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Mine microseismic signal denoising is a basic and crucial link in microseismic data processing, which infuences the accuracy and
reliability of the monitoring system, and is of great signifcance with regard to safety during mining. Terefore, this study introduces
a deep learning method to improve the mapping function and sparsity of signals in the time-frequency domain and constructs
a denoising framework based on a deep convolutional autoencoder to address the denoising problemofminemicroseismic signals. First,
all noisy microseismic signals are normalized to ensure the nonlinear expression ability of the constructed denoising framework. Ten,
the normalized signals are transformed into the time-frequency domain using the short-time Fourier transform (STFT), and the real and
imaginary parts of time-frequency coefcients serve as the input of the deep convolutional autoencoder to output the masks of the
efective and noise signals. Next, these masks are applied to the time-frequency coefcients of the noisy microseismic signals, and the
time-frequency coefcients of the potentially efective and noise signals are estimated. Finally, inverse STFT is used to transform these
time-frequency coefcients to the time domain to obtain the fnal denoised efective and noise signals. Te constructed framework
automatically learns rich features from synthetic data to separate the efective and noise signals, thereby achieving the purpose of fast and
automatic denoising. Te experimental results show that compared with the wavelet threshold and ensemble empirical mode de-
composition, the denoising framework considerably improves the signal-to-noise ratio of minemicroseismic signals with less waveform
distortion. Moreover, it can achieve a better denoising efect efciently even in the case of a low SNR, which has obvious advantages.Te
constructed denoising framework is suitable formicroseismicmonitoring signals of variousmine dynamic disasters and provides strong
technical support for intelligent monitoring and early warning concerning production risks in mines.

1. Introduction

With the rapid development of China’s economy, the demand
for various mineral resources has sharply increased. Tere-
fore, it is imperative to expand the scale of mining and
strengthen the exploration and exploitation of deep resources
[1]. However, the security issues caused by complex, difcult,
and deep mining have become increasingly prominent with
the continuation of mining. Serious mine dynamic disasters
and hidden dangers, such as roof fall, collapse, and rock burst,
cause huge losses to people and their properties [2, 3]. Tus,
continuously monitoring the rupture of rock masses, quan-
titatively evaluating the stability of underground surrounding

rocks, and accurately predicting mine dynamic disasters have
become crucial to mine safety [4]. Previous studies showed
that microseismic monitoring is an efective technology for
mine dynamic disaster monitoring and early warning [5, 6].
Te main task in microseismic monitoring is to timely de-
lineate dangerous areas by locating hypocenters, evaluating
the stability of rocks, and predicting possible geological di-
sasters [7]. Owing to the low signal-to-noise ratio (SNR) of
microseismic signals, theymust frst be denoised to ensure the
accuracy of frst arrival picking and hypocenter location [8, 9].

Denoising is a classic problem in geophysics. Mine
microseismic signals usually have nonlinear and non-
stationary characteristics. Notably, traditional denoising

Hindawi
Shock and Vibration
Volume 2023, Article ID 6225923, 15 pages
https://doi.org/10.1155/2023/6225923

https://orcid.org/0009-0005-2699-2559
https://orcid.org/0000-0002-4117-6833
https://orcid.org/0009-0001-2431-7796
https://orcid.org/0009-0005-2446-4971
https://orcid.org/0009-0003-4132-1281
https://orcid.org/0009-0001-4317-9966
mailto:xubin20080108@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6225923


methods, such as Fourier transform [10], can suppress noise
to a certain extent, but they are more suitable for dealing
with stationary periodic signals. When processing non-
stationary signals with spikes or sudden changes, such as
microseismic signals, their denoising efect is not very sat-
isfactory. For the denoising of nonlinear signals, researchers
have proposed several methods, such as wavelet transform
(WT) [11, 12], S transform [13], curvelet transform [14],
dreamlet transform [15], contourlet transform [16], shearlet
transform [17], and empirical mode decomposition (EMD)
[18, 19]. Tese methods can improve the quality of mi-
croseismic signals; however, they have certain limitations in
terms of their validity and practicality. In practical appli-
cation, they generally require more manual participation,
such as the basis function selection of WT and the intrinsic
mode function (IMF) selection of EMD, considerably lim-
iting their application scope [20, 21]. Furthermore, the
denoising efect of these methods is not satisfactory under
a low-SNR condition. After denoising, the efective signals
are distorted, destroying the original amplitude character-
istics of microseismic signals and reducing the fdelity of
efective signals [22, 23]. Terefore, their denoising per-
formance needs further improvement.

In all these methods, microseismic signals are frst
transformed from the time domain to the time-frequency
domain using a time-frequency analysis method. Ten, the
time-frequency coefcients are modifed (usually thresh-
olded) to attenuate noise-related coefcients, and the values
of the efective signal coefcients are estimated. Finally, the
modifed coefcients are inverse-transformed to the time
domain to reconstruct the denoised signals [24, 25].Tey are
referred to as time-frequency domain denoising methods,
which basically involve improving the sparsity of signals by
transforming microseismic data to other spatial domains,
wherein the signals can be represented by a set of sparse
features, making it easier to separate the efective and noise
signals [26, 27]. Time-frequency domain denoising methods
are the main focus of current research on microseismic
signal denoising. On the basis of considering the time-
frequency representation of multiple traces as a 3-D ten-
sor, Iqbal et al. [28] introduced an approach for detecting
and denoising microseismic events using tensor de-
composition, where the higher order and tensor singular
value decomposition were used for detecting and denoising,
respectively. To obtain a sparse time-frequency represen-
tation and have a higher energy concentration, Zhang et al.
[29] proposed a denoising framework based on the cu-
mulative distribution function thresholding in the wavelet
domain using synchrosqueezed continuous wavelet trans-
form (SS-CWT). To suppress isolated noise on the time-
frequency plane using SS-CWT with hard thresholding,
Zeng et al. [30] introduced an image processing approach
called pixel connectivity thresholding to further improve the
SNR of microseismic signals. More studies on time-
frequency domain denoising of microseismic signals can
be seen in the literature [12, 23, 31–33]. Generally, these
methods can be used to improve the denoising efect in two
ways: use a more fexible and powerful mapping function or
use a more efcient sparse representation of the data

[34–36]. However, how to map microseismic data into an
optimal denoising space and choose an appropriate
threshold function to separate the efective and noise signals
is a great challenge [37].

Recently, with the development of deep learning tech-
nology, deep neural networks have been gradually applied to
signal denoising. For the denoising of 1-D seismic signals,
Iqbal [38] proposed a denoising method based on an in-
telligent deep convolutional neural network, which learns
sparse representation of the data simultaneously in the time-
frequency domain and adaptively captures seismic signals
corrupted with noise. Othman et al. [39] proposed a fully
automated event detection and denoising method for seismic
data, where a residual neural network and an IIRWiener flter
were used to detect seismic events and denoise the seismic
data, respectively. Tese networks can improve the denoising
efect by using convolution to extract the features of signals
and training to obtain their better sparse representations
[40–42]. Terefore, a deep learning method is primarily used
in this study to improve the mapping function and sparsity of
signals to construct a novel time-frequency domain denoising
framework, namely, a microseismic signal denoising method
based on a deep convolutional autoencoder. Tis method can
learn the sparse representations of input signals from the
training set and generate two separate masks for each noisy
microseismic signal according to these representations; the
generated masks are then used to extract the efective and
noise signals, thereby achieving the purpose of mine mi-
croseismic signal denoising. Te main contributions of this
study are outlined as follows:

(1) A fully automated denoising framework based on
a deep convolutional autoencoder is constructed for
mine microseismic signals.

(2) Despite only being trained on synthetic data, the
denoising framework can be generalized to practical
denoising tasks, and test results on a real dataset
show better performance, denoising efect and
computational efciency, in comparison with two
common denoising methods.

(3) Because it does not require any prior knowledge or
preprocessing, the constructed denoising framework
is suitable for microseismic monitoring signals of
various mine dynamic disasters.

2. Methodology

In the time-frequency domain, each noisy microseismic
signal Y(t, f) can be expressed as the superposition of an
efective microseismic signal S(t, f) and a noise signal
N(t, f) (a collective term for various noises or non-
microseismic signals):

Y(t, f) � S(t, f) + N(t, f). (1)

Te objective of denoising is to estimate the potential
efective microseismic signal 􏽢S(t, f) from the polluted signal
under the condition of minimizing the error between the
estimated and real signals [37], which is as follows:
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error � E‖􏽢S(t, f) − S(t, f)‖
2
2

� E TFT− 1 M(t, f)Y(t, f)􏼈 􏼉 − S(t, f)
����

����
2
2,

(2)

where ‖ · ‖2 represents the L2 norm, TFT− 1 indicates inverse
time-frequency transform, and M(t, f) represents the
mapping function, which maps the noisy microseismic
signal Y(t, f) to the time-frequency representation of the
potential efective signal.Te results of the study showed that
this mapping can be obtained by using a simple threshold in
a sparse representation, and its magnitude can be estimated
based on the noise level [43].

2.1. Autoencoder. An autoencoder is an unsupervised fea-
ture extraction and data dimensionality reduction method
[44]. It is a symmetric network consisting of an encoder,
encoding, and decoder. Te schematic of its network
structure is shown in Figure 1.

Starting from the leftmost input layer, the input sample
X is processed layer by layer through the hidden middle
layers and fnally reaches the output layer. Te output 􏽢X of
the decoder can be considered as a prediction value of the
input X. Te encoding and decoding processes can be
expressed as formulas (3) and (4), respectively.

H � g W1X + b1( 􏼁, (3)

􏽢X � g W2H + b2( 􏼁, (4)

whereW1 and b1 are the power matrix and bias between the
input and encoding layers, respectively; W2 and b2 are the
power matrix and bias between the encoding and output
layers, respectively; H is the hidden variable; and g(·) is the
activation function. Te objective of network training is to
minimize the loss function J(W, b), namely,

argmin
W,b

J(W, b), (5)

where W � [W1 W2] and b � [b1 b2]. In an autoencoder,
since the number of nodes in the input and output layers is
equal, it attempts to approximate an identity function
through the encoding and decoding operations (so that the
output value corresponds to the input value) to determine
the hidden association structure in original data.

2.2. Convolutional Autoencoder. In a convolutional neural
network, diferent features can be extracted from diferent
convolutional layers [45], and both local and global features
are benefcial to obtain clean efective microseismic signals.
Terefore, in order to introduce a convolutional neural
network into the denoising of microseismic signals, this study
used the neural network to learn the sparse representations of
the signals, generated an optimal mapping function for each
signal according to the efective and noise signals in training
samples, and defned the mapping functions as two separate
masks, MS(t, f) and MN(t, f) [46], which represent the
efective and noise signals, respectively:

MS(t, f) �
1

1 +|N(t, f)|/|S(t, f)|
,

MN(t, f) �
|N(t, f)|/|S(t, f)|

1 +|N(t, f)|/|S(t, f)|
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

Te size of each mask is the same as that of the input
time-frequency microseismic signal Y(t, f), with the value
being between 0 and 1, which indicates the proportion of
corresponding signals, efective microseismic signal or noise
signal, in a noisy microseismic signal.

Te network structure of the deep convolutional
autoencoder designed in this study according to the char-
acteristics of the autoencoder and convolutional neural
network is shown in Figure 2.

In the deep convolutional autoencoder network (Fig-
ure 2), the input of the frst layer comprises the real and
imaginary parts of the time-frequency representations for
microseismic signals. Te output comprises two masks,
MS(t, f) and MN(t, f), respectively, of the efective and
noise signals. Te blue rectangles represent the inner layers
of the network. In the frst half of the network, the input
time-frequency coefcients are frst downsampled using
multiple 3× 3 convolutional layers with a stride of 2× 2 and
then processed using the activation layer of the rectifed
linear unit (ReLU) function after each convolutional layer.
Tese convolutional layers act as feature extractors, com-
pressing the feature maps and quickening the learning of the
sparse representation of the input data to the bottleneck
layer. In the second half of the network, the deconvolution
layer upsamples to generate a high-dimensional nonlinear
mapping of the sparse representations to the efective and
noise signal masks, and the softmax function is used in the
last layer to predict the diference between the efective and
noise signal masks.Tese masks are considered the targets in
optimizing the convolutional autoencoder network during
training. Trough training, the network learns how to
construct a sparse representation of the data as well as how
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Figure 1: Te network structure of an autoencoder.
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to optimize the cross-entropy loss function to obtain optimal
masks that separate the efective and noise signals. Mean-
while, in the convolutional autoencoder network structure,
skip connections are utilized to improve the convergence of
training and prediction [47]. Based on an autoencoder
structure, the convolutional autoencoder performs con-
volutional operations instead of the inner product of or-
dinary matrices, which improves the feature extraction
ability of the network and provides higher computational
efciency.

2.3. Denoising Framework Based on a Convolutional
Autoencoder. For mine microseismic signal denoising,
a denoising framework based on the deep convolutional
autoencoder is constructed in this study, and the calculation
process is shown in Figure 3.

First, in order to ensure the nonlinear expression ability
of the constructed denoising framework and accelerate the
convergence speed during network training, each noisy
microseismic signal is normalized by subtracting its mini-
mum value and dividing the resulting expression by the
diference between its maximum and minimum values.

Ten, all normalized signals are transformed into the
time-frequency domain using the short-time Fourier
transform (STFT), and the real and imaginary parts of time-
frequency coefcients serve as the input of the convolutional
autoencoder to output the efective and noise signal masks.
Tese masks are considered the targets in optimizing the
convolutional autoencoder network during training. Te
loss function used in the network is the mean squared error
loss, and the corresponding formula is as follows:

Loss �
1
2N

􏽘 􏽢MS(t, f) − MS(t, f)
����

����
2
2, (7)

where N indicates the number of training samples, ‖ · ‖2
represents the L2 norm,MS(t, f) is the label (or mask) of an
efective signal, and 􏽢MS(t, f) is the output of the con-
volutional autoencoder network (i.e., the predicted time-
frequency mask of an efective signal).

Next, the efective and noise signal masks are applied to
the time-frequency coefcient of each noisy microseismic
signal, and the time-frequency coefcients of the potential
efective signal 􏽢S(t, f) and noise signal 􏽢N(t, f) can be es-
timated according to the following formula:

􏽢S(t, f) � 􏽢MS(t, f)Y(t, f),

􏽢N(t, f) � 􏽢MN(t, f)Y(t, f)

� 1 − 􏽢MS(t, f)􏽨 􏽩Y(t, f).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Finally, inverse STFT is used to transform 􏽢S(t, f) and
􏽢N(t, f) to the time domain to obtain the fnal denoised
efective and noise signals.

As can be seen from the entire computational process,
the denoising framework based on the deep convolutional
autoencoder considers microseismic signal denoising as
separating the efective and noise signals. Taking the three-
component noisy microseismic signals as the input and the
time-frequency masks as the optimization targets, the
denoising framework obtains the denoised efective and
noise signals by applying the predicted masks to the noisy
microseismic signals in the time-frequency domain. Instead
of manually defning diferent features and thresholds to
enhance the efective signals and attenuate the noise signals,
it automatically learns rich features from training set to
separate the efective and noise signals and realizes fast and
automatic denoising. Terefore, the constructed denoising
framework can reduce the efects of human parameter ad-
justment and threshold selection, accelerate the processing
of microseismic data, and help the automation and in-
telligence of microseismic data processing.

3. Experiments and Results

To test the accuracy and efciency of the constructed
denoising framework, it was used to denoise real mine
microseismic signals on the basis of analyzing the charac-
teristics of noise signals. Te results were compared with
those obtained using WT and ensemble empirical mode
decomposition (EEMD) to quantitatively evaluate the
denoising efect of the constructed framework.
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Figure 2: Te network structure of the deep convolutional autoencoder.
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3.1.Data. In order to demonstrate the denoising efect of the
constructed framework, we took the microseismic moni-
toring signals of a mine in Gansu Province as an example.
Tis mine is a copper-nickel sulfde mine with a mining
depth of more than 1,000m. As mining deepens, the mining
conditions and operating environment deteriorate; partic-
ularly, the problem of dynamic disasters caused by rockmass
excavation becomes more and more prominent, which
further intensifes the difculty of mining. Terefore, to
analyze and predict dynamic disasters caused by the dis-
turbance from deep mining and ensure the safety of mine
operators’ lives and properties, a set of microseismic
monitoring system was set up for the mining area, and
16 three-component geophones (sampling rate is 1,000Hz)
were arranged to dynamically and continuously monitor
various mine dynamic disasters, such as roof fall, collapse,
and rock burst, in real time. Te training and testing of the
model require a large amount of sample data. However,
clean efective microseismic signals cannot be obtained in
practical application. Tus, this study selected 32,317 mi-
croseismic events with an extremely high SNR for clean
efective microseismic signal samples and 51,251 non-
microseismic event signals for noise signal samples and
randomly combined these signals to generate noisy mi-
croseismic signals with diferent SNR levels. All the samples
were randomly divided into training, validation, and test sets
with proportions of 80%, 10%, and 10%, respectively. Tese

sets were used to train the model, adjust the model
hyperparameters, and test the denoising efect, respectively.
Furthermore, 1,000 real mine microseismic signals with
a low SNR were selected to test the generality of the model.

3.2. Analysis of Noise Signal Characteristics. Usually, signals
received by a mine microseismic monitoring system can
primarily be divided into three categories: efective micro-
seismic signals, blast signals, and noise signals caused by
various reasons [48]. Mining environments are complex,
and various infuencing factors lead to noise signals with
a wide frequency band and rich spectrum components. Te
characteristics of various noise signals are clearly diferent in
terms of waveform and spectrum. Even the same type of
noise shows diferent characteristics owing to diferent
generated conditions and environments [49]. Based on its
source, noise can be roughly classifed into the following
types:

(1) Mechanical operation noise: It mainly refers to the
noise generated by mine machinery and equipment,
such as road headers, drills, and fans (Figure 4(i)).
Te frequency of this noise mostly lies in the range of
100–300Hz, and the amplitude variation is small,
mostly in the range of 10−7–10−4m/s; the waveforms
are relatively dense, all of which are pulse burrs
without clear attenuation and onset vibration. Being

Noisy microseismic signal

Normalization

Short-time Fourier transform

Time–frequency coefficient

Real part Imaginary part

Deep convolutional autoencoder

Effective signal mark Noise signal mark

Effective signal time-
frequency coefficient

Noise signal time-
frequency coefficient

Inverse short-time Fourier transform

Effective signal Noise signal

Effective signal time-
frequency coefficient

Effective signal
mark

Noise signal
mark

Deep convolutional autoencoder

Noise signal time-
frequency coefficient

Real part
Imaginary part

Figure 3: Denoising framework of mine microseismic signal based on the deep convolutional autoencoder.
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related to the working time of machinery, its du-
ration is generally long, reaching tens of seconds.
Moreover, some noise signals are periodic.

(2) Electrical noise: It mainly refers to the electromag-
netic interference generated by electrical equipment
(e.g., fans, road headers, and other high-power
mechanical equipment) in a mine and the elec-
trical noise generated by cables and sensors
(Figure 4(ii)). Te frequency of this noise is relatively
concentrated, with the main frequency being 50Hz
or an integer multiple of 50Hz. Te amplitude
slightly changes, mostly in the range of 10−6–10−4m/
s. Its waveform is generally in the shape of pulse
burrs without clear onset vibration and attenuation,
and the duration is also generally long.

(3) Human activity noise: It mainly refers to the noise
generated by underground work, such as roadway
repair, support, and manual equipment loading and
unloading (Figure 4(iii)). Tis type of noise greatly
changes in frequency range and amplitude; there-
fore, it is difcult to remove.

(4) Random noise: It mainly refers to the noise near
sensors, including noise from external environments
(e.g., from the mass caving, collapse, and spalling of
rocks) or caused by instruments (Figure 4(iv)). Te
amplitude of this noise greatly varies, mostly in the
range of 10−8–10−3m/s, and the frequency compo-
nents are complex and distributed in high-, medium-,
and low-frequency bands.

Generally, the complex waveform components of noise
signals, various amplitudes, extremely irregular waveforms,
and the complete spectrum aliasing of the noise and efective
signals result in the efective microseismic signals being
submerged into various noises, greatly increasing the dif-
fculty of mine microseismic signal denoising.

3.3. Evaluation Indicators. Herein, three indicators, namely,
SNR, correlation coefcient (CCR), and root mean squared
error (RMSE), are used to quantitatively evaluate the
denoising efect [50]. Te formula for calculating the SNR is

SNR � 10 log10
σS

σN

􏼠 􏼡, (9)

where σS is the standard deviation of an efective signal,
while σN is that of a noise signal. Te SNR represents the
ratio of the efective signal to the noise signal in a noisy
microseismic signal, and its unit is dB. It is a crucial indicator
for evaluating signal quality. Te larger the SNR, the lower
the noise content and the better the denoising efect.

Te formula for calculating the CCR is

CCR �
Cov(X,Y)

������������
Var[X]Var[Y]

􏽰 , (10)

where X and Y represent the signals before and after
denoising, respectively; Cov(X,Y) represents the covariance
of the signals before and after denoising; and Var[X] and
Var[Y] represent the variance of the signals before and after
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denoising, respectively. Te CCR indicates the degree of
correlation between the denoised signal and the clean ef-
fective microseismic signal. Its value is between 0 and 1. Te
closer the value is to 1, the more similar the signal waveform
is to the ideal signal waveform and the better the denoising
efect is.

Te formula for calculating the RMSE is

RMSE �

���������
1
n

‖X − Y‖
2
2

􏽲

, (11)

where ‖ · ‖2 represents the L2 norm; X and Y represent the
signals before and after denoising, respectively; and n is the
number of signal sampling points. Te RMSE is the eval-
uation indicator for the deviation of the denoised signal
from the mean value of the clean efective microseismic
signal. Similar to the CCR, the smaller the value is, the closer
the denoised signal is to the ideal signal and the better the
denoising efect is.

3.4. Results and Discussion. Te test environment included
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 16.0GB
RAM, and NVIDIA GeForce MX150 graphics card, with
a Microsoft Windows 10 Home 64 bit operating system,
Python 3.7.10, and TensorFlow 2.3.0. Te experiment with
the constructed denoising framework in this study was
divided into two stages: model training and model
denoising. In the model training stage, the efective and
noise signals were used as input, and corresponding labels,
the efective and noise signal masks, were used as the target
output of the network. Te cross-entropy loss function was
used to calculate the distance between the output masks and
labels, while the stochastic gradient descent algorithm was
used to minimize the loss function. For the convenience of
training, the sampling rate of the mine microseismic signals
was resampled from 1,000 to 250Hz. After repeated training
and tuning experiments, the error of the training result was
minimized (i.e., the training of the model was completed).
Te model training results are presented in Figure 5.

As shown in Figure 5, the average value of the cross-
entropy loss function gradually decreased with an increase in
the number of epochs during the model training, which
showed a clear convergence trend. Moreover, the conver-
gence speed of the model was fast. After 100 epochs of
training, the average value of the cross-entropy loss function
no longer decreased, and the model became stable.

After the model training was completed, it entered the
model denoising stage. In this stage, the noisy microseismic
signals were input into the model, and the separated efective
and noise signals were output to realize the denoising of
mine microseismic signals. In order to test the denoising
efect of the proposed method, the noise and efective signals
were combined into noisy microseismic signals with dif-
ferent SNR levels to form a test set for model testing.
Furthermore, to quantitatively analyze the denoising efect
of the proposed method, the denoising results of two
common denoising methods, WT and EEMD, were com-
pared with the processing results of the method based on the
deep convolutional autoencoder.Te experimental results of

denoising under diferent SNR levels (from −6 to 8 dB) are
presented in Table 1 and Figure 6.

In Figure 6, (i) and (ii) represent the clean efective and
noise signals, respectively, (iii) represents noisy microseis-
mic signals, and (iv) and (v) represent the denoising results
obtained using the proposed method, namely, the efective
microseismic and noise signals. Figure 6 illustrates two
denoising examples. For the frst one (Figures 6(a) and 6(b)),
the SNR, CCR, and RMSE before denoising are −4.07, 0.68,
and 11.43, respectively, while these values improve to 6.95,
0.86, and 6.08, respectively, after denoising. For the other
one (Figures 6(c) and 6(d)), the SNR, CCR, and RMSE are
−0.94, 0.79, and 8.55, respectively, before denoising, and
8.93, 0.90, and 5.27, respectively, after denoising. Taking
Figures 6(a) and 6(b) as an example, on the one hand, the
time-frequency planes before and after denoising
(Figure 6(a)) show that the energy of low- and high-
frequency noise was completely suppressed after denois-
ing in two time periods of approximately 0 to 20.96 s and
24.12 to 45 s, whereas the energy of efective microseismic
signal was clearly evident in 20.96 to 24.12 s. Meanwhile,
some low-frequency noises around the efective signal were
suppressed to varying degrees. Based on the whole time-
frequency plane (Figure 6(a)(iv)), only the efective signal
part of the microseismic signal had energy, showing that the
proposed method had achieved a satisfactory noise sup-
pression of themine microseismic signal. On the other hand,
it can be seen intuitively from the time-domain planes
(Figure 6(b)) that the proposed method could efectively
remove the noise in the mine microseismic signal and re-
store the efective microseismic signal.

WT and EEMD are two common methods in mine
microseismic signal denoising. Te basic principle of WT is
that after a microseismic signal is decomposed by the Mallat
algorithm, the wavelet coefcient amplitude of the efective
signal is greater than that of the noise signal. If an appro-
priate threshold is selected to remove the wavelet coefcient
smaller than the threshold and retain those greater than the
threshold, the denoising task can be completed [51, 52]. To
achieve the best denoising efect for WT, repeated tests were
conducted. Te results show that when the db4 wavelet basis
function is used, the number of layers in the wavelet de-
composition is set to fve, and when the Heursure threshold
function is adopted [53], the denoising efect is the best.
EMD is based on the Hilbert–Huang transform to de-
compose amicroseismic signal into a sum of IMFs.Te noise
signal is mainly concentrated in high-frequency components
(low-sequence IMFs), while the efective signal is mainly
concentrated in low-frequency components (high-sequence
IMFs). Terefore, reconstruction using low-frequency IMFs
can achieve the purpose of denoising [54, 55]. Although
EMD decomposes each signal according to its time-scale
characteristics without presetting any basis functions, modal
aliasing is prone to appear. EEMD utilizes the uniform
distribution and zero-mean characteristics of white noise
spectrum to solve the problem of modal aliasing in EMD by
adding white noise and averaging it multiple times [19].
According to the test results, twelve IMFs are generated after
a microseismic signal is adaptively decomposed using
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Table 1: Comparison of diferent denoising methods.

SNR levels
(dB)

WT EEMD Our method
SNR CCR RMSE SNR CCR RMSE SNR CCR RMSE

−6 0.35 0.54 15.14 0.72 0.58 14.23 3.59 0.70 9.38
−5 0.94 0.59 13.73 1.29 0.61 13.15 4.27 0.73 8.13
−4 1.72 0.64 12.25 1.91 0.65 11.76 5.27 0.77 7.25
−3 2.42 0.69 11.02 2.74 0.72 10.99 5.93 0.79 6.84
−2 3.01 0.74 9.77 3.50 0.78 9.44 6.68 0.82 6.24
−1 3.89 0.78 8.94 4.26 0.80 8.12 7.19 0.84 6.06
0 4.25 0.80 8.16 4.98 0.82 7.59 7.75 0.87 5.74
1 5.01 0.81 7.65 5.78 0.84 7.02 8.36 0.89 5.45
2 5.73 0.84 6.99 6.38 0.85 6.67 8.94 0.91 5.04
3 6.52 0.86 6.54 7.43 0.87 6.08 9.35 0.92 4.80
4 7.24 0.90 5.98 8.20 0.91 5.36 9.82 0.93 4.38
5 8.16 0.91 5.37 8.89 0.92 5.11 10.53 0.93 3.91
6 8.93 0.92 5.03 9.33 0.93 4.93 11.23 0.95 3.54
7 9.47 0.93 4.84 9.97 0.94 4.26 12.01 0.95 2.99
8 10.55 0.94 4.37 10.65 0.95 4.18 12.87 0.96 2.27
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EEMD. Among them, the frst six IMFs are noisy compo-
nents, and the energy ratio of the last six IMFs is much
higher than that of others, which contain more information
about the efective microseismic event. Terefore, the
denoising task can be completed well by extracting the last
six IMFs to reconstruct the efective microseismic signal.
Table 1 and Figure 6 show that althoughWTand EEMD can
improve the SNR of each microseismic signal to a certain
extent, the degree of improvement is limited. However, the
proposed method can learn the characteristics of the ef-
fective and noise signals through training, and the SNR of
each efective microseismic signal after denoising is higher.
Moreover, the CCR exhibits considerable improvement at
diferent SNR levels, and the corresponding RMSE is
smaller. Te higher SNR and CCR and the smaller RMSE
indicate that the proposed method has a strong denoising
ability and a small degree of waveform distortion after
denoising, which is close to the ideal signal. Te experi-
mental results show that the overall SNR for the proposed
method is considerably improved, CCR is substantially
improved, RMSE is smaller, and denoising ability is the best
compared with those for WT and EEMD. In addition, the
more serious the microseismic signal pollution is, the more
obvious the denoising advantage of our method is.

To visually demonstrate the overall denoising efect of
the constructed framework, the statistical histograms of the
SNR, CCR, and RMSE for the test set before and after
denoising are presented in Figure 7. It can be clearly seen
from Figure 7(a) that the SNR for the test set before
denoising is mainly distributed between −5.99 and 7.92 dB,
with the average SNR being 1.03 dB.Te SNR after denoising
is mainly distributed between −1.94 and 13.77 dB, with the
average SNR being 5.68 dB. Terefore, the average SNR of
the denoised signals is considerably improved. As shown in
Figure 7(b), the CCR before denoising is mainly between
0.51 and 0.78, with an average of 0.65. Te number of noisy
microseismic signals distributed in each interval of the CCR
is relatively uniform. After denoising, the CCR is mainly
between 0.63 and 0.98, the number of denoisedmicroseismic
signals in each interval of the CCR gradually increases with
an increase of its value, and the average CCR after denoising
is 0.92. Tese fndings indicate that the denoised micro-
seismic signals can efectively preserve the corresponding
waveforms of the efective signals. In Figure 7(c), the RMSE
for the test set before denoising is mainly distributed be-
tween 5.12 and 15.87, whose average RMSE is 10.43. Te
RMSE after denoising is mainly distributed between 1.25
and 9.76, whose average RMSE is 4.98. Te RMSE is greatly
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Figure 6: Denoising examples. (a, c) Te efective signals (Z component) in the time-frequency domain. (b, d) Te efective signals (Z
component) in the time domain. Te time-frequency coefcients and waveforms of the efective, noise, and noisy microseismic signals are
plotted in panels (i), (ii), and (iii), respectively. Te recovered efective signals in the time-frequency domain and their time-domain
waveforms are shown in panels (a, c) (iv) and (b, d) (iv), respectively. Panels (a, c) (v) and (b, d) (v) show the recovered noise signals in the
time-frequency domain and their time-domain waveforms, respectively.
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reduced after denoising, indicating closeness to the ideal
signal.

Te denoising framework based on the convolutional
autoencoder was trained on synthetic microseismic data that
superimposed the real noise signals on the real high-SNR
efective microseismic signals. To test the generality of the
constructed denoising framework, we applied it to 1,000 real
mine microseismic signals. Tese signals (Figure 8(i)) are
severely polluted by noise, and the SNR is low. Moreover, to
intuitively compare the denoising results of the proposed
method with those of other methods, we used the con-
structed framework, WT, and EEMD to denoise mine mi-
croseismic signals with diferent SNR levels.Te comparison
is presented in Figure 8.

Figure 8 presents the denoising results of diferent
methods under diferent SNR levels. As can be seen from (iv)
and (v) in Figure 8, at a high-SNR level, WTand EEMD can
achieve a relatively good denoising efect, and the waveform
distortion is relatively small. However, with the decrease in
the SNR of mine microseismic signals, the denoising ability
of WT and EEMD gradually decreases. Although the
denoising efect of EEMD is better than that of WT, the
denoising results of these two methods still contain much
noise, the distortion of waveforms after denoising is large,
and the denoising efect is poor. In comparison, the
denoising efect of the proposed method is obviously better,
and the overall waveform of each efective microseismic
signal after denoising is clearer. After denoising, the P- and
S-waves of each efective microseismic signal are more
obvious, leading to better recognition of P- and S-wave
phases. In particular, the noise before the arrival of P-
wave is well suppressed, and the noise residue is approxi-
mately zero (Figure 8(iii)), which is benefcial for accurately
detecting microseismic events and phases in the subsequent
microseismic data processing. Te experimental results
show that even in the case of a low SNR, the proposed
method can better suppress the noise in mine microseismic
signals and realize the separation of the efective and noise
signals. Terefore, although our method is trained on

synthetic data, it can be generalized to practical denoising
tasks and applied to the denoising of real mine microseismic
signals. Moreover, it does not require any prior knowledge
or preprocessing and has strong practicability.

In real mine microseismic signal processing, given the
extended period of microseismic monitoring and the nu-
merous data involved, computational efciency also rep-
resents a key concern for denoising methods. To evaluate the
computational efciency of the constructed denoising
framework, we recorded the time taken by the proposed
method to process diferent number of microseismic signals
and compared them with those of WT and EEMD. Te
results are presented in Table 2 and Figure 9. As can be seen
from the comparison (Table 2 and Figure 9), our method
takes a far shorter time to denoise microseismic signals, and
this merit will become even more prominent with an in-
crease in the data processed. Of course, as our method is
a supervised learning method, the model has to be trained
before use—in our experiment, it takes approximately
9,627 s to train the model on the constructed training
samples—but once the model is trained, it denoises signals
efciently and quickly.

In summary, the common denoising methods of mine
microseismic signals, such as WT and EEMD, can improve
the quality of signals to a certain extent, but the ability to
denoise is limited, especially under a low-SNR condition.
Moreover, in practical application, these methods generally
require more manual participation, which greatly limits
their application scope. For instance, to have a good
denoising efect, WT needs to select the best basis function
and decomposition layer according to the real signals. Al-
though EEMD solves the problem of signal distortion caused
by modal aliasing in EMD and does not need to preset any
basis functions, it requires multiple iterations during de-
composition, which is very time-consuming. Furthermore,
there is a lack of uniform criteria for stopping iterations, and
diferent conditions may lead to diferent results. By com-
parison, instead of manually defning diferent features and
thresholds to improve the SNR, our data-driven method can
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automatically learn rich features from synthetic data to
separate the efective and noise signals and realize fast and
automatic denoising. Te performance, denoising efect and
computational efciency, of the constructed framework
outperforms these two denoising methods even in the case of
a low SNR. As a supervised learning method, it has to be

trained before use, and the quality and quantity of training
data will infuence the denoising efect. It is sometimes
difcult to obtain large, diverse, and reliable training samples
in practical application. Using microseismic signals with
a high SNR instead of clean efective signals to train the
model will more or less bring some interference to it and

Table 2: Processing time of diferent methods.

Number of test samples Time by WT (s) Time by EEMD (s) Time by our method (s)
1,000 45 105 31
2,000 91 209 61
5,000 228 557 154
10,000 457 1,173 335
20,000 974 2,406 786
50,000 3,106 7,695 2,482
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afect its generality. Tis may be the main reason why the
waveform amplitude preservation of the denoised signal is
not so great. In the process of denoising, our method applies
the predicted masks to noisy microseismic signals in the
time-frequency domain to separate the efective and noise
signals. Because the range of the value for each mask is
between 0 and 1, the constructed denoising framework
cannot recover a signal with the value larger than that of the
input noisy microseismic signal.

Blasting is a common construction method in mining.
Despite providing convenience for mining, it may cause some
potential hazards. Terefore, researching blasting signals has
a crucial engineering application value. To accurately extract
the subsequent blasting features, each blasting signal frst
needs to be denoised. Te source of blast signals is of an
expansive type. Te energy generated is instantaneously re-
leased, compressing the surrounding rock masses and pri-
marily propagating outwards in the form of a P-wave. Tis
type of signal has a high energy and large waveform amplitude.
Its waveform decays fast at the beginning and slows down
later, forming a “dovetail” waveform shape. Te duration of
blast signal is generally longer than that of efective micro-
seismic signal (rock rupture signal). When making the model
training set, we also added a certain number of blasting signals
so that the constructed framework can also denoise blasting
signals. Te denoising results of blasting signals are presented
in Figure 10. Te blasting signal waveforms after denoising
using the constructed framework are obvious, the charac-
teristics of “dovetail” waveforms are clear (Figure 10(ii)), noise
is well suppressed, and blasting events can be efectively
distinguished.

4. Conclusion

Microseismic monitoring is an integral part of mine safety
management and an efective means to realize mine dynamic
disaster monitoring and early warning. Microseismic signal
denoising is a basic and crucial link in data processing, which
infuences the accuracy and reliability of the monitoring
system. Terefore, to address the denoising problem of mine
microseismic signals, a denoising framework based on a deep
convolutional autoencoder was constructed in this study. Te
constructed denoising framework can learn the sparse rep-
resentations of the input signals in the time-frequency do-
main and generate two separate masks for each noisy
microseismic signal based on these representations to extract
the corresponding signals (one is used to extract the efective
signal, while the other is used to extract the noise signal),
thereby achieving the purpose of fast and automatic
denoising. To verify the efectiveness of the denoising
framework, we applied it to real mine microseismic signals
and compared the denoising results with those of two
methods. Te experimental results show that the denoising
framework can considerably improve the SNR of each mi-
croseismic signal as well as reduce its waveform distortion
degree after denoising. Compared with WTand EEMD, even
in the case of a low SNR, the denoising framework can better
suppress the noise in mine microseismic signals, preserve the
waveform shape of efective signals to the greatest extent, and

efciently separate the efective and noise signals. Moreover,
the constructed denoising framework does not need to un-
derstand and identify the complex relationship between at-
tributes. Because it does not require any prior knowledge or
preprocessing and has strong practicability, the denoising
framework can also be utilized for microseismic monitoring
signals in other felds, such as for the stability monitoring of
surrounding rocks in tunnel excavations and chamber sur-
rounding rocks in hydropower stations.
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