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Regarding the vib-acoustic performance of internal coupled structures, basically all relevant studies have been confned to the
classic form of connections. In this investigation, the boundary and internal elastic constraint matrices of the coupled structure are
established, the vibration and sound calculation model of the coupled structure is then established, and numerical analysis is
performed to show the efect of constraint stifness on the vibration and acoustical performance of a coupled plate-cylindrical shell
system. Te results show that impedance matching between the structures is improved with the increase of the elastic connection
stifness, which is conducive to the vibration energy propagation. Moreover, the supporting coupling stifness between elastic
coupled structures plays an important role in vibration energy transfers.

1. Introduction

Te dynamic behavior of diferent structures and a series of
problems caused by them have been the focus of research
[1–5]. It is well known that cylindrical shells separated by
longitudinal bottom plates are important simplifed struc-
tures in ocean engineering, aerospace engineering, and other
felds. Terefore, it is necessary to further investigate the
vibration and acoustic properties of the plate-cylindrical
shell coupling system.

Although there are many studies on the coupled plate-
cylindrical shell systems, the internal connections of these
structures are usually assumed to be rigid and fxed. Mis-
saoui and Cheng combined the artifcial spring technique
with the integral mode method to build a numerical model
to discuss the sound performance of the shell system [6]. To
better understand the internal physical mechanisms and
ofer advice on noise and vibration management, Li et al.
studied the acoustic propagation property interaction be-
tween a cylindrical shell with compartments and

a constrained acoustic enclosure [7]. Wang et al. studied the
power fow characteristics of a complicated plate-cylindrical
shell system by using the receptance substructure approach,
and the theoretical description of the mode shape function
was employed to represent the receiving function of each
substructure [8]. Zhao et al. established the receptivity ex-
pression of plates and shells by using the conventional plate
theory and Loew’s shell theory. Based on the geometric
compatibility constraints and force balancing, they were able
to develop the frequency equation for shell and plate-
coupled systems and analyze the vibration transmission
properties of cylindrical shells [9]. Te researchers Clot et al.
developed a cogent model for a double-deck tunnel. Te
model considered the pipe model to describe the coupling
system. Te computational fndings indicate that there is
a discernible distinction between the two types of tunnels,
with the double-layer tunnel exhibiting a greater capacity for
the passage of radiant power [10]. By applying the reci-
procity theorem, Zou et al. was able to determine the
characteristic of underwater acoustic radiation that is

Hindawi
Shock and Vibration
Volume 2023, Article ID 6668089, 11 pages
https://doi.org/10.1155/2023/6668089

https://orcid.org/0000-0001-8928-7156
mailto:sunygqj@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6668089


produced by an infnitely long structure consisting of an
inner plate and a cylindrical shell [11]. Deng et al. conducted
their research on a composite cylinder shell that had an
interior thin plate and a number of acoustic black holes
inserted within the plate. Tey solved the structural modal
parameters by employing the Gaussian expansion approach,
and they decreased the order of the model by utilizing the
modal truncation technique [12]. In order to study the
dynamic characteristics of cylindrical shells that have an
internal fexural foor structure, Tian et al. developed
a formula that combined analytical and numerical methods.
Te entirety of the construction may be broken down into
three distinct parts: the cylinder shell, the axisymmetric ring
plate, and the nonaxisymmetric foor plate [13]. Taking into
account the displacement continuity requirement, Zhao
et al. derived the coupling controlling equation of a spinning
constructed cylinder of shell plates by using the Donnell
shell theory, the Kirchhof plate theory, and the Lagrange
equation. Free vibration results for the combined cylinder
shell and plate structure are calculated by using the as-
sumption mode approach [14]. For a simply supported shell
system, Lee et al. were able to determine the system’s natural
frequency as well as its mode function by employing the
Rayleigh–Ritz method, which is predicated on the principle
of energy. In addition, they were able to determine the
dynamics behavior of a cylindrical shell with an inner plate
by employing the tolerance method [15].

According to an analysis of the relevant published re-
search, earliest investigations on plate-cylindrical shell
coupling architectures were restricted to clamped or hinging
systems.

Regarding the vib-acoustic performance of the coupled
structure, basically all the studies have been confned to the
classic form of connections, such as welding or hinging.
However, there are numerous diferent instances of elasti-
cally connected structures in the actual application of en-
gineering, for instance, space vehicles, building structures,
and ship hulls, as shown in Figure 1. According to the
knowledge of the author, few works have been reported on
the vibrational and acoustic performance of elastically linked
structures. In addition, the particulars of the vibrational and
acoustic behavior, as well as the processes that underlie this
behavior in such elastically linked materials, are not yet
completely known. Te primary objective of the research is
to contribute in bridging this research gap. In the future,
when a better knowledge of the interactions between elas-
tically coupled plate-cylindrical shell systems is achieved, it
will be possible to gain insight into how elastically coupled
structures may be utilized in the control of vibration and
noise in real settings.

Tere are four sections in this paper. Te frst part of the
paper is the introduction. Te corresponding matrix rep-
resentation is provided in Section 2. In Section 3, the impacts
of the internal constraint stifness on the vib-acoustic per-
formance of structures are discussed.Temain results of this
paper are summarized in the fnal section.

2. Theory

2.1.Modellingof theShellElement. A point (x, y, z) within the
element is made to have a displacement that takes the
following form [16]:

U(x, y, z) � u(x, y) + zθx,

V(x, y, z) � v(x, y) + zθy,

W(x, y, z) � w(x, y).

⎧⎪⎪⎨

⎪⎪⎩
(1)

In the above formula, the displacement of the corre-
sponding points is represented by u, v, and w; meanwhile,
the midplane’s rotations are represented by θx and θy,
respectively.

According to the Mindlin bending theory, the shell’s
strain components are as follows [17]:

εP
0􏽮 􏽯 � u,x v,y u,y + v,x θx,x θy,y θx,y􏽮

+ θy,x w,y + θy w,x + θx􏽯.
(2)

In this study, the displacement feld is expressed in terms
of the nodal variables in a four-node isoparametric shell
element [17, 18].

U{ } � U
0

􏽮 􏽯 + U
1

􏽮 􏽯, (3)

where U0􏼈 􏼉 and U1􏼈 􏼉 can be written as follows:
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(4)

Ten, equation (3) can be expressed as as follows:

U{ } � [N] d{ }
e
, [N] � N1 N2 N3 N4􏼂 􏼃, (5)

side shell plate
frame

deck

Figure 1: Te connection form of the ship hull structure.
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where
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, (i � 1, 2, 3, 4).

(6)

Te stifness matrix of the plate structure can be written
as follows [17, 18]:

Kp􏽨 􏽩
e

� 􏽚 Bp􏽨 􏽩
T
[D] Bp􏽨 􏽩dA, (7)

where [Bp] is

Bp􏽨 􏽩 � B1 B2 B3 B4􏼂 􏼃,
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, (i � 1, 2, 3, 4).
(8)

2.2. Modelling of the Beam Element. Te Timoshenko beam
element is a two-node beam element that was developed
using the Timoshenko beam theory and taking into account
transverse shear deformation. Each node contains three
displacement degrees u, v, and w and three rotation angles
θx, θy, and θz. It is an element of the displacement degree of
freedom w and the angle degree of freedom θ independently
interpolated. It belongs to the C0 type element, which is
represented by the following interpolation:

w � 􏽘
4

i�1
Niwi, θ � 􏽘

4

i�1
Niθi, (9)

where w is the displacement of the ith node, θ is the angle of
the ith node, n is the number of nodes, and N is the Lagrange
interpolation function.

Similar to the shell element, the beam element can be
expressed as follows:

k
e
� k

e
s + k

e
b, (10)

where ke
s represents the element’s overall stifness, ke

s rep-
resents its shear stifness, and ke

b represents its bending
stifness.

2.3. Elastic Boundary Stifness and Internal Constraint
Stifness. Te elastic coupling model of the coupled stifened
plate-cylindrical shell system is considered, as shown in
Figure 2. Te boundary around the stifened plate is elas-
tically connected with the closed cylindrical shell; that is,

a pair of boundaries is elastically connected with the circular
end plate and another pair of boundaries is elastically
connected with the cylindrical shell. Tese pairs are
expressed by four kinds of independent spring constraints
(kcx, kcy, kcz, and ksx), while the elastic constraints on the
boundary of the cylindrical shell are expressed by ksx, ksθ,
ksw, and ksr. Te cylindrical shell is modelled using the
cylindrical coordinate system, while the stifening plate is
simulated using the Cartesian coordinate system. Further-
more, u, v, and w represent the axial, tangential, and radial
displacements, respectively. R, ts, and Ls are the cylindrical
shell’s radius, thickness, and length, respectively. Te elastic
boundary of the cylindrical shell is described by the
translation stifness and rotational stifness, and its strain
energy is obtained as follows [19]:

U �
1
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(11)

Te above equation can be further written as follows:

U �
1
2
δ{ }

T
e Kb􏼈 􏼉e δ{ }e, (12)

where Kb􏼈 􏼉e can be written in detail as follows:
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dΓ, (13)

where [Nu], [Nv], and [Nw] are form functions.
Te total stifness matrix of the elastic boundary can be

expressed as follows:
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.

(14)

Similarly, the internal constraint connection stifness
matrix of the coupled system [Kpb] can be easily obtained,
and the elastic boundary stifness matrix and the coupling
structure connection stifness matrix are superimposed in
the same coordinate system.

2.4. Modal Analysis. Ignoring the infuence of the damping
junction, the motion equation for the coupled system’s
modal analysis is expressed as follows:

[M] €U􏽮 􏽯 +[K] U{ } � 0. (15)

Assuming harmonic vibrations, U{ } � U{ }eiωnt and then

[K] − ω2
n[M]􏼐 􏼑 U{ } � 0, (16)

where [M] is the global mass matrix and [K] is the global
stifness matrix.

Tis is a standard eigenvalue problem that is solvable for
eigenvalues and eigenvectors.

[A] U{ } � λ U{ }, (17)

where [A] � [K]− 1[M] and λ � (1/ω2
n).

2.5. Acoustic Radiation Model [18, 20]. Te equation of
motion of an elastic structure under a time-harmonic load
can be written as follows:
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Figure 2: Te elastic coupled plate-cylindrical shell system.
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− ω2
[M] + iω[C] + K􏼐 􏼑 U{ } � F{ } − [G][A] P{ }, (18)

where [A] � 􏽒
S
[N]T[N]dS, [C] is damping matrices, and

the vector P{ } can be written as follows:

P{ } � [Z] vn􏼈 􏼉, (19)

where vn􏼈 􏼉 is the normal velocity vector of the elastic
structure and [Z] is the acoustic impedance matrix.

vn􏼈 􏼉 � [G]
T

v{ } � iω[G]
T

U{ }. (20)

Terefore, the displacement vector of the elastic struc-
ture is

U{ } � − ω2
[M] + iω[C] +[G][A][Z][G]

T
+ Ks􏼂 􏼃􏽮 􏽯

− 1
F{ }.

(21)

After solving the normal velocity vn􏼈 􏼉, the acoustic ra-
diation power of the elastic structure can be calculated as
follows:

W �
1
2

􏽚Re pv
∗
n( 􏼁ds. (22)

In the above equation, an asterisk represents a complex
conjugate.

3. Numerical Simulation Results

Generally, the vibration frequency of an elastic structure
mainly depends on the material properties and the geo-
metric size. Regarding the coupled system, it is also related to
the relative position and connection form of each structure.
In this section, a closed cylindrical shell containing a stif-
ened plate is taken as an example (for clear display, the seal
plate is not drawn). As shown in Figure 1, ψ is the starting
position of the stifened plate, and Lp is the length of the
stifened plate. Its dimensions in the width direction are
related to the coupling position.Te thickness of the coupled
system remain the same, that is, tp � ts � te, (the subscript s

represents the cylindrical shell, p represents the stifened
plate, and e represents the end plate). Te material of the
structure is the same, and the stifened plate structure is the
same as the stifened plate structure on the upper section.
Te T profle is arranged along the length direction of the
cylindrical shell, and the L profle is arranged along the width
direction of the stifened plate. Te fuid medium is air. Te
reference value of the velocity level is 1m2/s2, and the
reference value of the sound power level is 10− 12 w.

Te accuracy of the computation model must be con-
frmed. First, taking the natural frequencies of the cylindrical
shell under rigid fxed boundary conditions as an example,
all the stifness coefcients at the edges of the cylinder are
infnite. In this example, the value is 1015. Te dimension
proportion relation of the cylindrical shell is ts/R � 0.002,
Ls/R � 20, and the natural frequencies parameter is
Ω � ωR

����������
ρ(1 − v2)/E

􏽰
. Te calculation results are compared

to those found in the published literature (Table 1). Te
numerical results are basically consistent with those in the
literature.

Next, under elastic boundary conditions, this model is
used to validate the natural frequency of cylindrical shell
structures. One side is rigid and fxed, and the other side is
elastically supported. Only the radial stifness coefcient kr

changes, and the other elastic stifness coefcients are set to
zero, where k � kr/K and K is the internal rigidity of a cy-
lindrical shell. Te cylindrical shell dimensions are Ls �

1.25m, R � 0.25m, ts � 0.008m, ρ � 7800 kg/m3, E �

2.1e11N/m2, and ] � 0.3. Table 2 displays a comparison
between the computation fndings and the literature. Te
numerical outcomes are essentially in line with those re-
ported in the literature.

Finally, the vibration frequency of the elastic coupled
plate-cylindrical shell system is compared to verify the ac-
curacy of the internal connection stifness. As an illustration,
the elastic coupled plate-cylindrical shell structure is con-
sidered with simply supported constraints. Moreover, the
coefcients of the elastic coupling stifness between a fat
plate and a cylinder are kcx � kcy � kcz � kcr � 106. Te
coupling position is ψ � 115o, with Ls � Lp � 1.27 m,
ts � tp � 0.00508m, ρ � 7500 kg/m3, E � 2.1e11N/m2, and
] � 0.3. Table 3 presents the frst 10 natural frequencies, and
it is evident that the numerical outcomes mostly agree with
those reported in the literature.

Te stifened plate and the cylindrical shell in the
coupling structure have the following measurements:
Ls � Lp � 1m, tp � ts � te � 0.002m, and R � 0.18m. Te
structural material is steel, with properties of
ρ � 7800 kg/m3, E � 2.06e11N/m2, ] � 0.3, and ψ � 110o.
Te T-profle size is 2 × 15/2 × 6 (unit: mm), the L-profle
size is 10 × 5 × 2 (unit: mm), the boundary stifness co-
efcients of the cylindrical shell are ksx � ksθ � ksw �

ksr � 1011, and the connection stifness coefcients of the
coupled structures are kcx � kcy � kcz � kcr � 1011.
Figures 3(a)–3(f) depict the frst six modes of the elastically
coupled plate-cylindrical shell system (part of the structure is
hidden for the convenience of observation, as shown below).

According to the amplitude ratio of each part of the
coupling structure, the modes in the fgure can be roughly
divided into two types. One mode is the stifness control of
a single structure. In Figures 3(a), 3(b), and 3(e), the modal
amplitude of the stifened plate is much larger than those of
the cylindrical shell and the circular plate at both ends. In
this instance, the modal amplitude of the stifened plate-
cylindrical shell coupling structure is controlled by the
stifened plate structure because the stifened plate has
a larger side length. Compared to the cylinder and circular
plate, its bending stifness is lower. Te stifened plate in this
scenario receives boundary stifness from the circular plate
and the cylindrical shells at each end, and the circular plate
and the cylindrical shell at both ends possess enough rigidity
to control the stifened plate’s border movement.

In Figures 3(c) and 3(d), the modal amplitudes of the
circular plates at both ends are much larger than those of the
cylindrical shell and the stifened plates. Te modes of the
coupling structure are controlled by the circular plates at
both ends. Te others are the coupled modes of multiple
structural stifness controls. Figure 3(f ) shows the coupled
modes of the structure. Te amplitudes of each structural
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Table 1: Natural frequencies of a cylinder with clamp boundary conditions.

m n Flügge theory
[21]

Zhang et al.
[22]

Zhang et al.
[23] Present solution

1

1 0.0344 0.03487 0.03488 0.03295
2 0.01204 0.01176 0.01173 0.01167
3 0.00722 0.00708 0.00711 0.00710
4 0.00905 0.00902 0.00895 0.00905
5 0.01377 0.01377 0.01412 0.01385

2

1 0.08484 0.08724 0.08485 0.07966
2 0.03162 0.03155 0.03176 0.03066
3 0.01603 0.01586 0.01585 0.01572
4 0.01233 0.01224 0.01232 0.01224
5 0.01484 0.01482 0.01486 0.01489

Table 2: Natural frequencies for a cylindrical shell with the clamped-elastic condition.

Modal orders 􏽢k � 0 􏽢k � 0.01 􏽢k � 0.1 􏽢k � 1 􏽢k � 1e6 􏽢k � 1e8

1 Dai [24] 131.99 183.01 298.01 315.07 315.15 315.15
Present solution 131.49 182.88 298.45 314.88 315.48 315.48

2 Dai [24] 249.82 278.17 310.07 339.86 343.43 343.43
Present solution 248.97 277.68 309.55 340.31 345.52 345.52

3 Dai [24] 262.81 279.76 364.98 473.26 491.36 491.36
Present solution 262.82 279.79 365.56 476.62 490.28 490.28

4 Dai [24] 377.00 404.12 490.35 491.64 501.06 501.08
Present solution 375.67 403.13 488.90 490.14 506.01 506.01

Table 3: Natural frequencies of a plate-cylindrical shell system with a clamped-elastic support.

Modal orders Dai [19] Present solution Error (%)
1 49.906 49.557 0.699
2 59.483 59.251 0.390
3 60.990 60.990 0.000
4 86.696 86.576 0.138
5 99.008 98.535 0.478
6 116.00 115.48 0.448
7 134.25 134.16 0.067
8 147.72 147.15 0.386
9 196.29 195.62 0.341
10 200.20 200.09 0.055

(a) (b) (c)
Figure 3: Continued.
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mode in the coupled structure are equivalent or
nonnegligible.

Te infuence of the internal connection stifness of the
elastic coupled stifened plate-cylindrical shell system on
these two modes is further explained below. Only the elastic
connection stifness is changed. It is assumed that the
stifness coefcients in all directions increase in proportion
from the free end to the rigid fxed end. Taking the anti-
symmetric coupling mode as an example, this mode is
mainly the elastic coupling deformation between the stif-
ened plate and the cylindrical shell, and the circular plate just
slightly deforms at each end.

Te variation curve of modal frequencies as a function of
the stifness coefcient is shown in Figure 4. Te fgure
demonstrates that when the rigidity coefcient k is from 0 to
102, the modal frequencies of this coupled structure change
a little because the stifness coefcients in all directions are
small at this time, the cylindrical shell and the stifened plate
cannot be efectively connected, and the modes of the
coupled structure are mainly controlled by the cylindrical
shell. Stifened plates have insignifcant modal amplitudes, as
shown in Figure 5(a).

When the stifness coefcient connection k ranges from
102 to 1010, the vibration frequencies increase rapidly with
increasing stifness coefcients (Figure 4), the stifened plate
has a greater rise in its modal amplitude, and the stifened
plate and the cylindrical shell exhibit coupled vibration as
a whole, as shown in Figures 5(b) and 5(c). At this stage, the
coupling modes of the structure are sensitive to the stifness
coefcient. At this stage, the infuence of the constraint
structure dynamic performance has practical signifcance to
the actual structure. For example, the actual structural
connection constraints are often complicated. Moreover, the
connection stifness between the ship deck and the side shell
plate is neither freely supported nor rigidly fxed but between
a free support and rigid fxation, and the constraint between
them, which is often called an elastic constraint, can be
considered as k � 108 (Figure 1).

When the stifness coefcient connection k ranges from
1010 to 1015, the coupling modal frequencies of the structure
are basically unchanged at this stage with the increase in the

stifness coefcient (Figure 4). Because the stifness co-
efcient is sufciently large at this time, the connection
among the stifened plate, the circular plate, and the cy-
lindrical shell at both ends is equivalent to rigid fxation, and
the connection between each structure no longer has relative
translation or rotation, which is equivalent to the welding
situation in the actual structure. As shown in Figure 5(d), an
organic overall structure has been formed.

Te other type of mode is the single structural mode; that
is, with an increasing connection stifness, the vibration
mode of the coupled system is always a single structural
mode. Taking the frst mode as an example, as shown in
Figure 6, the vibration mode of the coupled structure re-
sembles that of the stifened plate with the increase in the
connection stifness in each direction. When the connection
stifness between the coupling structures is large, the vi-
bration frequency of the structure is 159Hz, which is sig-
nifcantly diferent from that of the stifened plates when the
boundary stifness around the stifened plates is fxed

(d) (e) (f )

Figure 3: (a–f) Te frst six modes of the elastic coupled plate-cylindrical shell system.

3 6 9 12 150
Stifness coefcient/ (log k)

460

480

500

520

Fr
eq

ue
nc

y 
(H

z)

Figure 4: Antisymmetric modal frequency curve of the elastic
coupled stifened plate-cylindrical shell system with diferent
stifness coefcients.
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(289Hz). Te reason is that the cylindrical shell and the
round plates at both ends of the structure are not sufciently
“rigidly fxed” around the stifened plates, and the boundary
around the stifened plates can still translate and rotate in
a limited range.

Ten, it is assumed that the point excitation force acts on
the midpoint of the internal plate at the cylindrical shell, and
when the elastic connection stifness of the coupling
structure is between 105 and 1010. Figures 7 and 8 depict the
mean square velocity (MSV) and radiated sound power

(a) (b) (c) (d)

Figure 5: Coupled modes of the elastic coupled stifened plate-cylindrical shell system with diferent stifness coefcients. (a) k � 101.
(b) k � 104. (c) k � 108. (d) k � 1015.

(a) (b)

Figure 6: Single structure mode of the elastic coupled stifened plate-cylindrical shell system with diferent stifness coefcients. (a) k � 101.
(b) k � 1015.
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Figure 7: Mean square velocity of an elastic coupled structural system with diferent stifness coefcients.
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(RSP) curves, respectively. Te results show that the cou-
pling stifness has a substantial impact on the acoustic and
vibrational forces of the coupled structure.

First, when the connection stifness coefcient increases,
the number of resonant frequencies of the connected
structure reduces as the connection stifness increases, and
the self-vibration modes of each structure gradually become
the coupled vibration modes of the structure. Second, when
the connection stifness increases, the peaks of the curves
obviously increase. Tis is because the impedance matching
between the structures is improved with an increasing
connection stifness, which is conducive to vibration energy
propagation. Tird, the curves of the structure both move
towards high frequencies. Tis is because the increase in the

stifness of the connection leads to an increase in the fre-
quency of the structure.

To explore the impact of the coupling spring stifness on
the acoustic and vibration performance of a coupled
structure separately, the stifness value of one coupling
spring was modifed in turn, while the stifness of the other
coupling spring was set to 1e5. Te MSV curve and the RSP
curve of the elastic coupled structural system are shown in
Figures 9 and 10. While the coupling stifness in the di-
rection of kcy has a signifcant impact on the vibration and
sound radiation of the coupled structure, the coupling
stifnesses in the other directions have a much less impact on
the structural system’s ability to dampen vibration and
sound.Tat is, the supporting coupling stifness between the
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Figure 8: Sound power level of an elastic coupled structural system with diferent stifness coefcients.
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Figure 9: Mean square velocity of an elastic coupled structural system with a single stifness coefcient change.
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elastic plate and the cylindrical shell structure plays a major
role in the vibration energy transfer. In fact, the bending
vibration transfer of the inner plate is what truly constitutes
the vibration coupling transfer in the y direction of the
structure. Terefore, in the actual structure, it is recom-
mended that the support’s strength and stifness be de-
creased to lessen the vibration sound radiation produced by
the structure. One way to do this would be to install rubber
gaskets.

4. Summary

In this research, we build a calculation model of a coupled
plate-cylindrical shell system to investigate the efect of
internal constraint stifness on this performance. Te fol-
lowing conclusions are the most important:

(1) According to the amplitude ratio of each part of the
coupled structures, the modes can be roughly di-
vided into two types. One mode is single-structure
stifness control, and the other type is the coupled
mode of multiple-structure stifness control.

(2) Te coupled modes are closely related to the con-
nection stifness, while the single structural modes
are basically independent of the connection stifness.

(3) When the connection stifness increases, the MSP
curve and the RSP curve of the coupled structure
approach a high frequency and the resonance peak
value increases, while the number of resonant fre-
quencies decreases.

(4) Te supporting coupling stifness between the elastic
coupled structures plays an important role in the
vibration energy transfer.
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