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In recent decades, with the large-scale construction and rapid development of half-through arch bridges, as well as the increase of
bridge service time, the suspender damage of arch bridge has become increasingly prominent. Terefore, real-time monitoring
and regular detection of the health of arch bridge suspenders and timely detection and accurate judgment of the damage location
and extent of suspenders are of great engineering signifcance for evaluating the reliability and residual life of arch bridge
structures. By analyzing the main difculties and existing problems of suspender damage identifcation, this paper takes the
change rate of modal curvature as the damage index, introduces freworks algorithm into the neural network model, optimizes the
optimization process of neural network weight and threshold, and proposes a prediction model based on improved BP neural
network by freworks algorithm. According to the measured data of the damage degree of a long-span arch bridge in daily
monitoring and on-site inspection, the proposed prediction method is applied to verify the efectiveness and accuracy in en-
gineering health detection. On this basis, the improved BP neural network by freworks algorithm is used to predict the suspender
damage of a certain long-span half-through arch bridge, which provides an important basis for the actual bridge safety assessment.

1. Introduction

With the development of smart cities and the progress of
science and technology, countries all over the world have
increased their investment in infrastructure construction. A
large number of complex structural forms have emerged,
such as super-high-rise buildings, long-span spatial struc-
tures, super-large bridges, large dams, nuclear power plants,
and large marine structures [1, 2]. Tese structural forms
have brought great convenience to economic development
and people’s lives, but once damaged, they will do great
harm to our cities. Large scale and complexity are the de-
velopment direction of the structure, and its service life is
often decades or even hundreds of years. In this service
process, the structure will be damaged to varying degrees
due to congenital defects such as design and construction,

catastrophic factors such as external load, environmental
factors, material aging, corrosion efect, fatigue efect, and
other uncertain factors [3]. After the damage, the bearing
capacity and durability of the structure will be afected, the
ability to resist external forces will be signifcantly reduced,
and then accidents will occur. Tis will lead to heavy ca-
sualties and economic losses and cause adverse social impact
[4]. Taking the bridge structure as an example, the data
statistics show that various deterioration phenomena occur
on the bridge decks of about 253000 concrete bridges in the
United States. Some of the bridges have been damaged in
diferent forms and degrees in less than 20 years of service.
Moreover, 35000 bridges will be added every year, and the
average number of partially or completely collapsed bridges
is about 200 every year. Te construction cost of 11 concrete
viaducts located on the ring expressway in the middle of
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England Island is 28 million pounds. However, the main-
tenance cost reached over 120 million pounds, which will be
close to six times the original cost. According to the
Yangcheng Evening News in China, the Department of
Communications of Guangdong Province organizes a large
number of personnel to conduct a general survey on the
technical status of existing and under-construction roads
and bridges in the province. Te results showed that of the
18700 bridges in Guangdong Province, 4244 were in cate-
gory III and IV poor conditions and had insufcient bearing
capacity, accounting for 22.7% of the total census, with
a cumulative length of 109616 linear meters. For example,
arch bridges have been widely used due to their beautiful
appearance, simple construction methods, and strong
spanning capacity. Te suspenders of arch bridges in service
commonly sufer from diseases, which directly afect the
safety and durability of bridge structures. Te suspender can
be damaged or even broken due to corrosion, fatigue, and
other reasons, which can greatly shorten the service life of
the bridge and increase the risk of bridge collapse, as shown
in Figure 1. Terefore, it is particularly important to identify
the damage of bridge suspenders [5].

It can detect and predict the performance of the
structure in real time, fnd and judge the damage location
and degree of the structure in time, and then predict the
performance change and remaining life of the structure to
obtain the maintenance decision and the evacuation of
local residents, which is of great signifcance to improve the
service efciency of engineering structures and ensure the
safety of people’s lives and property [6]. As the core of
structural health monitoring, the successful research of
damage identifcation has essential guiding signifcance for
how to establish the health monitoring system of engi-
neering structures. Terefore, the research on structural
damage identifcation has become a hot issue in the feld of
structural health detection [7]. Structural damage detection
technology and its identifcation methods have made great
progress in academic or practical application research in
recent years, but there are still many problems to be further
studied and solved in the damage detection of complex civil
engineering structures such as high-rise buildings and
bridges [8]. A considerable part of the existing damage
detection technologies and methods for civil engineering
structures are copied from aerospace, aerospace, and
mechanical structures. When the same technology and
method are introduced into another discipline, we should
pay attention to its applicability and the characteristics of
this discipline.

At present, there are also some technical difculties in
the feld of engineering structure damage detection [9].
Firstly, civil engineering structures are diferent from
aviation, aerospace, and mechanical structures. Relatively
large model error is allowed in design, analysis, and cal-
culation. However, if a large error exists in the model used
for detection, it will lead to a great diference between the
calculated and actual dynamic characteristics of the
damaged structure, so the error of the detection results
based on the dynamic characteristics will be very large.
Secondly, noise is unavoidable due to the infuence of many

factors of the engineering structure. In the process of long-
term health detection, noise may be introduced at every
step and link from data acquisition to transmission.
Terefore, a good ability to flter noise is what the iden-
tifcation method used should have. At present, damage
identifcation in engineering structures is a nonunique
problem, and if it cannot be well distinguished, it will result
in unpredictable results of damage location and degree.

Because of the existence of these factors, many damage
identifcation methods become invalid, which makes the
research of damage identifcation face bottleneck. Terefore,
a new method to overcome the above difculties has become
an urgent need [10–12]. Te dynamic characteristics and
response of the structure will change with the damage of the
structure. In other words, there is a complex nonlinear
relationship between the dynamic characteristics and re-
sponse changes before and after the damage and the damage
location and degree of the structure. Te traditional acoustic
emission method, ultrasonic method, infrared method, and
other nondestructive testing techniques are not only time-
consuming and expensive but also cannot detect some parts
of large structures [13–15]. However, the dynamic charac-
teristics and response of structures can be obtained through
various detection methods and modal analysis. Te artifcial
neural network (ANN) can take the damage index related to
the dynamic characteristics and a certain response of the
structure in various states as the input vector and take the
damage diagnosis results (whether the damage exists, the
damage location, damage degree, etc.) in various states as the
output vector [16]. By learning to form a mapping, the
neural network weights containing this mapping relation-
ship can be saved, and there is no need to call the analysis
model in the back analysis process.Trough the efective and
fast forward operation of the weight obtained by learning
and the damage index obtained by detection, the damage
diagnosis results can be obtained during the online diagnosis
[17]. In a word, the achievements and research of artifcial
neural network in this feld are still in the basic exploration
stage, and it still needs the continuous eforts and explo-
ration of relevant personnel to make the structural health
monitoring technology and damage identifcation method
better serve the feld of engineering structures [18]. Since the
performance of the neural network-based prediction model
largely depends on the network structure and the weights
and thresholds of each node of the network, the neural

Figure 1: Bridge deck collapse due to boom breakage.
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network structure, initial weights, and thresholds of the
network will greatly restrict the prediction accuracy and
convergence of the neural network-based prediction model.

To sum up, aiming at the problem that the single neural
network model has slow convergence speed and is easy to fall
into local optimization, the existing research mainly focuses
on the optimization and improvement of the neural network
using intelligent optimization algorithms such as particle
swarm optimization (PSO) and genetic algorithm (GA),
which solves the problem of low prediction accuracy of the
single neural network prediction model to a certain extent
[19–23]. However, with the deepening of research, scholars
found that the above algorithm itself also has aspects to be
improved [24]. Improper setting of genetic operator will afect
the search performance of the algorithm and make the al-
gorithm easy to fall into local optimal solution [25], and too
large initial population in PSO algorithm will lead to the
problem of slow search speed of the algorithm, which will
restrict the performance of optimizing BP neural network
prediction model based on swarm intelligence algorithm [26].
For example, the BP neural network prediction model op-
timized based on GA algorithm is limited to the large sample
data model, while the prediction ability of the sample model
with small samples and uneven distribution is not signif-
cantly improved [27]. At the same time, the diversity of
particles will be lost due to the too fast particle optimization
speed, which restricts the accuracy of the prediction results of
BP neural networkmodel optimized based on PSO algorithm.

Fireworks algorithm (FWA) is a new swarm intelligence
optimization algorithm proposed by Tan et al., which works
by simulating the mechanism of simultaneous explosion and
difusion of frework at multiple points in the air [28]. It
shows high optimization performance in solving optimi-
zation problems and has attracted the attention of scholars at
home and abroad. Compared with GA and PSO algorithms,
FWA simulates the mechanism of simultaneous explosion

and difusion of frework explosion operators and ensures
the diversity of frework population; at the same time, the
freworks algorithm has stronger global search ability by
introducing the idea of immune concentration and the
distributed information sharing mechanism. Terefore, this
paper introduces the freworks algorithm (FWA) into the BP
neural network model to optimize the weight and threshold
of BP neural network, proposes a prediction model based on
the freworks algorithm to improve BP neural network
(FWA-BPNN), to solve the problem that the traditional BP
neural network prediction model has slow convergence
speed and is easy to fall into the local optimal solution in the
training process, and applies it to the damage prediction of
long-span arch bridges.

2. Classical Model of BP Neural Network

BP neural network shows good self-learning and self-
adjusting ability in solving nonlinear problems and is
widely used to solve complex system prediction problems
with many factors interlaced. Te essence of the BP neural
network prediction model is to train the model through
a large number of data in the fnite solution space and then
fnd the weight wij and threshold between network neurons
θi and other parameters to establish the mapping re-
lationship between input and output and minimize the
network error, as follows:

① Initialize the network weights and thresholds: the
initial weights and thresholds of the network are
initialized randomly in the interval [1, 1].

② Feed forward calculation: assuming that the weight
value w

(l)
ij (k) of the network in the kth iteration

process, the threshold value θ(l)
i (k) of the ith neuron,

and the expected output ti(k) of the ith neuron node
in the lth layer are known, then

V
(l)
i (k) � 

Sl−1

j�1
w

(l)
ij (k)y

(l−1)
j (k) + θ(l)

i (k), y
(l)
i (k) � fl V

(l)
i (k) ,

⎧⎪⎨

⎪⎩
(1)

where V
(l)
i (k) is the input of the ith neuron in the lth

layer of the neural network; y
(l)
i (k) is the output of

the lth layer; l is the layer number of the network and
l� 1, 2, . . . L; 1≤ i≤ SL; and y(0)(k) � x(k).

③ Error backpropagation: calculate the error δ(l)
i (k) of

the lth layer in the kth iteration of the neural network
through equations (2) and (3).

δ(L)
i (k) � −2 ti(k) − fL V

(L)
i (k)  fL

′
V

(L)
i (k) ,

(2)

where ti(k) is the expected output value of the ith
neuron node, and 1≤ i≤m � Sl. Based on this, δ(l)

i (k)

can be calculated by recursion formula (2) and
l� L − 1, L − 2, . . ., 1.

δ(l)
i (k) � 

Sl+1

j�1
w

(l+1)
ji (k)fl

′
V

(l)
i (k) δ(l+1)

j (k). (3)

④ Update network weights and thresholds: use equa-
tion (4) to update the weights and thresholds of the
neural network.

w
(l)
ij (k + 1) � w

(l)
ij (k) − αδ(l)

i (k)y
(l−1)
j (k),

θ(l)
i (k + 1) � θ(l)

i (k) − αδ(l)
i (k),

⎧⎪⎨

⎪⎩
(4)

where w
(l)
ij (k + 1) and θ(l)

i (k + 1) are the weights and
thresholds of the network in the k + 1 iteration
process, respectively; α is the momentum factor;
1≤ i≤ Sl; 1≤ j≤ Sl− 1; and 1≤ l≤ L.
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3. Suspender Damage Prediction Model
Based on Improved BP Neural Network with
Fireworks Algorithm

3.1. Fireworks Algorithm. Fireworks algorithm is a new
swarm intelligence optimization algorithm. For the opti-
mization problem min f(x) ∈ R, x ∈ Ω, to be solved,
freworks algorithm is used to solve the optimization
problem. Te specifc steps are as follows:

① Initialize the population: Some freworks are ran-
domly generated in a specifc solution space. Each
frework individual xi represents a solution in the
solution space, that is, xi ∈ Ω.

② Calculate the ftness value: for each frework indi-
vidual xi in the initial population, calculate the ftness
value f(xi) according to the ftness function f(x) and
calculate the number of freworks produced by each
frework explosion Si and the explosion radius Ai
according to the following equations:

Si � c ×
ymax − f xi(  + ε


N
i�1 ymax − f xi( (  + ε

, (5)

Ai � d ×
f xi(  − ymin + ε


N
i�1 f xi(  − ymin(  + ε

, (6)

where ymax �max(f(xi)) (i� 1, 2, . . ., n) is the ftness
value of the individual with the worst ftness value of
all freworks in the current population; ymin �min
(f(xi)) (i� 1, 2, . . ., n) is the ftness value of the best
individual in the current population; c and d are
constants, which are, respectively, used to limit the
total number of sparks and represent the maximum
explosion radius; and ε is a constant used to avoid the
denominator being zero.

③ Generate sparks: Randomly select z dimensions to
form a set Z, where z� rand (1, d× rand (0, Ri)), and
rand (0, Ri) is a random number generated within the
explosion radius Ai. In set Z, for each dimension k,
use equations (7) and (8) to perform explosion
mutation on freworks, map sparks beyond the
boundary through the Gaussian mutation mapping
rules in equation (9), and save them in the spark
population.

h � Ai × rand(1, −1), (7)

cxij � xij + h, (8)

cxik � xik × r, (9)

where Ai is the explosion radius of the ith frework; h
is the position ofset; xik is the kth dimension of the
ith frework in the population; exik is the spark
generated by the explosion of the ith frework; cxik is
the Gaussian variation spark of xik after Gaussian
variation; and r follows the Gaussian distribution.

④ Select the next generation group:Te next generation
frework population is selected by using the selection
strategy, that is, N frework individuals are selected
from the frework explosion sparks and Gaussian
variation spark populations to form the next gen-
eration candidate frework population. For the can-
didate frework population K, the selection strategy is
as follows: select the individual xk with the minimum
ftness value min (f(xi)) as the next generation of
frework population individuals directly, and the
remaining N − 1 frework individuals adopt the
roulette gambling method. For the candidate indi-
vidual xi, the probability formula (10) is adopted for
its selection.

p xi(  �
R xi( 

j∈KR xj 
, (10)

where R(xi) is the sum of the distances between
frework individual xi and other individuals, which is
calculated by the following formula:

R xi(  � 
K

j�1
d xi, xj  � 

K

j�1
xi − xj

�����

�����. (11)

⑤ Determine termination conditions: if the termination
conditions are met, stop the iteration; otherwise,
continue with step ②.

3.2. Improved BP Neural Network Prediction Model Using
Fireworks Algorithm for Suspender Damage. Te weight and
threshold of BP neural network are the key factors, which
afect the prediction performance of the BP neural network
model. Terefore, the freworks algorithm is introduced into
the neural network model, and the position xik of frework
individuals in the frework population is used to represent
the weight coefcient of network nodes and the threshold of
network neurons. Based on the above rules, the specifc
improvement strategies are as follows:

① Key parameter code: because the weights, thresholds,
and frework individuals in the neural network are
composed of a series of vectors, the real vector coding
strategy is selected to code the key parameters in
the model.
Note that X� [x1, x2, . . ., xD] represents a set of
parameters to be optimized, in which each dimension
is composed of network weights and thresholds. In
the neural network, note nIW(1,1) as the number of
weight values between the input layer and the hidden
layer, nb(1,1) as the number of neuron thresholds in
the hidden layer, nIW(2,1) as the number of weights
between the hidden layer and the output layer, and
nb(2,1) as the number of neuron thresholds in the
output layer; then, D� nIW(1,1) + nb(1,1) + nIW(2,1)
+ nb(2,1).
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② Calculate the ftness value: Initialize weight co-
efcient and threshold. Initialize the weight co-
efcient and threshold between nodes in the neural
network in the interval [−1, 1], i.e., xi∼U[−1, 1], and
use the position of frework individual xi in the
freworks algorithm to represent the weight co-
efcient of network nodes and the threshold of
neurons, and then each frework individual repre-
sents a neuron in the neural network model.

③ Select the ftness function: Te goal of algorithm
model training is to make the network output layer
result as close as possible to the expected result
through continuous iterative calculation, to obtain
the weight parameter w

(l)
ij (k) and threshold value θi

between nodes when the network output result is
optimal. In the FWA-BP neural network, the square
error function is introduced to calculate the ftness
value of individual freworks.

SSE � 
P

p�1


S

t�1
(t − y)

2
, (12)

where t is the expected output of the network; P is the
number of layers of the network; S is the number of
network output units; and y is the actual output value
of the network.
Te actual output value of the network is specifcally
expressed in the following equation:

yi � fi 

n

j�1
wijxj + θi

⎛⎝ ⎞⎠, (13)

where xj is the input of the network; wijis the weight
of network nodes; θi is the threshold value of the ith
neuron in the network; and θi � −wi(n + 1).
Te ftness function fi(x) is given in the following
equation:

fi(x) � 

p

p�1


s

t�1
(t − y)

2
� 

p

p�1


s

t�1
t − fi 

n

j�1
wijxj + θi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2

.

(14)

④ Optimize frework population: For each frework
individual x, calculate its ftness value f(xi) with
equation (14), and calculate the number of explosive
freworks Si and explosion radius Ai with equations
(5) and (6). At the same time, based on equations
(7)–(9), each frework individual is operated with
explosion, displacement, and mutation, and the se-
lection strategy of equations (10) and (11) is used to
select the best frework individual to form the next
generation of frework population.

⑤ Determine termination conditions: According to
equations (11) and (14), calculate the ftness value
f(xi) of the frework individuals in the frework
population and the Euclidean distance R(xi) between
the frework individuals and judge whether the

termination condition of the maximum number of
iterations is satisfed. If it is satisfed, the new frework
population is composed of the frework individuals
with the minimum ftness value min (f(xi)) and the
frework individuals with the maximum distancemax
(R(xi)) in the current frework population, and take
the current frework population as the optimal
frework population Xbest; otherwise, continue with
step ⑤.

⑥ Update network weights and thresholds: Use the
optimal frework population Xbest obtained in step⑤
to initialize and update the weight and threshold
vector X in the network model. Based on the above
steps, the fowchart of the whole FWA-BP algorithm
can be obtained, as shown in Figure 2.

4. Health Inspection Analysis of Long-Span
Arch Bridge

4.1.Health Inspection of the Long-SpanArchBridge. To verify
the validity of the prediction model based on FWA-BP
neural network, the damage detection and experimental data
of a long-span arch bridge are selected, and the prediction
model based on FWA-BP neural network is experimentally
verifed and compared. Te research object of the arch
bridge used in this paper is shown in Figure 3.Te bridge site
of this bridge has a water surface width of about 230m,
a deep water fow, a minimum elevation of −36.57m at the
trough bottom, and a maximum navigable water level of
5.9m. Te rock on the bank is exposed, and the elevation of
the north south small mountain top is about 27.00m. Te
elevation of the foot of the mountain is about 6.00m, and the
surface of the mountain is covered by the Quaternary eluvial
layer, with the surface rock mass in a gravel shape. Te main
bridge is a through steel tube concrete ribbed arch bridge
with a main span of 245m. Te arch axis is a quadratic
parabola, with a rise span ratio of 1/5, a rise height of 49m,
and a bridge deck width of 22.5m. Among them, the car-
riageway is 15m wide, the sidewalk is 2 ∗ 1.5m wide, and
the design load is Grade 20 for automobiles, the trailer
weighs 100 tons. Te distance between suspenders is 5.9m,
and double suspenders are used. Te main arch of the steel
pipe arch hoisting bridge weighs from 53 to 61 tons per
section, and the entire bridge has 27 installation sections,
with a total weight of 1220 tons.

Te arch ribs are concrete flled steel tubular trusses of
equal height and width, and the upper and lower chords are
of fat dumbbell shaped sections. Paired vertical web
members and diagonal members are set between the upper
and lower chords, which are, respectively, directly connected
to the circular tubes of the chords. Te total height of the
arch rib section is 4.4m, and the total width is 1.9m. Within
the range of 16.766m above the arch springing line of the
arch foot, the truss structure is wrapped with No. 50
reinforced concrete to form a reinforced concrete box rib
section with a height of 4.8m and a width of 2.3m. Shear
keys are added to the wrapped section and reinforcement is
adjusted. Te main pipes, batten plates, web members, and
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transverse joints of the upper and lower chords of the arch
rib aremade of 16Mn steel, themain pipes aremade of spiral
welded pipes, and the web members are made of seamless
steel pipes. Te main pipe and batten plate cavities of the
upper and lower chords are flled with C50 micro-expansive
concrete. A total of 7 spatial steel pipe cross braces are

provided for the entire bridge, including 5 above the bridge
deck and 2 below the bridge deck. Te cross bracing of the
arch crown adopts a meter shaped lattice structure, and the
rest adopts a straight shaped lattice structure.

Te bridge deck system consists of 41 cast-in-situ sec-
tions and 38 prefabricated beams, and continuous bridge
decks are formed between adjacent beams through cast-
in-situ fange joints. Prefabricated beams are divided into
upper column beams and suspender beams, both of which
are prestressed concrete open box girders.Te bridge deck of
the column beam and suspender beam on the arch is
a simply supported structure, which releases the temperature
change and shrinkage and creep displacement of the entire
continuous bridge deck system structure through the ex-
pansion joints at the simply supported ends. A box shaped
steel beam is provided at the intersection of the bridge deck
system and the arch ribs, with a total of two sets for the entire
bridge. Te bridge deck is paved with 9 cm thick steel fber
concrete and 4 cm thick asphalt concrete. Te bridge deck
adopts a 3% two-way longitudinal slope and a 1.5% two-way
transverse slope. Te longitudinal slope of the bridge deck is
adjusted by the inclination of the beam fange plate, and the
transverse slope is adjusted by the height change of the beam.

In order to improve stability, column top tie beams have
been added to No. 1 and No. 2 columns with column heights
exceeding 8m above the arch. Each suspender beam is
equipped with double suspenders with a spacing of 1.5m,
and the suspension rod is composed of 55 galvanized high-
strength steel wires with a diameter of 5mm, and the outer
layer is protected by hot extruded polyethylene. Both ends
are cold casting heading anchorage. To avoid direct exposure
to the atmosphere, the upper and lower anchor heads are
protected by protective covers. To protect the exposed steel
wire (approximately 50 cm long) near the anchor head under
the suspender, cement mortar is poured into the conduit
under the suspender. At the same time, the suspender is
wrapped with stainless steel within 3m above the bridge
deck to avoid man-made damage.

Te vertical web, diagonal web, and lateral connection
systems of this bridge adopt hollow steel tube structures that
are not flled with concrete. Te inner surface of the empty
pipe structure is required to be sealed and coated with two
layers of rust-resistant paint.Te anti-corrosion treatment of
the outer surface of the steel structure adopts the GCM
polymer material protection system. Tere are two forms of
anti-corrosion for the outer surface of the arch foot outer
covering section structure: the surface in contact with the
concrete (including the batten plate) is not subject to anti-
corrosion treatment, the shear key is welded, and rust re-
moval treatment is conducted to ensure a good combination
with the concrete.Te surface of the exposed part also adopts
a GCM polymer material protection system.

4.2. Suspender Damage Experimental Analysis of the Long-
Span Arch Bridge. Te bridge is a key transportation hub
connecting the north and south sides, with an average of
more than 12000 vehicles passing through it every day. Since
its completion and opening to trafc, it has been operating

Start

Initialize fireworks population and
fireworks individuals

Coding the weights and thresholds of
neural networks

Calculate the fitness value of each
individual fireworks

Conduct explosion, displacement,
variation and other operations on

fireworks individuals in the fireworks
population

Using the selection strategy, select the
best fireworks individuals to form the

next generation of fireworks population

Are the termination
conditions met?

Y

N

Continue iteration

Initializing weights and thresholds of
neural networks with optimal fireworks

population

Training and verification of
FWA-BPNN model

End

Figure 2: Te fow diagram of the improved BP neural network
with freworks algorithm.

Figure 3: Schematic of the research arch bridge in this paper.
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for a long time, so long-term and comprehensive health
testing and related scientifc experiments have been con-
ducted on the bridge.

Te outer surface of the arch rib steel structure adopts
a GCM polymer material protection system. Upon in-
spection, it was found that the anti-corrosion coating surface
of the steel pipe arch rib has anti-rust phenomenon, with
severe peeling and peeling in some parts and cracks in some
parts. Tere are cracks on the concrete surface wrapped
around the arch rib, mainly along the arch axis and per-
pendicular to the arch axis. In addition, there are a small
number of oblique cracks, and a small number of cracks are
accompanied by bleeding phenomenon.

Tere are 120 suspenders in the whole bridge, all of
which are high-strength steel wire bundles. Except for the
eight suspenders whose upper anchor heads are anchored in
the upper chord batten concrete, the remaining suspenders’
upper anchor heads are all anchored in the lower chord
batten concrete, and the anchor heads are all cold casting
heading anchorage. Upon inspection of the protective cover,
it was found that the anti-corrosion coating of the anchor
head protective cover had pitting and spot corrosion, and in
severe cases, there were peeling and peeling phenomena, as
well as the lack of fxing bolts. Te statistical results of the
diseases of the upper anchor head protective cover are
shown in Table 1.

For the inspection of anchor heads, 16 anchor heads are
selected from both upstream and downstream sides at the
upper end for inspection, while the frst anchor head from
both upstream and downstream sides and the midspan
anchor head are selected for inspection at the lower end.
Upon inspection, it was found that there was condensed
water on the inner wall of the protective cover and the top of
the anchor cup cover, there was rust on the outer side of the
anchor cup, the butter in the anchor cup had dried and
evaporated, and the steel wire pier head was exposed and
corroded. Te inspection results of anchor head corrosion
are shown in Table 2. For ease of expression, the anchor
heads are numbered sequentially from south to north. Te
upstream, downstream, and upper and lower ends are
distinguished by UT, UB, DT, and DB. For example, UB2
represents the second lower anchor head on the upstream
side, and so on.

As can be seen from Table 2, most of the upper and lower
anchor head protective covers have condensed water. When
there is no or a small amount of accumulated water inside
the anchor cup of the upper anchor head, the steel wire pier
head may experience whitening. When there is a large
amount of accumulated water, the steel wire pier head will
produce slight rust. Te corrosion condition of the sus-
pender was inspected, and some suspenders were selected to
inspect the cable body under the protection of the in-
termediate PE pipe. It was found that the suspender cable
body was not corroded. After the inspection, the cable body
is sealed with cellophane and epoxy resin.

Te surface of the precast beam concrete for the bridge
deck system is uniform in color, and there are no cracks,
peeling, and exposed reinforcement. However, there are
alkalization and whitening phenomena on the local concrete

surface. Te cast-in-place concrete has cracks, mainly lon-
gitudinal cracks. Some cracks exceed the limit in width, with
a maximum of 0.41mm. In addition, there are a few oblique
cracks. Te bridge deck pavement shall be free of looseness,
oil spillage, cracking, waves, ruts, pits, and subsidence. Most
expansion joints are blocked by foreign objects and lose their
expansion function. Te measurement of bridge geometry
includes the measurement of bridge deck geometry and arch
axis geometry, which is arranged during the period when the
structural temperature tends to stabilize.

Te bridge deck alignment measurement is conducted
using a precision electronic level combined with an indium
steel ruler. Under the condition of closing all trafc on the
bridge deck, it is divided into two zones, upstream and
downstream, for round-trip closed leveling. Te measuring
points are arranged at the eighth point of the bridge deck.
Te permanent measurement is arranged inside the collision
barrier of the upstream and downstream side trafc lanes.
Comparing the design value and the measured value of the
bridge deck alignment, it is found that the overall bridge
deck alignment has decreased, with the diference between
the measured value and the design value being between
−0.095m and 0.069m.

Te arch axis is measured using a tunnel section detector.
Due to site conditions, only the arch axis elevation within
68.6m from the midspan was tested and compared with the
design value. It was found that the measured arch rib
alignment slightly changed compared to the design align-
ment, with a diference between −0.015m and 0.094m.
According to the theory of string vibration, the cable force of
the suspension rod of the entire bridge is measured using
a dynamic cable force tester.

When measuring the natural vibration frequency of the
suspension rod of the bridge using the vibration frequency
method, two sets of equipment, a dynamic signal collector
and a cable force tester, are used together. When using
a dynamic signal collector, fx the acceleration sensor with
black electrical tape at half of the suspension rod, connect
the dynamic signal collector through the sensor cable, and
synchronize the collector with the computer acquisition
system.Ten, collect the natural frequency of the suspension
rod under both environmental and manual excitation. For
the bridge site during the operation period, environmental
random vibration is selected, and the suspension rod is
directly excited by using vehicle loads and wind loads in the
environment as the vibration sources of the suspension rod.
During measurement, if the suspension rod is stationary and
there is no natural vibration or the measured natural vi-
bration frequency is unclear, a certain amount of artifcial
excitation is required for the suspension rod. A small
wooden mallet is used to strike the suspension rod as ar-
tifcial excitation, which can compensate for the unstable
and weak environmental vibration source.

Te random vibration of the environment is tested using
a cable force dynamic tester. Te cable force dynamic tester
is a portable single or dual-channel vibration detection
analyzer for micro-vibration signals. Te accelerometer is
fxed on the suspension rod to measure its lateral vibration.
Te cable force dynamic tester can collect the multi-
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harmonic vibration curve of the suspension rod and obtain
the lateral vibration frequency of the suspension rod through
spectral analysis. Te characteristic of the corresponding
relationship between the cable force and the vibration fre-
quency of the cable is utilized. When the length of the cable,
the constraint conditions at both ends, and the distribution
mass are known, the cable force of the suspension rod of the
bridge can be obtained bymeasuring the vibration frequency
of the cable.

In order to reduce measurement errors, the test points of
the same suspension rod will be selected at diferent heights
for multiple measurements under time constraints, and the
measured natural frequencies will be compared to avoid
signifcant errors in the data. In Table 3, the comparison
between the tested cable force results and the cable force at
completion acceptance. For ease of expression, the sus-
penders are numbered sequentially from south to north, and
the upstream and downstream are distinguished byU andD.
Te frst upstream suspender on the south side is U1, the frst
downstream suspender is D1, the frst upstream suspender
on the north side is U60, the frst downstream suspender is
D60, and so on.

In Table 3, the diference value� the measured value of
regular inspection− the measured value of handover ac-
ceptance. Te diference value is positive when the cable
force increases and negative when the cable force decreases.
From Table 3, it can be seen that the cable force of the
suspender tested this time is generally deviated from the
cable force at the completion acceptance, with most of the
diference between 10 kN and 40 kN, with a maximum
diference of 106.2 kN.

5. Damage Prediction Calculation Based on
FWA-BP Neural Network Prediction Model

5.1. Suspender Damage Prediction Modeling of Arch Bridge.
Using the FWA-BP neural network prediction model and
taking the damage prediction of long-span arch bridge
suspenders as an example, the damage prediction model

based on FWA-BP neural network is established. Te steps
are as follows:

① Select the input and output indicators: ten indexes,
such as modal curvature change rate, elastic modulus,
frequency, vibration mode, boom damage location,
noise level, instantaneous bearing weight, lateral
bending vibration displacement, beam linear mass,
and bending stifness, are selected as the input in-
dexes of the network prediction model, and the boom
damage degree is selected as the output index of the
network prediction model.

② Standardize the data: To eliminate the impact of
diferent dimensions on the accuracy of the pre-
diction model, standardize the data for each indicator
to the same order of magnitude, to improve the
comparability between the data.Tis model adopts 0-
1 standardization method to standardize the exper-
imental data.

X
∗

�
xk − min(X)

max(X) − min(X)
, (15)

where max (X) is the maximum value in the dataset
and min (X) is the minimum value in the dataset.
After the data are standardized, the training data are
mapped to the interval [0, 1] for comparative
analysis.

③ Set key parameters: on the basis of the input and
output indexes of the prediction model, the main
parameters based on FWA-BP neural network are set
as follows—the number of nodes in the input layer
m= 10, the number of nodes in the output layer n= 1,
the number of hidden layers e= 1, and the number of
neurons in the hidden layer s of the neural network,
and then empirical formula (16) is used to calculate
s≈ 6.

s �

��������������������������������

0.43mn + 0.12n
2

+ 2.54m + 0.77n + 0.35


+ 0.51 ≈ 6. (16)

For the selection of activation function, tansig and purelin
activation functions are selected in the input layer and output
layer, respectively, and trainlm function is selected as the
training function of the network model. In the process of
network training, set the learning rate as 0.01, the momentum

factor as 0.9, the maximum number of iterations as 20000, and
the minimum training error as 0.001. For the weight value wij

and threshold between network nodes θ, the optimal frework
population obtained by iterative selection of freworks algo-
rithm is used to initialize the network weight and threshold.

Table 1: Statistics on diseases of upper anchor head protective cover.

Number of
upper anchor
heads (pcs.)

Pitting corrosion Peeling Missing bolts

Quantity (pcs.) Percentage (%) Quantity (pcs.) Percentage (%) Quantity (pcs.) Percentage (%)

120 39 32.5 28 23.3 61 50.8
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At the same time, according to the network weight value
wij and threshold to be optimized θ, the key parameters in
the freworks algorithm are set as follows: population size
n� 70, frework explosion radius adjustment constant d� 5,
frework explosion spark number adjustment constant
c� 40, upper limit of frework explosion spark number
ub� 0.8, lower limit of frework explosion spark number
lb� 0.04, Gaussian variation spark number g � 5, and
maximum iteration times T�1000.

5.2. Experimental Results and Performance Analysis of Pre-
diction Model. Te internal force and deformation of the
arch rib control section under dead load calculated by the
model in this paper are shown in Table 4.

In Table 4, Calculation I is the calculation result of the
testing agency, and Calculation II is the calculation result of
the model in this article; the axial force in the table is positive
with pressure; the side tension below the bending moment is
positive; the defection is positive downward.

Te comparison between the cable force calculated by
the model in this article and the detection mechanism and
themeasured cable force is shown in Table 5, taking the cable
force of the upstream suspender as an example.

In Table 5, Calculation I is the calculation result of the
testing agency, and Calculation II is the calculation result of the
model in this article. Diference①=Calculate the mean value
of II−Calculate I, with an increase in the diference being
positive and a decrease being negative, and a percentage of
diference ①=Diference ①/Calculate I. Diference
②=calculated II mean−measured mean, if the calculated II
mean is greater than the measured mean, it is positive, and if it
is less than the measured mean, it is negative, and a percentage
of diference ②=diference ②/measured mean.

From Tables 4 and 5, it can be seen that the axial force
calculation results of the model and the detection mechanism
in this paper are very similar under the dead load, the bending
moment calculation results of each section are basically con-
sistent, and the defection calculation results are also basically
similar. Te maximum deviation between the upstream sus-
pender cable force calculated by this model and the cable force
calculated by the detection mechanism is 5.5%, and the
maximum deviation from the measured cable force is 5.6%.
Terefore, the calculation results of this model are reliable and
can be used as the basis for further analysis and research.

5.3. Suspender Damage Calculation Prediction. Arch ribs,
transverse connections, and suspension structures are the
general components of the span structure of half-through

arch bridge and through arch bridges. Te suspender is
composed of load-bearing steel wire and steel pipe sheathed
outside it, which plays a key role in hanging the bridge deck.
Te waterproof system of its upper and lower anchor heads
is easy to age. Among the components of the arch bridge, the
suspender is the most easily damaged component, so the
research on damage identifcation of this kind of arch bridge
should focus on the suspender health detection. Taking No.
30 suspender in the middle as an example, some training
samples are listed in Tables 6 and 7.

Firstly, the 0-1 standardization strategy according to
equation (15) in Section 4.2 is used to standardize the
experimental data, and then the experimental dataset is
established with the standardized data to train and test the
FWA-BP neural network prediction model. Te frst 80%
of the data in the experimental dataset is selected as the
training data set, and the last 20% of the data in the dataset
is selected as the test dataset. Te prediction model based
on FWA-BP neural network proposed in this paper is
tested and verifed.

Secondly, to further verify the prediction performance
based on FWA-BP neural network, the same datasets are used
to train the traditional BP neural network, genetic algorithm-
improved BP neural network (GA-BPNN), and particle swarm
optimization algorithm-improved BP neural network (PSO-
BPNN). Te parameter setting of the GA is as follows: pop-
ulation size popu� 30, genetic algebra gen� 100, crossover
probability pcross� 0.8, and mutation probability
pmutation� 0.05. For PSO algorithm, the parameters are as
follows: speed update parameter c1� c2�1.49445, evolution
times maxgen� 150, population size sizepop� 30, individual
maximum popmax� 7, individual minimum popmin� −7, in-
dividual maximum speed vmax, and individual minimum speed
vmin. Te parameters of BP neural network in BP neural net-
work prediction model optimized by diferent algorithms are
the same as those in FWA-BP neural network model described
in Section 4.2.

Tirdly, to reduce the accidental factors in the ex-
perimental process, the same algorithm model is trained
and tested for 3 times with the same data, and the average
value of the prediction error and iteration time of 3 times
are taken as the prediction error and iteration times of the
algorithm. Specifcally, under the same experimental
conditions, the GA-BP neural network and PSO-BP
neural network models are simulated, and the prediction
results of the neural network prediction models optimized
by diferent algorithms are obtained. Te results are
shown in Tables 8 and 9.

Table 4: Calculation results of internal forces of main arch ribs under dead load.

Control section
Axial force (kN) Bending moment (kN·m) Defection (mm)

Calculation I Calculation II Calculation I Calculation II Calculation I Calculation II
Arch foot 44132 43986 −44891 −43527 0 0
L/4 section (top chord) 17789 17861 27 27 65 63
L/4 section (bottom chord) 16758 16903 151 162 65 63
L/2 section (top chord) 17137 17242 274 279 107 103
L/2 section (bottom chord) 14459 14584 315 308 107 103
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Table 5: Comparison between the calculated and measured cable forces of the suspender (unit: kN).

Hanger
no.

Calculation
I

Calculation
II

Calculation II
mean value

Measured
value

Measured
mean value

Diference
value ①

Diference ①
percentage (%)

Diference
value ②

Diference ②
percentage (%)

U1 390.4 355.8 393.5 369.4 396 3.1 0.8 −2.5 −0.6U2 431.3 422.6
U3 381.1 380.2 378.9 391.3 380.9 −2.2 −0.6 −2 −0.5U4 377.7 370.5
U5 379.7 383.8 384.4 403.9 385.7 4.7 1.2 −1.3 −0.3U6 384.7 367.4
U7 391.2 389.7 390.1 492.3 392 −1.1 −0.3 −1.9 −0.5U8 390.4 291.6
U9 375.3 387.5 388.4 416.1 393.7 13.1 3.5 −5.3 −1.3U10 389.3 371.3
U11 389.1 385.4 386.1 388.5 409.1 −3 −0.8 −23 −5.6U12 386.7 429.7
U13 381.9 387.6 387.9 390.4 400.5 6 1.6 −12.6 −3.1U14 388.1 410.5
U15 376.8 386.5 386.9 362.5 392.1 10.1 2.7 −5.2 −1.3U16 387.3 421.7
U17 383.6 389.7 389.2 397.6 385.9 5.6 1.5 3.3 0.9U18 388.6 374.1
U19 380.9 387.5 387.7 470.3 392.1 6.8 1.8 −4.4 −1.1U20 387.8 313.8
U21 380.6 387.8 387.6 401.3 409.8 7 1.8 −22.2 −5.4U22 387.3 418.2
U23 382.5 388.6 388.4 378.3 384.9 5.9 1.5 3.5 0.9U24 388.1 391.5
U25 384.7 388.6 388.8 413.5 398.4 4.1 1.1 −9.6 −2.4U26 388.9 383.2
U27 381.9 388.5 388.6 461.6 395.5 6.7 1.8 −6.9 −1.7U28 388.7 329.3
U29 386.5 389.9 390.2 382.3 410.4 3.7 1.0 −20.2 −4.9U30 390.4 438.5
U31 379.9 386.6 387 447.5 406.8 7.1 1.9 −19.8 −4.9U32 387.4 366.1
U33 378.3 388.7 388.8 385.3 368.8 10.5 2.8 20 5.4U34 388.9 352.3
U35 385.6 388.4 388.7 391.4 388.3 3.1 0.8 0.4 0.1U36 388.9 385.2
U37 379.4 388.3 388.5 371.9 369.7 9.1 2.4 18.8 5.1U38 388.6 367.5
U39 377.1 386.3 386.6 378.3 367.1 9.5 2.5 19.5 5.3U40 386.8 355.9
U41 371.6 379.1 380.3 378.7 368 8.7 2.3 12.3 3.3U42 381.4 357.3
U43 376.4 385.5 386.4 402.5 367 10 2.7 19.4 5.3U44 387.2 331.4
U45 388.7 389.1 389 427.3 401.3 0.7 0.2 −12.3 −3.1U46 388.9 375.3
U47 383.3 386.9 386.8 398.5 367.6 3.5 0.9 19.2 5.2U48 386.7 336.7
U49 372.4 387.4 387.5 402.8 383 15.1 4.1 4.5 1.2U50 387.6 363.2
U51 392.1 387.6 387.5 411.5 385.9 −4.6 −1.2 1.6 0.4U52 387.2 360.3
U53 367.9 387.7 388.1 382.3 390.2 20.2 5.5 −2.1 −0.5U54 388.5 398.1
U55 378.6 384.6 384.2 365.8 389.7 5.6 1.5 −5.5 −1.4U56 383.8 413.6
U57 383.3 378.1 379.2 356.7 377.6 −4.1 −1.1 1.6 0.4U58 380.4 398.5
U59 391.5 431.7 393.8 407.2 387.8 2.3 0.6 6.0 1.5U60 356 368.4
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Table 6: Part of damage training sample data of No. 30 unit (I).

Node
Damage degree

10% 20% 30% 40% 50% 59%
1 0 0 0 0 0 0
2 0 0 0.1662 0.1702 0.1667 91.275
3 0 0 0.3515 0.3531 0.3625 158.625
4 0 0 0.1664 0.3533 0.3675 216.791
5 0 0 0.1665 0.1659 0 264.95
6 0 0.1661 0 0.1705 0 290.175
7 0.1669 0.1663 0.1663 0 0 321.0266
8 0.1667 0 0 0.1767 0 317.34
9 0.0824 0.0571 0.043 0.0433 0.2524 261.84
10 0.0826 0.0727 0.0731 0.0855 0.0525 211.28
11 0.1042 0.1917 0.138 0.141 0.1506 153.583
12 0.1041 0.2073 0 0 0.235 91.333
13 0.1664 0.1765 0 0.1672 0 13.41
14 0.3323 0.5691 0.4791 0.739 0.8825 131.053
15 0.1658 0 0.1665 0.5685 0.775 197.6223
16 0.1601 0.5689 0.9577 2.55 2.175 328.271
17 7.4573 16.5638 26.1535 39.5231 58.6427 698.4525
18 8.1509 17.0935 27.8201 40.9312 60.0525 701.3361
19 16.537 38.0311 66.742 103.198 145.995 2379.856
20 17.055 40.3413 68.957 105.773 146.894 2415.182
21 18.543 41.7536 69.065 107.561 148.863 2568.675
22 19.145 42.7431 71.653 108.973 150.678 2605.412
23 20.973 43.7159 72.132 110.374 152.896 2689.325
24 21.315 44.4381 73.035 112.875 153.787 2701.188
25 22.045 44.983 73.958 118.053 157.329 2798.237
26 22.813 45.162 74.345 119.765 158.995 2835.889
27 28.549 56.461 85.842 211.537 173.139 2904.647
28 29.735 57.885 86.982 213.987 173.568 2981.427
29 38.941 68.125 91.413 223.614 223.854 3135.532
30 64.37 138.1 201.973 325.705 578.1125 637.1875
31 62.81 136.47 198.149 323.436 574.672 638.4538
32 39.076 71.3125 95.787 141.314 213.424 2144.7475
33 28.876 59.427 89.288 135.4134 189.413 1943.3546
34 27.971 58.546 87.537 133.612 187.375 1913.5632
35 23.897 53,995 83.749 118.414 175.441 1854.574
36 22.769 52.895 82.564 117.142 173.982 1832.127
37 21.4523 49.375 79.845 95.1575 164.7813 1722.427
38 20.6345 48.174 78.541 93.825 163.3574 1701.132
39 19.0528 46.982 76.564 91.413 161.7462 1690.545
40 18.9541 47.036 75.635 91.854 161.3421 1663.213
41 17.3425 45.758 74.138 90.751 159.876 1589.527
42 16.9547 43.325 73.062 87.054 158.645 1561.172
43 8.5612 18.095 32.797 42.1312 66.0937 1345.3341
44 7.9893 17.113 31.942 41.5752 65.7401 1297.5425
45 0.1678 0.5524 1.0875 2.1541 4.5425 345.2674
46 0.1794 0 0.1673 0.5327 0.8625 254.4452
47 0.3795 0.5674 0.6887 0.7975 0.9812 102.425
48 0.1673 0.1792 0 0.2425 0 13.5547
49 0.1054 0.1898 0 0 0.2525 91.2654
50 0.1045 0.1819 0.225 0.2251 0.2506 139.4425
51 0.08703 0.0726 0.0798 0.0825 0.0235 209.3234
52 0.087 0.0643 0.0411 0.0621 0.4354 253.4349
53 0.1701 0 0 0.2674 0 287.7556
54 0.1676 0.1675 0.1662 0 0 305.4553
55 0 0.1673 0 0.2452 0 285.2242
56 0 0 0.1673 0.2519 0 256.3345
57 0 0 0.1662 0.4425 0.4312 223.1525
58 0 0 0.4197 0.4509 0.4411 167.3255
59 0 0 0.1659 0.1734 0.1741 87.5254
60 0 0 0 0 0 0
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Table 7: Part of damage training sample data of No. 30 unit (II).

Node
Damage degree

60% 65% 70% 80% 90%
1 0 0 0 0 0
2 79.1347 45.845 0.3424 0.3522 0.7453
3 147.2254 134.4649 0 0 0.6133
4 197.5565 175.6746 0.3245 0.5252 0.9585
5 249.2275 235.754 0 0 0.9356
6 268.1325 298.545 0.5345 0.3525 0.9456
7 326.1245 375.4342 0 0.3423 0.7455
8 311.4431 401.6757 0.3532 0 0.6465
9 279.8125 386.432 0.1452 0.1324 0.1342
10 241.1275 378.042 0.3432 0.2964 0.4653
11 126.5763 279.4345 0.1421 0.3765 0.3523
12 91.1134 187.6223 0.1432 0.1976 5.5474
13 13.4435 96.2275 0 0.3545 4.3635
14 132.3357 9.7567 1.7474 4.3534 15.463
15 154.0027 99.4325 1.3545 3.3536 307.643
16 403.5587 189.3322 5.3463 7.35335 875.453
17 740.7863 265.785 98.674 111.7845 2151.785
18 741.6259 263.522 97.252 112.6456 2142.452
19 2069.896 348.7963 210.1742 278.562 1905.7853
20 2075.953 350.0856 209.6561 279.985 1890.5643
21 2089.786 349.8963 212.4539 277.962 1881.0874
22 2103.615 351.5428 217.9865 280.785 1865.9085
23 2155.456 354.4425 223.3422 285.433 1843.5244
24 2298.5631 396.67 289.455 365.8965 1792.786
25 2367.7535 407.86 296.754 373.6578 1743.523
26 2591.762 447.6751 318.895 451.893 1658.9851
27 2678.525 456.8423 326.336 464.556 1634.3323
28 2815.675 562.753 358.952 512.753 1583.897
29 2956.544 576.352 365.43 534.564 1565.346
30 643.4632 681.2245 874.532 1354.433 855.895
31 651.5453 667.5531 858.761 1342.765 871.547
32 2145.5643 624.335 366.546 535.432 1567.548
33 2137.8356 615.975 359.354 528.653 1552.657
34 2005.633 603.3634 328.675 456.744 1636.463
35 1998.761 594.7641 321.879 437.563 1689.674
36 1979.742 535.436 301.345 374.5742 1745.363
37 1865.675 525.653 298.615 365.6751 1794.788
38 1636.502 517.543 243.346 289.766 1854.634
39 1601.893 512.012 239.879 280.184 1873.172
40 1597.981 509.675 231.783 277.892 1883.525
41 1569.785 504.156 227.533 275.173 1892.782
42 1559.247 502.873 221.875 276.845 1906.783
43 1386.4654 496.7678 94.4563 123.441 2143.111
44 1375.6751 495.8964 95.8915 125.896 2150.782
45 354.4453 455.8687 5.3563 7.34653 874.533
46 296.9672 324.5235 1.3452 3.56456 305.252
47 134.0528 231.745 1.7545 4.63663 15.3252
48 31.523 134.4425 0 0.3542 4.3523
49 69.525 21.452 0.14523 0.1342 5.4534
50 141.845 86.2452 0.14565 0.3525 0.3432
51 225.5434 154.5422 0.3523 0.2425 0.46467
52 278.3548 196.1132 0.1342 0.1235 0.1542
53 307.959 234.3321 0.3532 0 0.6356
54 355.4564 254.4254 0 0.3523 0.7363
55 313.453 313.553 0.5765 0.3453 0.9546
56 276.5635 276.5459 0 0 0.9353
57 225.5257 234.442 0.3235 0.5754 0.9457
58 175.5677 152.342 0 0 0.6363
59 104.7459 112.434 0.3543 0.3634 0.7546
60 0 0 0 0 0
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It can be seen from Tables 8 and 9 that in the three
rounds of tests, the average relative error AE, maximum
relative error AEmax, similarity R, and single round cumu-
lative time Tare predicted by each model, and the prediction
results of BP neural network optimized by diferent algo-
rithms fuctuate in diferent test samples. However, on the
whole, the error rate of the prediction model based on
FWA-BP neural network is lower than that of the existing
prediction models based on PSO-BP neural network and
GA-BP neural network, and its results are closer to target
values than the other models.

6. Conclusions

In view of the weak generalization ability and low prediction
accuracy of the prediction model based on the traditional BP
neural network, the freworks algorithm is introduced into
the BP neural network, and the weights and thresholds of the
BP neural network are optimized and improved with the
help of the freworks algorithm. A prediction model based
on the freworks algorithm-improved BP neural network
(FWA-BP) is proposed, and the algorithm of the prediction
model based on FWA-BP neural network is implemented.
Ten, taking the damage prediction of long-span arch bridge
as an example, the damage prediction model based on
FWA-BP neural network is established, and the performance
of damage prediction is simulated and tested. Compared
with the prediction methods based on BP neural network,
GA-BP neural network, and PSO-BP neural network, the

results show that under the given training target value, the
prediction method based on FWA-BP neural network
proposed in this paper has smaller prediction error rate and
fewer iterations, which can efectively improve the pre-
diction performance of BP neural network. Terefore, the
damage degree prediction method of long-span arch bridge
proposed in this paper is feasible and provides a theoretical
basis for related engineering research.
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