � 1, . . . , R and removes the candidate genes that do
not exceed the threshold value according to the threshold
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value ρt set in advance. Similarly, the corresponding col-
umns of the input matrix are removed to reduce the
computational efort. By continually removing irrelevant
kernels in this way in iterations, a concise and accurate
model can be constructed. Similarly, the corresponding
columns of the input matrix were deleted to reduce the
computational efort. Tis way, by continuously removing
irrelevant kernels in iterations, a succinct and detailed model
can be constructed. Te tuning of the model structure may
stop when there are no remaining irrelevant kernels that can
exceed a predetermined threshold. Te process of removing
irrelevant nuclei is shown in Figure 1. It is worth noting that

the abovementioned operation is performed when the ftness
of the best chromosome meets a predetermined value and
the number of iterations reaches a specifc number. Te
purpose is to prevent critical nuclei from being removed
when the population is still unstable early in the iteration.

3. Kernel Principal Component
Analysis Method

Kernel principal component analysis (KPCA) technology
can reduce the dimensionality of the dataset and increase the
interpretability of the data. Simultaneously, it can retain

Start

End

Initializing the population

Assessing the fitnessof individuals

Yes
Restart conditions?

No

Genetic arithmetic

f best > ft? Yes

Calculating the correlation coefficien ρ (i) for Ĥ (i)

ρ (i) > ρt ?

NoYes

i= i+1 Remove H (i)

No

Ends when irrelevant checkout is completed

Termination conditions?

Figure 1: IGA-based Volterra time-domain kernel identifcation process.
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most of the data features in the data. Specifcally, it is
a nonlinear mapping of the input space into a high-
dimensional feature space and converting it into a linear
problem in the high-dimensional space. Te problem is then
implemented in the high-dimensional space [22–24].

Suppose the dataset X� {x1,x2,. . .xn} ∈Rm has n samples,
and each sample xi(i� 1,2, . . ., n) is m-dimensional, then

X �

x11 x12 · · · x1m

x21 x22 · · · x2m

⋮ ⋮ ⋮ ⋮

xn1 xn2 · · · xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� x1, x2, · · · , xm􏼂 􏼃
T
,

(7)

where

xi � x1i, x2i, · · · , xni( 􏼁
T
, i � 1, 2, · · · , m. (8)

KPCA is to analyze the m variables x1, x2, . . ., xm in the
original data to form m new orthogonal variables, namely,

F1 � w11x1 + w21x2 + · · · + wm1xm,

F2 � w12x1 + w22x2 + · · · + wm2xm,

· · ·

Fm � w1mx1 + w2mx2 + · · · + wmmxm,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

which is abbreviated as follows:

F1 � w1ix1 + w2ix2 + · · · + wmixm, i � 1, 2, · · · , m. (10)

Among them, Xi is an n-dimensional vector, and Fi is
also an n-dimensional vector. Te coefcientWij in formula
(10) needs to meet the following conditions:

(1) Fi is not correlated with Fj(i≠ j; i, j � 1, 2, · · · , m);
(2) Te variance of F1 is greater than the variance of F2 is

greater than the variance of F3, and so on;
(3) w2

k1 + w2
k2 + · · · + w2

km � 1, i � 1, 2, · · · , m.

When Wij satisfes the abovementioned conditions,
neither of the new parameters is inter-related and the
variance diminishes sequentially. Te transformation matrix
W composed of coefcients is expressed as follows:

W �

w11 w12 · · · w1m

w21 w22 · · · w2m

⋮ ⋮ ⋮ ⋮

wn1 wn2 · · · wnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

which makes

F � F1,F2, · · · , Fm􏼂 􏼃

� WTX.
(12)

Nonlinear features can be extracted from the mapped
data in the high-dimensional space by principal component
analysis using kernel function mapping. It analyzes the data
samples and critical features of the data are retrieved,

denoting these data samples as batches of new orthogonal
variables. Tese variables are called principal components,
which are linear functions of the variables in the original
dataset, and they continuously maximize the variance.
Projection between principal components after fnding the
frst few principal components can better classify and
identify the data.

Based on the fault diagnosis method of Volterra time-
domain kernel principal component analysis, the Volterra
time-domain kernel in diferent states is used as a sample set,
conducting a kernel principal component analysis of them to
realize the classifcation and identifcation of nonlinear
systems. Te basic steps are as follows:

(1) Preprocessing the input and output signals of known
state;

(2) Te Volterra time-domain kernel is identifed by the
IGA algorithm. Te Volterra kernel identifed by the
data sample of the known state is used as the training
sample matrix XN ×M1 (N is the length of the kernel,
and M1 is the number of samples) and part of it is
used as the test matrix 􏽢XN×M2

;
(3) Calculate the sample mean and standardize the

sample matrix X to obtain the matrix X;
(4) V � (1/M1)XX

T is constructed as the covariance
matrix of the sample matrix;

(5) Find the eigenvalue λi and eigenvector Wi of the
covariance matrix V, and arrange the eigenvalues
λ1≥ λ2≥ . . .≥ λR in the descending order from large
to small, and the corresponding eigenvectors are
w1,w2, . . . ,wn;

(6) Te frst k principal components of the matrix X are
obtained by using the formula, and the contribution
rate to the system accounts for 85% or more, usually
the frst three principal components;

(7) Make the frst principal component diagram of the
sample matrix; then, make the projection diagram of
the frst and second principal components. Pro-
jection plots show the 2nd principal component and
the 3rd component. Te principal components of
diferent states will be distributed in diferent posi-
tions in the fgure;

(8) Calculate the principal components of the test
matrix, make a principal component diagram and
a projection diagram, and compare it with the
graphics obtained in step (7), and then the op-
erating status of the test data can be judged and
the preliminary fault identifcation can be
completed.

4. Experimental Research

Te basic idea of KPCA feature extraction based on the
Volterra time-domain kernel is as follows: frst, using the
improved genetic algorithm, identify the frst three orders of
the Volterra time-domain model with four states of rolling
bearing normal, outer ring fault, inner ring fault, and rolling
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body fault; then, use the KPCA method to classify the frst
three orders of the Volterra kernel to achieve state classi-
fcation and fault identifcation.

Rolling bearing vibration data were obtained from the
Case Western Reserve University Bearing Data Center, and
the experimental rig was arranged as shown in Figure 2,
consisting of an electric motor with horsepower 2 (left),
torque transducer (center), power test meter (right), and
electronic controls (not shown in the fgure). Te experi-
mental platform is to test the bearings supporting the
motor, where the bearing failure condition is arranged by
EDM technology for a single point of failure. For the
bearing failure diameter setting, there are four types, i.e.,
0.007 inch, 0.014 inch, 0.021 inch, and 0.028 inch, and the
simulated bearing operating condition has four diferent
load cases, namely, the load of 0hp, 1hp, 2hp, and 3hp. Te
bearing fault condition was introduced by using an electric
spark discharge to introduce a single point of failure. Te
acceleration sensors were arranged at the drive end, the
base, along with the fan end, and the vibration signals
refecting the bearing status were collected by the accel-
eration sensors. Data acquisition was done using a 16-
channel DAT recorder. Te collected vibration signals are
subject to random errors and noise interference caused by
external factors; so, the vibration signals are noise reduced
using the harmonic wavelet fltering method. Table 1 shows
the details of the relevant bearings and the frequency of
failures. Te sampling frequency of the digital signal is
12 kHz, and the bearing fault data at the drive end are also
collected at a sampling rate of 48 kHz. Bearing fault lo-
cations are mainly distributed in three locations, i.e., rolling
body, inner ring, and outer ring. Taking the drive end
bearing as an example, the motor horsepower and speed
and the size of the fault are shown in Table 2. Specifc
information about the experimental platform setup as well
as the fault setup is available on the Case Western Reserve
Bearing Experiment Center website [25].

Hereby, 30 sets of data are collected for four diferent
states of rolling bearing normal, outer ring failure, inner
ring failure, and rolling element failure. According to the
Volterra level theory, the data collected at the drive side are
used as the input signal, and the data collected at the fan
side are used as the output signal. Assuming that the model
order is 3 and the frst three-order memory lengths are 10,
4, and 3, the lengths of the frst three-order kernel vectors
h1(•), h2(•), and h3(•) are 10, 10, and 10, respectively,
which means the length of the Volterra kernel vector H is
30. Among them,

h1 � h1(0), h1(1), · · · , h1(9)􏼂 􏼃,

h1 � h2(0, 0), h2(0, 1), · · · , h2(3, 3)􏼂 􏼃,

h2 � h3(0, 0, 0), h3(0, 0, 1), · · · , h3(2, 2, 2)􏼂 􏼃,

H � h1,h2,h3􏼂 􏼃.

(13)

Following the frst three orders of Volterra time-domain
kernels of the nonlinear system obtained by the IGA
method, KPCA is used, and the Volterra kernels obtained
from the identifcation of 20 sets of signals for each state are

used as the training data, and then the Volterra kernels of
another 10 sets of signals are used as the test data for fault
identifcation.

First, the linear component h1(•) of the Volterra time-
domain kernel is taken for the kernel principal component
analysis, where the graph ∗ represents the normal state, ◇
represents the rolling body fault, ⊲ represents the outer ring
fault, and + represents the inner ring fault. Te sample
numbers represent the principal components of the test data
for each of the four conditions of the rolling bearing.

As can be seen from Figure 3, when only the Volterra
linear kernel is considered for principal component analysis,
only the normal states are successfully separated on the frst
principal component distribution obtained by KPCA, with
the data from the other states still mixed together Te
normal state and the inner ring fault have their clustering
centers, but it is impossible to distinguish the rolling body
from the outer ring fault data; on the projection maps of the
1st and 3rd principal components, the clustering centers of
the normal data are not obvious, and the data of the other
three states are mixed and scattered; so, the recognition
efect is poor.

Next, the frst three orders of Volterra kernels were used
as feature vectors for kernel principal component analysis,
and the principal components with a contribution rate
greater than 85% in the frst three orders were selected for
classifcation; the obtained results are shown in Figure 4.
Although the four states of the rolling bearing cannot be well
distinguished by the frst principal element, the clustering
center of each state is prominently shown on the projection
maps of the frst and second principal elements and the frst
and third principal elements, and its interclass scatter is
larger than the intraclass scatter, and the state identifcation
efect is better.

Te experiments abovementioned show that when
using only the linear Volterra kernel as the feature vector
for kernel principal component analysis, the efect of
classifcation and identifcation is not very satisfactory and
cannot distinguish between outer ring faults and rolling
body faults. When the frst third-order Volterra time-
domain kernel is used as the feature vectors for kernel
principal component analysis, all four operating states can
be clearly distinguished, with satisfactory classifcation and
identifcation results. It can be seen that the Volterra time-
domain kernels contains rich fault information, and the
diferent states of the nonlinear system can be efectively
distinguished using the frst three orders of the Volterra

Figure 2: Rolling bearing test bench.
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kernels. Experimental results show that the kernel principal
component analysis method has good classifcation ability
and the kernel principal component analysis fault identi-
fcation method based on the Volterra time-domain kernel
is efective.

Features of the four operating states of the rolling
bearing were extracted by kernel principal component
analysis. Under the new operating conditions, the same
kernel identifcation and kernel principal component
analysis for the unknown signals were carried out and

Table 1: Bearing details and failure frequency.

Bearing types Fault locations
Inner ring

passing frequency
(Hz)

Outer ring
passing frequency

(Hz)

Cage passing
frequency (Hz)

Rolling body
passing frequency

(Hz)
SKF 6205-2RS JEM Drive side 5.415 3.585 0.3983 2.375
SKF 6203-2RS JEM Fan end 4.947 3.053 0.3816 1.994

Table 2: Data and working conditions.

Data Motor load (HP) Motor speed (rpm) Fault sizes (in)
Drive side 0 0 1797 0.007
Drive side 1 1 1772 0.014
Drive side 2 2 1750 0.021
Drive side 3 3 1720 0.028
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Figure 3: Identifcation results of kernel principal component analysis with frst-order kernels only.
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then compared with the four known normal or fault
features to determine the type of fault.

5. Conclusion

When the system fails, its internal transmission characteristics
will change and the nonlinear characteristics are obvious. Te
Volterra time-domain kernel contains rich fault information
and could capture the intrinsic characteristics of nonlinear
systems. Taking the Volterra time-domain kernel as a feature
vector, feature extraction and fault identifcation can be
performed. Te kernel principal component analysis method
can project high-dimensional data to low-dimensional, in-
crease the interpretability of the data while retaining most of
the data features in the original data, and make the data
classifcation clearer. Te Volterra kernel of the four states
identifed by the proposed IGA algorithm is used as the frst
three-order principal components of the feature vector (the
contribution rate greater than 85%), and the fault classif-
cation and identifcation is performed through the analysis of
the frst three principal components, and the four states of
rolling bearing normal, rolling body fault, inner ring fault, and
outer ring fault are clearly identifed, which shows that the use
of the frst three-order Volterra kernel can efectively dis-
tinguish the diferent states of the system and the fault
identifcation method of nuclear principal component anal-
ysis based on the Volterra time-domain kernel is efective.

Data Availability

Rolling bearing vibration data were obtained from the Case
Western Reserve University Bearing Data Center. Case

Western Reserve University Bearing Data Center website:
https://engineering.case.edu/bearingdatacenter/welcome.
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