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Tis paper introduces a study on the horizontal and vertical defections of the cross section of a thin-walled rotating beam. Tese
defections are governed by a system of two ordinary diferential equations in order to describe their Cartesian directions. Based on
multiple time-scales analysis, truncated asymptotic expansions are assumed to be approximate solutions to the given problem.
Furthermore, an extracted autonomous system of diferential equations governs the change rate of the amplitudes and phases of
the beam defections. Te beam’s rotation speed is adjusted to be in the neighborhood of both of the natural frequencies of the
defections such that the beam is subjected to 1: 1: 1 simultaneous resonance. A stability test is conducted according to the frst
method of Lyapunov in order to determine whether the equilibrium point is asymptotically stable or not. Te beam’s defections
turn unstable once its speed is in the neighborhood of its modal natural frequencies. Tere exists a multistable solution at some
values of the beam’s speed depending on the hysteresis manner of the model according to forward or backward sweeping of this
speed. Furthermore, a range of centrifugal forces of the rotating hub can make the beam’s defections exhibit quasiperiodic
responses which are confrmed by time response, orbital map, and amplitude spectrum. Eventually, some remarks are rec-
ommended for the external excitation frequency in order that the beam stays in the periodic behavior.

1. Introduction

Te response periodicity of mechanical vibratory applica-
tions has attracted much attention frommany researchers all
over the world. Tese applications might exhibit periodic
behaviors, but also there might be quasiperiodic or chaotic
behaviors. Tese nonperiodic behaviors can harm or destroy
the mechanical structure due to the disability of predicting
such behaviors. A thin-walled rotating beam is a type of
these applications that should be examined. Yao et al. [1]
have built their research on analyzing the dynamical

behavior of a thin-walled rotating beam subjected to an
overheated supersonic gas burst. Tey represented the
beam’s defections by partial diferential equations according
to Hamilton’s principle. Hence, they discretized such
equations into ordinary diferential equations according to
Galerkin’s technique. Tey concluded the existence of pe-
riodic and chaotic motions in the oscillations of the studied
beam. Wang and Zhang [2, 3] checked the stability of
a rotating blade with variable coefcients where geometric
nonlinearities are involved in the motion equation. Te
multiple time-scales technique was applied in order to

Hindawi
Shock and Vibration
Volume 2023, Article ID 6616922, 15 pages
https://doi.org/10.1155/2023/6616922

https://orcid.org/0000-0002-7176-2489
https://orcid.org/0000-0002-0365-0282
https://orcid.org/0000-0003-0387-921X
https://orcid.org/0000-0002-3275-2392
mailto:nasser.a.saeed@el-eng.menofia.edu.eg
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6616922


examine the equilibrium solutions’ stability and bifurcations
of the studied case. Tey assured the occurrence of bi-
furcation and multiperiodicity at large average rotating
speed or large fuctuating amplitude in case of a nonsmall
fuctuation frequency. Sina and Haddadpour [4] considered
the axial and torsional defection of a thin-walled rotating
beam subjected to primary and secondary warping with the
aid of Hamilton’s principle. Tey predicted the dynamical
behavior of this type of structure regarding rotor blades of
turbo-machinery where an induced static torque could
happen in the presence of pretwist angle and material an-
isotropy. Pešek et al. [5] modeled and simulated the efect of
frictional elements on a rotating blade interaction where the
centrifugal force determined the contact force values be-
tween the element and the blades.Te authors found that the
mutual friction had a great efect of mitigating the vibration
when the normal forces were beneath radial and axial forces’
excitation limits. Zhang and Li [6] studied the dynamics of
a predeformed rotating blade subjected to gaseous pressure
of harmonic type. Using Lagrange’s equations, they obtained
the equations of motion and normalized them through
dimensionless parameters. It could be explored that both the
vibration amplitude and the initial defection’s distribution
afected the equilibrium behavior of the predeformed blade.
Luo et al. [7] proposed a similar design technique based on
the transfer matrix of the stepped thickness and thin plates.
Tey introduced a prototype plate made of steel alloys in
order to validate the proposed technique that could predict
an accurate dynamical performance of the prototype plate
showing an important signifcance in engineering practice.
Kandil and Eissa [8] extended the application of the tra-
ditional positive position feedback (PPF) controller in order
to improve its performance in controlling the vibrations of
a thin-walled beam. Tey have mitigated the original peaks
resulting from the traditional PPF by imposing dual satu-
ration controllers. Asghari and Hashemi [9] built their
analysis on the modifed couple stress theory in order to
analyze the vibrations of the 3D microspinning Rayleigh
beams including the rotary inertia and gyroscopic efects
based on Hamilton’s principle. Tey showed that the linear
and nonlinear natural frequencies had been afected by the
length-scale value in addition to the critical spinning speeds
of the studied microbeams. Yao et al. [10] focused on the
time-varying spinning speed of a rotating beam subjected to
supersonic air fuid. Tey considered the warping efect on
the rectangular cross section of the studied beam. Tey
proved the existence of periodic motion and chaotic motion
in the oscillations of the rotating blade using bifurcation
diagrams and phase portraits. Wang et al. [11] checked the
existence of vortices between coupled turbine blades that are
rotating with time-varying spinning speeds. A saddle-node
bifurcation phenomenon occurred with changing the cou-
pling parameter where this phenomenon could be delayed
with increasing the coupling parameter. Zhang et al. [12, 13]
investigated the superharmonic and 2: 1 internal resonance
cases simultaneously of a rotating beam that was implanted
in a strong pressure gaseous environment. Various phe-
nomena were explored such as saturation, jump, and hys-
teresis in addition to quasiperiodic motion revealed by time

responses, phase portraits, and Poincare maps in the studied
dynamical model. Niu et al. [14] studied the free vibratory
behavior of a rotating FG panel enhanced by graphene
platelets where the boundary conditions of the cantilever are
assumed. Tey plotted Campbell diagrams to reveal that the
large spinning speed has led to a large stifness of the studied
rotating beam. Gu et al. [15] considered the Coriolis and
centrifugal force efects in studying a proposed vibrational
rotating beam model where its fabricated material was
homogeneous and isotropic using Rayleigh–Ritz method
compared to ANSYS software results. Te authors reported
issues of internal resonance, mode shape shift, frequency
veering, and dynamics stifness efect among modes. Kandil
and Kamel [16–18] explored the efect of Hopf points on the
stability of time-delayed control of a vibratory rotating
beam. Tey have concluded and plotted Hopf curves in
order to give a boundary of the safe stable region of op-
eration. Basta et al. [19] proposed a metamaterial structure
which was a rotating beam connected to mass-damper-
spring subsystems implemented for vibration mitigation
targets.Te beam exhibited bifurcation and futtering once it
approached the critical rotational speed while the coupled
absorber reduced that speed slightly. Wang et al. [20, 21]
included the gravitational and modal interactions that led to
3: 1 internal resonance of a rotating cantilever beam excited
by primary or secondary resonance cases. In the primary
resonance, the second mode could be stimulated, while in
the secondary resonance, the frst mode response could be
generated. Gu et [22] simplifed the mechanism of the air
clearance’s airfow leakage into the axial excitation where
a steady state plus a small periodic perturbed spinning speed
were considered as a transversal excitation. Tey concluded
that the oscillations of the O, U, and X patterns of graphene-
cantilever plate have the largest, second-largest, and smallest
amplitudes, respectively. Lin et al. [23] dealt with the several
modes of an imperfect beam including geometric defects
restrained by an elastic root based on Hamilton’s principle,
the Euler–Bernoulli beam theory, and the diferential
quadrature method. Te results assured that the imperfec-
tion mode and the elastic root had signifcant efect on the
regions of instability. Dang et al. [24] presented the tem-
perature rise infuence on the dynamical characteristics of
a rotating beam holding barrier coatings subjected to
transversal harmonic forces. Te research indicated that the
softening nonlinearity of the studied rotating beam with
thermal barrier coatings was enhanced according to the rise
of temperature. Hamed and Kandil [25] focused on the time-
delay efects of the saturation phenomenon that existed in
the control of a vibratory rotating beam. Tey gave time-
delay criteria for a safe system operation in order to exhibit
a stable bounded beam’s behavior. Quaegebeur et al. [26]
studied the internal resonance and its relation to suppressing
the oscillations of a cyclically symmetric system with geo-
metric nonlinearities. Trough the simulations, the ampli-
tude of excitation reached an efective range within the
internal resonance that led to overall vibration suppression.
Jokar et al. [27] considered a precone angle in a rotating
beam mounted on a rigid hub through Hamilton’s principle
and the Rayleigh–Ritz method. Te beam’s temporal
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response was afected by the pretwist besides the fap- and
edge-wise frequencies that were infuenced also by the
beam’s velocity. Niu et al. [28] developed a rotating com-
posite panel with a graphene material for examining the
resonant behavior of such panels subjected to severe exci-
tations and three types of blade thickness. Tey plotted
Campbell diagram in order to show the dangerous rotating
speeds and modes. Kloda and Warminski [29] investigated
the longitudinal-bending-twisting oscillations of a rotating
beam based on the theory of Euler–Bernoulli beam
neglecting the shear deformation. Te authors proved that
the beam’s speed and tip-mass loading afected the beam’s
directional bending where they shifted the resonance
curves towards larger frequencies. Song et al. [30] ob-
served (theoretically and experimentally) the aeroengine
drum performance with a repetitive rub impact between
the stator and the rotor of a rotating shell whose equations
of motion were derived in the frame of Lagrange equa-
tions. Tey proposed a suggestion for an efcient guide to
design shell thin-walled structures in turbo machinery
and aeroengines. Lotfan et al. [31] considered the stif-
ening and Coriolis efects to build an accurate model of
a functionally graded (FG) rotating beam spinning with
a time-dependent speed whose derivation was based on
the spectral Chebyshev and the multiple time-scales
techniques. Zero chord- and fap-wise deformations
with static elongation were experienced in the constant
speed rotating FG beam. Shenas et al. [32] derived the
strain-displacement equations of an FG rotating micro-
beam according to the von Karman hypothesis along with
the modifed strain gradient theory. Tey concluded that
the microblades of a rectangular shape had bigger fre-
quencies than those of the trapezoidal shape.

Some other papers discussed the vibrations of thin-
walled beams considering the shear deformation. Osmani
and Meftah [33] studied the shear deformation efect on the
lateral buckling of an elastic tapered thin-walled bisym-
metric section beam subjected to axial and bending forces.
Te real-time lateral buckling resistance of short-tapered
box beams was overestimated by the classical solution of
simply supported thin-walled beams. Schmidrathner [34]
considered the infuence of the shear force distribution on
the torsional prismatic thin-walled beams using the as-
ymptotic splitting method and Bredt’s formulas. Te shear
force caused cross-sectional deformation, and therefore
applying Bredt’s formulas was needed for necessity. Latalski
and Zulli [35] applied the generalized beam theory on a thin-
walled beam whose out-of-plane components were derived
from the proposition of Vlasov’s internal constraint of shear
in-deformable middle surface. Tey provided the crucial
contribution in case of a change in cross section that
happened at equilibrium. Sahraei et al. [36] developed
a criterion for the statically analyzed thin-walled beams
considering asymmetric cross section, global and through-
thickness warping, and efects of shear deformation. Tey
showed the efects of partial coupling arising in the cases of
doubly, point-, and mono-symmetric sections. Bui et al. [37]
proposed a vibration analysis of a laminated thin-walled
composite I-beam utilizing the general high-order shear

deformation theory for buckling and free-oscillation be-
haviors based on unifed shear strains. Considering addi-
tional shear efects in the thin-walled beam theory, the
gained results from the higher-order assumptions were
lower than those from the classical and frst-order as-
sumptions. Banić et al. [38] derived incremental steady-state
equations using the Lagrangian formulation and Hooke’s
law in order to analyze the nonlinear stability of a shear
deformable beam of composite-type structures. Tey con-
frmed that the derived model could be considered as a shear
locking-free model.

Additional research papers studied both isotropic and
composite rotating beams. Ghafari and Rezaeepazhand [39]
used the Rayleigh–Ritz reduction method to examine
a cross-sectional composite beam including the transverse
shear deformation efects, coupling stifness constants, and
honeycomb core on diferent isotropic beams. Tey dis-
cussed reducing the time cost by the studied beam analysis in
contrary to the 3D fnite element analysis in order to provide
a fast and accurate structural optimization. Shevtsov et al.
[40] developed an improved structural health monitoring
that was acoustic-based where the directivity of waves
emitted by the wedge actuators in thin-walled beams were
fabricated from plastic materials and polymeric composites.
Te authors clarifed the directivity of the excited actuated
waves on the modal natural frequencies of the oscillatory
actuator. Le et al. [41] proposed a model of a thin-walled
beam including multicellular cross sections with either
isotropic or orthotropic materials described by
Euler–Bernoulli beam theory. Tey illustrated the practical
capability of thin-walled beams by fuid-structural in-
teraction simulation of a hydrokinetic blade subjected to
a feld condition. Carrera et al. [42] used Lagrange poly-
nomials in order to study the nonlinear behavior resulting
from large displacements and rotations in a thin-walled
composite beam under axial loading and diferent angles
of the composite structures. Te proposed Carrera unifed
formulation provided accurate results in investigating the
nonlinear behavior of composite, isotropic, and FG beams
with axial loading. Ramaprasad et al. [43] showed the tor-
sional warping, warping shear, material coupling, and shear
deformation in a thin-walled composite beam used widely in
aerospace structures where a unifed coupled-feld formu-
lation was included. Tey assured the excellent agreement
between their results on the mono-symmetric arbitrary-
laminated composite channel and I-section beams under
torsional and bending loads and the previously published
results. Zhao et al. [44–46] investigated the nonlinear os-
cillations of suspended cables subjected to primary, super-
harmonic, and subharmonic exciting forces along with
thermal efects. Tey concluded that the cable’s oscillatory
amplitude depended sensitively on changing the tempera-
ture. Tey included parameter analyses in order to study the
efects of diferent parameters on the multiplicity of the
extracted steady-state solutions. In addition, they examined
the coupled dynamics among a suspended cable’s modes
with observing the efects of damage situations and tem-
perature changes on veering points among the cable’s modal
natural frequencies.
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In this research, we focus on the horizontal and vertical
cross-sectional defections of a thin-walled rotating beam.
Tis nonlinear dynamical system can exhibit fundamental
modal defections in the x and y directions governed by
a system of two ordinary diferential equations. Truncated
asymptotic expansions are assumed as approximate solu-
tions to the given problem. Te analysis guides us to an
autonomous system of diferential equations governing the
amplitudes and phases of the beam defections in case the
beam’s spinning speed is in the neighborhood of its line-
arized natural frequency. Additionally, the extracted set of
equilibrium points is tested for stability utilizing the frst
method of Lyapunov in order to determine whether the
equilibrium point is asymptotically stable or not.

2. Dynamical Analysis on the Beam’s Motion

Tis paper focuses on the horizontal and vertical defections
(u and v) of a pretwisted thin-walled rotating beam whose
cross-sectional dimensions are a and b, thickness h, and
length L, mounted on a rigid hub of radius R, as shown in
Figure 1. Te hub is rotating with a time-varying spinning
speed F � f0 + f cosΩt where f0 is a constant component
and f is an amplitude of a harmonic component with
angular frequency Ω. Te beam’s plane of vibration makes
an angle c with the plane of rotation as shown. During
deriving the equations of motion, some assumptions are
taken into account: (1) the geometric dimensions of the
beam’s cross section remain constant, (2) the ratio between
the thickness h and the curvature radius r is ≪1, (3) the
transverse shear deformation is neglected to such considered
thin-walled beam, and (4) the axial displacement is way less
than the planar displacements, so its derivatives can be
neglected in the strain-displacement relations. Te rotating
beam’s cross section has local coordinates (xp, yp) that can
be related to the original coordinates (x, y) via the following
relations (keeping in mind that zp � z):

x � x
p cos(c + β) − y

p sin(c + β), (1a)

y � x
p sin(c + β) + y

p cos(c + β), (1b)

where the angle β � β0z/L refers to the pretwisting angle all
over the beam’s length and β0 is the pretwisting angle at the
tip of the beam.

Utilizing the Hamilton principle in order to derive the
beam’s motion equations yields


t

0
(δK − δU + δW)dt � 0, (2)

where δ is the variation operator, the kinetic energy is K, the
strain energy is U, and the external forces’ virtual work is W.
Substituting the quantities K, U, and W stated in Reference
[1] into equation (2) and simplifying give us

€u − F
2
u − F

2 ψ1u″ + ψ1′u′  + Γu″ − ψ2v″ − ψ4u″ ″

� u′ u′u″ + v′v″  +
u″
2

u′2 + v′2  − _F[R + z] + Px,

(3a)

€v − F
2 ψ1v″ + ψ1′v′  + Γv″ − ψ2u″ − ψ3v″ ″

� v′ u′u″ + v′v″  +
v″
2

u′2 + v′2  + Py,
(3b)

where _() refers to time-derivative and ()′ refers to derivative
w.r.t. z. In addition, the quantities ψ1, ψ2, ψ3, ψ4, Γ, Px, and
Py were given in Reference [1]. Discretize the partial dif-
ferential equations in (3a), (3b) using single-mode Galer-
kin’s technique by assuming the functions u and v in the
form

u � x(t)G(z), (4a)

v � y(t)G(z), (4b)

where x and y are the temporal horizontal and vertical
displacements and G is the spatial mode shape solution of
the beam’s free vibration problem. Te single-mode dis-
cretization may lead to qualitative and quantitative difer-
ences in the computed results. However, it has the
fundamental contribution to the oscillatory response of the
studied beam model according to the experimental obser-
vations [1]. Substituting (4a), (4b) into (3a), (3b), multi-
plying (3a), (3b) by G, and integrating w.r.t. z from 0 to 1
give us the following system of ordinary diferential
equations:

€x + 2ϵμ _x + ω2
1x + ϵα1 _y + ϵα21y + ϵα3 x

3
+ xy

2
 

− ϵα41x 2f0f cos(Ωt) + f
2 cos2(Ωt) 

� ϵfα5Ω sin(Ωt),

(5a)

€y + 2ϵμ _y + ω2
2y + ϵα1 _x + ϵα22x + ϵα3 y

3
+ x

2
y 

− ϵα42y 2f0f cos(Ωt) + f
2 cos2(Ωt)  � 0,

(5b)

where μ represents the presumed small factor due to vis-
cosity, ω1&ω2 are the linearized natural frequencies of the
two directional defections, α1&α21&α22 refer to the factors
of linear coupling, α3 refers to the factor of cubic coupling,
and α41&α42&α5 are the factors of the beam’s excitation. All
of the preceding parameters were given in Reference [1]. A
book-keeping perturbation parameter ϵ is proposed in order
to distinguish the present problem (given in (5a), (5b) from
the conservative free problem.

Truncated asymptotic expansions can be supposed as
approximate solutions to the problem above as follows [47]:
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x(t) � 
∞

n�0
ϵnxn � x0 + ϵx1, (6a)

y(t) � 
∞

n�0
ϵnyn � y0 + ϵy1, (6b)

where xn&yn are the components forming the original x&y,
respectively. Te time derivatives in (5a), (5b) can also be

approximated by new partials derivatives in terms of new
time scales T0 � t and T1 � ϵt as follows:

d

dt
� 

∞

n�0
ϵn

z

zTn

�
z

zT0
+ ϵ

z

zT1
. (7)

Substituting (6a), (6b) and (7) into (5a), (5b) and
extracting the terms of equal ϵ (up to ϵ1) on both sides lead
us to the following:

z
2
x0

zT
2
0

+ ω2
1x0 � 0, (8a)

z
2
y0

zT
2
0

+ ω2
2y0 � 0, (8b)

z
2
x1

zT
2
0

+ ω2
1x1 � −2

z
2
x0

zT0zT1
− 2μ

zx0

zT0
− α1

zy0

zT0
− α21y0 − α3 x

3
0 + x0y

2
0 

+ α41x0 f0f e
iΩT0 + e

− iΩT0  +
f
2

4
e

iΩT0 + e
− iΩT0 

2
  − if

α5Ω
2

e
iΩT0 − e

− iΩT0 ,

(8c)

z
2
y1

zT
2
0

+ ω2
2y1 � −2

z
2
y0

zT0zT1
− 2μ

zy0

zT0
− α1

zx0

zT0
− α22x0 − α3 y

3
0 + x

2
0y0 

+ α42y0 f0f e
iΩT0 + e

− iΩT0  +
f
2

4
e

iΩT0 + e
− iΩT0 

2
 .

(8d)

Equations (8a) and (8b) have basic solutions to the
conservative free problem as follows:

x0 � A1e
iω1T0 + A1e

− iω1T0 , (9a)

y0 � A2e
iω2T0 + A2e

− iω2T0 , (9b)

where the integration constants A1&A2 are functions of the
second time scale T1, while their conjugates are overbarred.
Putting (9a), (9b) into (8c) and (8d) considering the case that
the beam’s speed is near the x and y linear natural fre-
quencies ω1&ω2, i.e., Ω � ω1 � ω2, can lead to the following
autonomous system of diferential equations:

Air flow

f0 + f cosΩt

R

γ

L

yp, vp

y, v xp,up

x,u
z

γ + β0 

(a)

b

h

y

a

x

(b)

Figure 1: (a) Pretwisted thin-walled rotating beam connected to a hub. (b) Cross-sectional view of the beam.
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_a1 � −μa1 −
α1ω2

2ω1
a2 cos ϕ1 − ϕ2(  −

α21
2ω1

a2 sin ϕ1 − ϕ2(  −
α3
8ω1

a1a
2
2 sin 2ϕ1 − 2ϕ2( 

+
α41f

2

8ω1
a1 sin 2ϕ1(  −

α5Ωf

2ω1
cos ϕ1,

(10a)

a1
_ϕ1 � σa1 +

α1ω2

2ω1
a2 sin ϕ1 − ϕ2(  −

α21
2ω1

a2 cos ϕ1 − ϕ2(  −
α3
4ω1

a1a
2
2 −

3α3
8ω1

a
3
1

−
α3
8ω1

a1a
2
2 cos 2ϕ1 − 2ϕ2(  +

α41f
2

8ω1
a1 cos 2ϕ1(  +

α41f
2

4ω1
a1 +

α5Ωf

2ω1
sinϕ1,

(10b)

_a2 � −μa2 −
α1ω1

2ω2
a1 cos ϕ1 − ϕ2(  +

α22
2ω2

a1 sin ϕ1 − ϕ2( 

+
α3
8ω2

a
2
1a2 sin 2ϕ1 − 2ϕ2(  +

α42f
2

8ω2
a2 sin 2ϕ2( ,

(10c)

a2
_ϕ2 � σ − σint( a2 −

α1ω1

2ω2
a1 sin ϕ1 − ϕ2(  −

α22
2ω2

a1 cos ϕ1 − ϕ2(  −
α3
4ω2

a
2
1a2

−
3α3
8ω2

a
3
2 −

α3
8ω2

a
2
1a2 cos 2ϕ1 − 2ϕ2(  +

α42f
2

8ω2
a2 cos 2ϕ2(  +

α42f
2

4ω2
a2,

(10d)

where ϕ1 � σt − β1, ϕ2 � (σ − σint)t − β2, σ � Ω − ω1, and
σint � ω2 − ω1. Te exact solutions of the equilibrium state
( _an � _ϕn � 0) of (10a), (10b), (10c), (10d) cannot be found
analytically. Instead, we resort to numerical techniques such
as the Newton–Raphson algorithm for predicting the so-
lution and pseudo-arc length for correcting the solution.
Also, the extracted set of equilibrium points should be
checked for stability utilizing the frst method of Lyapunov
[47] in order to determine whether the equilibrium point is
asymptotically stable or not.

3. Graphical Analysis on the Beam’s Motion

We are going to describe the nonlinear behavior of the
beam’s motion due to changing some parameters and show
these behaviors graphically via several response curves. Te
physical constants to be adopted for the operation are as
follows: the viscosity coefcient μ � 0.02, the horizontal
angular natural frequency ω1 � 120π, the vertical angular
natural frequency ω2 � ω1, the linear coupling coefcients
α1 � −0.82, α21 � −0.003, α22 � −0.001, the cubic coupling
coefcient α3 � 0.9, the excitation coefcients α41 � 0.55,
α42 � 0.5, α5 � 6.55, the excitation force amplitudes f0 � 7,
f � [0,10], and the beam’s spinning speed Ω � ω1. As you
will see in the fgures, solid curves refer to stable solutions
according to Lyapunov’s frst method stability criterion. In
addition, dashed curves refer to unstable solutions according
to the same criterion. Figure 2 shows the graphical in-
terpretation of the beam’s horizontal and vertical vibration
amplitudes a1&a2 (Figures 2(a) and 2(c)) and phases ϕ1&ϕ2
(Figures 2(b) and 2(d)) in response to the spinning speed
detuning σ at f � 1.0. It is noticed that the amplitudes and
phases turn from stable (solid paths) into unstable (dashed
paths) in the σ-domain of about [−1.53, +1.55]. Within the
stable σ-domain, the horizontal amplitude a1 cannot exceed

2 while the vertical amplitude a2 cannot exceed 0.5. Re-
garding the phases, the horizontal phase ϕ1 cannot exceed
the range [−π/2, +π/2] while the vertical phase ϕ2 cannot
exceed the range [−0.1, +0.1]. Te separating points between
the stable and unstable branches are called Hopf bifurcation
points due to the stability criterion of Lyapunov where the
system has pure imaginary eigenvalues.We will check for the
nonlinear response at diferent values of σ later in this work.
Moving to Figure 3, we have plotted the same relation as in
Figure 2 but at a higher force amplitude f � 2.5. It is clear
that the stable branch of the amplitude a1 has risen sig-
nifcantly with increasing f, while the stable range of the
amplitude a2 has increased slightly in comparison with the
amplitudes plotted in Figure 2. About the phases ϕ1&ϕ2, you
can see a slight change in the phase behavior in comparison
with the phases plotted in Figure 2. Continuing the scenario
of increasing the force amplitude f, Figure 4 is plotted to the
show the same relations in Figures 2 and 3 but with f � 5.0.
As you can notice, there is a drastic change in the form of the
curves showing the hardening efect for both the amplitudes
and phases. In addition, there exists a multistable solution
(for example, at σ � 2) where we have two stable solutions at
this value of σ. Te system will obey either one of them
depending on the hysteresis manner of the model according
to sweeping the parameter σ up or down. Also, the system
may jump between these two stable solutions depending on
the initial conditions. Tis leads us to the well-known jump
phenomenon which may be a problem whether the jump is
sharp leading to system damage or destruction. Accordingly,
Figure 5 depicts how the beam’s amplitudes respond to the
spinning speed detuning σ when the internal resonance
detuning σint changes from −0.5 to 0.5. It can be shown that
the parameter σint can play a role in changing the form of the
curves due to the nonlinearity domination as if we are
changing the spinning amplitude f (shown in Figure 4). It is
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Figure 2: Te beam’s horizontal and vertical vibration amplitudes a1&a2 (a, c) and phases ϕ1&ϕ2 (b, d) in response to the spinning speed
detuning σ at f � 1.0.
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also noted that as σint deviates from zero, the curves
transform from an almost-linear case to a nonlinear case
with the existence of multiple solutions (stable or unstable or
both).

Contrary to the previous fgures, we are moving to
another system response in Figure 6 which portrays the
beam’s horizontal and vertical vibration amplitudes and
phases in response to the spinning amplitude f at spinning
detuning σ � 0.5. In Figures 6(a) and 6(c), the very start of
the increase of f makes these amplitudes face a Hopf bi-
furcation point which turns them unstable as shown. Ten,
facing another Hopf point gets these amplitudes back to the
stable state. In this specifc f-domain, the amplitude a1&a2
may jump to another stable branch depending on the
sweeping process or the initial conditions. Tis multistable
solution case is not obvious in this fgure but will be dis-
cussed later. Increasing f in the same manner makes the
amplitudes get bigger as shown. In Figure 7, we have
changed the value of σ to σ � 1.0. Tis change has modifed
the curves’ shape as shown. It is so clear in this fgure that the

amplitudes may obey one of the multistable solutions in the
range f ∈ (1, 5) depending on the sweeping process or the
values of the initial conditions. Afterward, the amplitudes
are increasing proportionally with f as pictured. In Figure 8
where σ � 2.0, the amplitudes respond linearly with f, or in
other words, there are no multistable branches but only
a single stable branch that the system obeys regardless of the
sweeping process or the values of the initial conditions.
Moreover, Figures 9 and 10 give numerical simulations of
the beam’s diferent responses as temporal, orbital, and
spectral at f � 1.0, σ � 0.0 (for Figure 9), and σ � 2.0 (for
Figure 10). In Figure 9 where f � 1.0 and σ � 0.0, the beam
exhibits quasiperiodic response as shown by the temporal
oscillations (horizontal and vertical). In addition, Figure 9(c)
clarifes the horizontal-vertical orbitals that are in the form
of multilimit cycles denoting the quasiperiodic response.
Also, Figures 9(d) and 9(e) picture the horizontal and
vertical amplitude spectra where multiple spikes are shown
in order to represent the frequencies that form the quasi-
periodic response in the studied case. On the other hand, in
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Figure 10, the simulation has been done at f � 1.0 and σ �

2.0 to show the periodic response (unlike the quasiperiodic
one in Figure 9) in the temporal oscillations, the orbital plot
with single limit cycle, and the amplitude spectra with only
a single spike. Figure 11 shows the bifurcation diagram of the
beam’s horizontal and vertical displacement behaviors in
response to the spinning speed detuning σ at f � 1.0. It is
a verifcation of Figure 2 that the beam exhibits nonperiodic
responses if σ lies inside the band [−1.53, +1.55].

4. Conclusions

In this work, we studied the horizontal and vertical de-
fections of the cross section of a thin-walled rotating
beam. Te nonlinear dynamical system of such a beam
exhibited fundamental modal defections in the x and y

directions that were governed by a system of two ordinary
diferential equations. Te analysis revealed that the
beam’s amplitudes and phases turned from a stable state
into an unstable state where σ ∈ [−1.53, +1.55]. Tere
existed a multistable solution at some values of σ
depending on the hysteresis manner of the model
according to sweeping the parameter σ up or down. Te
very start of increasing f made the stable amplitudes face
a Hopf bifurcation point which turned them unstable.
Ten, facing another Hopf point got these amplitudes
back to the stable state. When σ � 0, the beam exhibited
a quasiperiodic response with a multilimit cycle which was
assured by time response, orbital map, and amplitude
spectrum. Changing to σ � 2.0 made the beam exhibit
a periodic response with a stable limit cycle.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

AK, YH, JA, and NS were responsible for conceptualization,
methodology, validation, and review and editing. AK was
responsible for software, formal analysis, investigation,
original draft preparation, and visualization. All authors
have read and agreed to the published version of the
manuscript.

Acknowledgments

Te authors would like to acknowledge the Deanship of
Scientifc Research, Taif University, for funding this work.
Also, this work was supported by the Polish National Science
Centre, Poland, under the grant OPUS 18 (no. 2019/35/B/
ST8/00980).

References

[1] M. H. Yao, Y. P. Chen, and W. Zhang, “Nonlinear vibrations
of blade with varying rotating speed,” Nonlinear Dynamics,
vol. 68, no. 4, pp. 487–504, 2012.

[2] F. Wang and W. Zhang, “Stability analysis of a nonlinear
rotating blade with torsional vibrations,” Journal of Sound and
Vibration, vol. 331, no. 26, pp. 5755–5773, 2012.

[3] F. Wang and Y. Qu, “Period doubling motions of a nonlinear
rotating beam at 1:1 resonance,” International Journal of
Bifurcation and Chaos, vol. 24, no. 12, Article ID 1450159,
2014.

[4] S. A. Sina and H. Haddadpour, “Axial-torsional vibrations of
rotating pretwisted thin walled composite beams,” In-
ternational Journal of Mechanical Sciences, vol. 80, pp. 93–101,
2014.

-4 -3 -2 -1 0 1 2 3 4 5-5
σ

0

5

10

15

20

25

30
x 

(t)

(a)

-4 -3 -2 -1 0 1 2 3 4 5-5
σ

0

5

10

15

20

25

y 
(t)

(b)

Figure 11: Te beam’s horizontal (a) and vertical (b) displacement bifurcation behaviors in response to the spinning speed detuning σ at
f � 1.0.

Shock and Vibration 13
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