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Te aim of this study is to compose a corotational fnite element formulation for space frames with geometrically nonlinear
behavior under dynamic loads. Using a moving frame through three successive rotations similar to Euler angles is one of the oldest
techniques; however, there are still some gaps that require attention, mainly due to singularity. Hence, alternative techniques had
been developed, sometimes elusive and computationally expensive. In this paper, we went back to the old technique and flled the
gaps. Tree-coordinate systems are used, i.e., the fxed global coordinate system, the fxed local coordinate system that is attached
individually to every element, and the corotational local frame for each element that moves and rotates with the element. Te
deformation is always small relative to the corotational frame. Te successive rotations between diferent coordinate systems are
expressed using Tait–Bryan angles. Lagrange’s equation is used to derive the equation of motion, and the stifness and mass
matrices are obtained using the Euler–Bernoulli beam model. A MATLAB code is developed based on the Newton–Raphson
method and the Newmark direct integration implicit method. In traditional techniques, singularity is attained when any rotation
angle in the fxed local frame approaches π/2, and if any is greater than π/2, the techniques could fail to specify the location of the
element. In this paper, each case is treated with a proper procedure, and special handling of trigonometric formulations prevents
singularity and correctly specifes the location of elements in all situations. Diferent examples of beams and frames are analysed.
While the method is not intricate, it is timesaving, is highly efective, provides more stable and robust analysis, and gives
sufciently accurate results. Compared to the parametrization of the fnite rotations technique, the method has a signifcant
reduction in the convergence rate because it avoids the storage of joint orientation matrices.

1. Introduction

In recent years, the development of lightweight high-
strength materials has attracted many industries [1–3]. No
wonder, industry always faces new challenges and needs to
reduce the cost of designs. Such designs inevitably experi-
ence large displacements but with small strain. Tat is why
geometrically nonlinear analysis plays a crucial role in such
designs, which cannot be analysed using the traditional
linear analysis. Remarkably, it remains a fertile ground for
research due to the continuous demand for accurate,
adaptable, and computationally inexpensive geometrically
nonlinear formulations for treating innovative applications.

To elucidate this point, Leng et al. [4] pointed to the sig-
nifcant efect of the geometric nonlinearity on the fexible
ofshore structures and devices that cannot be ignored.
Trapper [5] studied a pipe lay on a seafoor that experienced
large deformations. Accordingly, he used a geometrically
nonlinear model to calculate the maximum internal forces
locations. Liu [6] investigated a geometrically nonlinear
fnite element formulation to determine the dynamic re-
sponse of a guyed transmission line system that contains
large displacements from the vibration of cables. With the
unprecedented growth in renewable energy, increasing the
scale of renewable energy devices becomes an urgent need.
As a result, Xiaohang et al. [7] analysed a 100-meter fexible
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wind turbine blade. Tis investigation reveals that geometric
nonlinearity plays an indispensable role in the computation
of the dynamic response of such giant blades. Due to the
increasing interest in deep space exploration, there is
a continuous need for space applications and habitats. It is
worthy to say that such applications of light-weight materials
contain large displacements. Terefore, Liu and Bai [8]
considered the geometric nonlinearity during their experi-
mental and numerical investigation of a deployable com-
posite cabin for space habitats. Te important question that
can be addressed here is why shall we develop geometrically
nonlinear models in the existing of various fnite element
commercial softwares? Te answer is not complicated; there
is still a need to investigate more versatile, efcient, and
time-saving models that can successfully handle diferent
engineering problems which may be exclusive or intractable
in some cases using these commercial programs.

According to Crisfeld [9], Turner et al. [10] were the frst
to study geometrically nonlinear fnite element analysis in
the sixtieths of the last century. In fact, Argyris [11] made
considerable premature contributions in genuine geo-
metrically nonlinear analysis procedures. Essentially, the
geometrically nonlinear fnite element analysis of structures
was covered in some notable books by Oden [12], Bathe [13],
and Crisfeld [9].

In general, there are two diferent forms, in continuum
mechanics, to describe the motion of a body, namely,
Eulerian and Lagrangian formulations. Te Eulerian for-
mulations are usually used in fuid mechanics, while La-
grangian formulations are used in most other engineering
felds. With regard to geometrically nonlinear analysis, the
Lagrangian formulations are commonly used in the form of
total Lagrangian, updated Lagrangian, and corotational
formulations. In total Lagrangian formulations [14–17], the
system equation terms are defned in terms of the fxed
global frame that does not change through the analysis. Tis
generates relatively large strains, displacements, and rota-
tions that need special procedures to handle.

While in updating Lagrangian formulations [18, 19], the
terms of the equation are defned relative to a frame that is
updated with the last accepted solution.Tis reference frame
does not change during the solution cycles. As a result, the
system equations are much simpler than the corresponding
equations in total Lagrangian formulations. However, if the
displacement from the current confguration to the last
equilibrium confguration is large, a basic assumption is
violated and accordingly these formulations experience also
some complexities. To avoid such complexities, corotational
formulations [20–31] provide a simple kinematics de-
scription method for large displacement analysis. Tese
formulations are based on the theory of small strain. Te
corotational local frame translates and moves with each
element but does not deform with it. Consequently, one
obvious advantage of this formulation is that it can easily
flter the rigid-body motion from the deformational motion,
which is always small relative to the corotational local frame.
Tis frame, which is continuously updated, can be defned by
many diferent methods [23]. Remseth [17] used an ap-
proximate vectorial assumption to deal with three-

dimensional rotations. Terefore, this method is not ap-
plicable for large rotations. Tus, he limited his approach to
rotations to the range of 12–15 degrees. However, the for-
mulation of the three-dimensional beam element is not just
a simple extension of the two-dimensional formulation,
mainly because of the complexity of the three-dimensional
large rotations. More specifcally, the three-dimensional
large rotations are noncommutative and nonadditive. To
handle this problem, Oran [24] used a joint orientation
matrix to describe a set of orthogonal axes that are rigidly
attached and deformed with the joints of a structure. Te
element nodal rotations are determined from the angles
between this set of orthogonal axes and the member axes.
Tis procedure is improved by Crisfeld [25], Le et al. [26],
Jonker and Meijaard [27], and Hsiao et al. [28]. Tough this
method does not put restriction on the size of the time step
and can use smaller number of elements, a key stone for the
method is the need for a special parametrization of the fnite
rotations. It also increases the computational time because of
storing the joint orientation matrices and parametrization of
the fnite rotations. Bathe and Bolourchi [29] defned
a moving local frame through three successive rotations
similar to Euler angles, sometimes called Tait–Bryan angles,
Bunge, or other conventions. However, they did not for-
mulate trigonometric rules for all rotation angles. Benjamin
[30] contributed to the solution of this problem by obtaining
cosines and sins of all rotation’s angles. However, he did not
specify a control sign for the cosine of rotation angles which
can be obtained using two hypotenuses of right-angle tri-
angles. Nunes et al. [31] controlled the sign of the cosine of
rotation angles to overcome the problem of the cosine of an
angle greater than π/2. Nevertheless, they did not specify
clearly how to determine the transformation matrices in the
case of vertical members, when the rotation angle is equal
π/2 or −π/2 exactly, which is very important in the modeling
of three-dimensional structures. Furthermore, they did not
solve any three-dimensional problem by examining their
motion description method. Due to such problems, Simo
and Vu-Quoc [16] identifed the problem of singularity in
case of using this method. Tat is why many authors used
parametrization of fnite rotations, such as the authors in
[16, 25–27].

To express the stifness and mass matrices, the
Euler–Bernoulli beam theory was extensively used in the
formulations by many researchers (see, for example,
[21, 22, 27, 28, 32, 33]) since it simplifed the analysis and in
the same time obtains adequate results. In the
Euler–Bernoulli beam theory, the material is considered
isotropic and elastic, and the cross section of the elements is
uniform. A normal plane section on the centroid axis before
deformation remains plane after deformation and normal to
the axis is employed. Warping and cross-sectional distortion
are not considered. To investigate the efect of shear for-
mulation, the Timoshenko beam model has been used by
other researchers (see, for example, [15, 22, 34]).

In this paper, a relatively accurate and simple corota-
tional formulation for three-dimensional fnite element
formulation has been developed. Te stifness and mass
matrices are evaluated using the Euler–Bernoulli beam
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model. Te transformation procedure is based on the
Tait–Bryan angles successive rotations [23, 29]. Tis pro-
cedure is employed in two main stages to transform vectors
and matrices from the fxed global frame to the moving
corotational frame. Te frst stage is the transformation
from the fxed global frame to the fxed local frame, and the
second stage is the transformation from the fxed local
frame to the moving corotational local frame. Te trans-
formation procedure also depends upon updating the
coordinates with every equilibrium confguration during
the analysis. In order to formulate a consistent model, the
trigonometric rules for special cases of spatial beam ele-
ments are considered with the control sign. Tese rules are
used to calculate the rotations matrices. Meanwhile, this
method is simple and does not need parametrization for
fnite rotations, but it requires regulating the time step and
number of elements in order to decrease the relative
chordal rotations during the analysis. Te equation of
motion is formulated using Lagrange’s equation. An in-
cremental iterative procedure is used to solve the equation
of motion. Tis procedure is based on the full New-
ton–Raphson method and the Newmark direct-time in-
tegration method. Te MATLAB code is developed for this
purpose. Tis code involves a relatively rapid convergence
rate for equilibrium because it avoids storing joint ori-
entation matrices and parametrizing of fnite rotations,
which are often associated with parametrized formulations.
Tis section represents a general introduction and reveals
the importance of studying geometric nonlinearity. Te
spatial beam element motion description method, which
involves the coordinate systems and the displacement in-
terpolation, is presented in Section 2. Te transformation
procedure between diferent coordinate systems based on
Tait–Bryan angles can be seen in Section 3. Te strain
energy and stifness matrix are derived in Section 4. Te
kinetic energy and the mass matrix are presented in Section
5. Ten, Lagrange’s equation is used to derive the equation
of motion in Section 6. Section 7 represents the solution
strategy. To expose the efciency and validate the accuracy
of the proposed model, fve numerical examples are solved
and compared with the published results in Section 8.
Finally, the conclusions are presented in Section 9.

2. Kinematics Description of the 3D
Beam Element

2.1. Basic Assumptions. Te following assumptions are
employed to formulate the spatial beam element:

(i) Te material is isotropic, elastic, and homogeneous
(ii) Te cross section of the beam element is symmetric

about both axes

(iii) Euler–Bernoulli beam assumptions, which state that
a normal plane section on the centroid axis before
deformation remains plane after deformation and is
normal to that axis, are employed.

(iv) Warping, cross-sectional distortion, and shear efect
are not taken into account

Hence, the small strain theory is the basis for the
corotational formulation used in the analysis. Accordingly,
deformational and rotational displacements are always small
with respect to the corotational frame. Appropriate element
sizes and time steps are chosen to ensure that these con-
ditions remain valid and the results are accurate.

2.2. Coordinate Systems. After discretization of the structure
into fnite elements, the ith beam element can be defned with
two end nodes (n= 1 and 2). Every node has six degrees of
freedom and is defned with respect to three frames as shown
in Figure 1. Tese coordinate systems are the fxed global
coordinate system associated with the fxed global frame (X,
Y, Z), the fxed local coordinate system associated with the
fxed local frame at time = 0 (x

∧
i, y
∧
i, z
∧
i), and the moving local

coordinate system associated with the corotational local
frame (xi, yi, zi).Tis local corotational frame is updated and
attached to each beam element. It also translates and rotates
with the beam element but does not deform with it. Figure 1
also shows the three confgurations used in dynamics: an
initial confguration at time � 0, the jth equilibrium con-
fguration at time � t, and a current confguration at
time � t + ∆t. Te element’s initial length is Lo, and after
deformation in the current confguration, the element length
is equal to the arc length Si, while Lc is the current chord
length.

For the current confguration, as shown in Figure 2, the
nodal displacement vector for the ith beam element in the
fxed global coordinate system is given by the following
equation:

Di � U1 V1 W1 θX1 θY1 θZ1 U2 V2 W2 θX2 θY2 θZ2􏼂 􏼃
T
,

(1)

where Un (n= 1, 2), Vn (n= 1, 2), and Wn (n= 1, 2) are the
displacement translational components in X, Y, and Z di-
rections, respectively, and θXn. θYn and θZn (n= 1, 2) are the
counterclockwise rotations about X, Y, andZ axes,
respectively.

Te nodal incremental displacement vector of the ith
beam element in the global coordinate system is defned as
follows:

∆Di � ∆U1 ∆V1 ∆W1 ∆θX1 ∆θY1 ∆θZ1 ∆U2 ∆V2 ∆W2 ∆θX2 ∆θY2 ∆θZ2􏼂 􏼃
T
, (2)
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where∆Un (n=1, 2),∆Vn (n=1, 2), and∆Wn (n=1, 2) are the
incremental translational components of displacement in X,
Y, and Z directions, respectively, and ∆θXn.∆θYn and∆θZn

(n=1, 2) are the counterclockwise incremental rotations
about X, Y, and Z axes, respectively. Te nodal displacement
vector Di can be updated by the following equation:

Di � Dj
i + ∆Di, (3)

where Dj

i is the nodal displacement vector for the ith beam
element in the fxed global coordinate system at the jth
equilibrium confguration. Te nodal displacement vector
Di is divided into the nodal translational displacement

XZ

Y
 Initial configuration

 at time =0

The jth equilibrium configuration
at time = t

Current configuration
at time = t + Δt

Rigid body motion

Deformational motion

Lc

–yt+Δt
i

–xt+Δt
i

2

1

–zt+Δt
i

–yt
i

–zt
i

–xt
i2

1

Lo

̂yi

1

̂zi

̂xi

2

Figure 1: Motion and coordinate systems of the ith spatial beam element.
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vectorDti and the nodal rotational displacement vectorDri,
which can be written as follows:

Dti � U1 V1 W1 U2 V2 W2􏼂 􏼃
T

,

Dri � θX1 θY1 θZ1 θX2 θY2 θZ2􏼂 􏼃
T
.

(4)

Similarly, the ∆Di vector can be divided into the nodal
incremental translational displacement vector ∆Dti and the
nodal incremental rotational displacement vector ∆Dri as
follows:

∆Dti � ∆U1 ∆V1 ∆W1 ∆U2 ∆V2 ∆W2􏼂 􏼃
T

, (5)

∆Dri � ∆θX1 ∆θY1 ∆θZ1 ∆θX2 ∆θY2 ∆θZ2􏼂 􏼃
T
. (6)

Tus, the nodal coordinate vector of the ith beam element
in the fxed global system can be updated continuously as
follows:

Xi � Xj
n + ∆Dti,

Xi � Xi Yi Zi􏼂 􏼃
T
,

(7)

where Xi is the vector of the nodal coordinates of the ith
beam element relative to the fxed global frame, at the
current confguration, and Xj

i is the vector of the nodal
coordinates relative to the fxed global frame, at the jth

equilibrium confguration.
Te nodal displacement vector of the ith beam element in

the element corotational local coordinate system, at the
current confguration, is as follows:

di � u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2􏼂 􏼃
T
, (8)

where un (n � 1, 2), vn (n � 1, 2), and wn (n � 1, 2) are the
displacement translational components in xi, yi, and zi
directions, respectively, and θxn. θyn. and θzn (n= 1 and 2)
are the counterclockwise deformational rotations after
eliminating the rigid-body rotations.

Te internal elastic force vector for the ith beam element
in the fxed global coordinate system, at the current con-
fguration, can be written as follows:

Fei � FX1 FY1 FZ1 MX1 MY1 MZ1 FX2 FY2 FZ2 MX2 MY2 MZ2􏼂 􏼃
T
. (9)

X

Z

Y

xi
–

zi
–

yi
– mx 1

, θx 1

my 1
, θy 1

my 2
, θy 2

fx1, u1

fy1, v1

fy2, v2

fz1, w1

fz2, w2

mz1, θz1

mz2, θz2

mx 2
, θx 2

fx2, u2

MY2, θY2

FY2, V2 MZ2, θZ2

FZ2, W2

FX2, U2 MX2, θX2

MY1, θY1

FY1, V1

MX1, θX1 FX1, U1

FZ1, W1

MZ1, θZ1

Figure 2: Displacement and force nodal components with positive signs of the ith beam element in the global coordinate system and the
corotational local coordinate system.
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Te internal elastic force vector of the ith beam element
in the element corotational local coordinate system, at the
current confguration, is as follows:

fei � fx1 fy1 fz1 mx1 my1 mz1 fx2 fy2 fz2 mx2 my2 mz2􏼂 􏼃
T
, (10)

where the internal elastic force vector components in both
the fxed global coordinate system and the corotational local
coordinate system are shown in Figure 2 with their
positive signs.

2.3. Displacement Interpolation. Te classical Hermitian
shape functions are used to relate the element axial elon-
gation u (xi), lateral defections of the centroid axis
v(xi) andw(xi) shown in Figure 3, and rotation about the
centroid axis θx(xi) to the element nodal displacement
vector di as follows:

u xi( 􏼁 � N1 0 0 0 0 0 N4 0 0 0 0 0􏼂 􏼃di, (11)

v xi( 􏼁 � 0 N2 0 0 0 N3 0 N5 0 0 0 N6􏼂 􏼃di, (12)

w xi( 􏼁 � 0 0 N2 0 −N3 0 0 0 N5 0 −N6 0􏼂 􏼃di, (13)

θx xi( 􏼁 � 0 0 0 N1 0 0 0 0 0 N4 0 0􏼂 􏼃di. (14)

Te components of the shape functions Ni of the ith
beam element are given by the following equation:

N1 � 1 −
1
2

(1 + ξ),

N2 �
1
4

(1 − ξ)
2
(2 + ξ),

N3 �
Lc

8
1 − ξ2􏼐 􏼑(1 − ξ),

N4 �
1
2

(1 + ξ),

N5 �
1
4

(1 + ξ)
2
(2 − ξ),

N6 �
Lc

8
−1 + ξ2􏼐 􏼑(1 + ξ),

(15)

where ξ is given by

ξ � −1 +
2 xi

Lc

, (16)

where Lc is the element current chord length.
Te function ξ nodal values for the ith beam element are

shown in Figure 4. Transverse displacements can be de-
termined, at any point along the element, using shape
functions and the nodal displacement values in the local
coordinate system.

Due to the nature of the attached corotational local
frame, as shown in Figures 1 and 3, the displacement
components vn (n � 1,2) and wn (n � 1,2) are equal to zero.

Furthermore, the axial displacement of the frst node is
chosen to be zero while the axial displacement of the second
node is u2. Consequently, the nodal displacement vector di

has only seven nonzero components which will simplify the
analysis as can be seen in the next section. Tis vector can be
written as follows:

di � 0 0 0 θx1θy1θz1u2 0 0 θx2θy2θz2􏼂 􏼃
T
.

(17)

Tus, equations (12) and (13) can be simplifed to

v xi( 􏼁 � N3 θz1 + N6 θz2,

w xi( 􏼁 � −N3 θy1 − N6 θy2.
(18)

Te arc length of the ith beam element Si can be expressed
by

Si �
Lc

2
􏽚
1

−1

������������

v
′2

+ w
′2

+ 1􏼒 􏼓

􏽲

dξ, (19)

where v′ andw′ are the frst derivatives of the functions v(xi)

and w(xi) with respect to xi. Tis integral is evaluated using
the Gaussian integration scheme. Te axial elongation of the
ith beam element can be defned as follows:

e � Si − Lo. (20)

Tis equation can also be written in terms of chord
lengths as follows:

e � Lc − Lo + bi, (21)
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where Lo is the element initial length and bi is the element
axial elongation due to the bowing efect, which can be
determined in terms of rotations [35] as follows:

b �
Lc

30
2θy

2
1 − θy1θy2 + 2θy

2
2􏽨 􏽩

+
Lc

30
2θz

2
1 − θz1θz2 + 2θz

2
2􏽨 􏽩.

(22)

Hence, the axial displacement u2 in equation (17) is given
by

u2 � e. (23)

3. Transformation Procedure

Te transformation procedure depends upon updating the
coordinates with every equilibrium confguration during the
analysis. Two main stages are employed here to perform
transformation from the fxed global frame to the moving
corotational local frame.Te frst stage is the transformation
from the fxed global frame to the fxed local frame, and the
second stage is the transformation from the fxed local frame
to the moving corotational local frame.

Assuming thatVd is a 3D vector associated with the fxed
global frame, the relation between the fxed global frame (X,
Y, Z) and the fxed local frame (x

∧
i, y
∧
i, z
∧
i) can be expressed by

the following equation:

v
∧

d � ro Vd, (24)

where ro is an orthogonal matrix (3× 3) which can be de-
termined from the direction cosines of the fxed local frame

relative to the fxed global frame. For a three-dimensional
frame element, this matrix turns into a (12×12) matrix as
follows:

To �

ro 0

0 ro

0 0

0 0
0 0

0 0

ro 0

0 ro

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Similarly, the relation between the fxed local frame (x∧ i,
y
∧
i, z
∧
i) and the current corotational local frame (xi, yi, zi) is

vd � rc v
∧

d, (26)

where rc is also an orthogonal matrix (3× 3) which can be
obtained from the direction cosines of the corotational local
frame relative to the fxed local frame. For a three-
dimensional frame element, this matrix turns into
a (12×12) matrix as follows:

Tc �

rc 0

0 rc

0 0

0 0
0 0

0 0

rc 0

0 rc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

One can write the vector vd in terms of Vd as follows:

vd � rr Vd, (28)

where

rr � rc ro. (29)

Terefore, the transformation matrix for the three-
dimensional ith beam element from the fxed global frame
to the moving corotational local frame, at the current
confguration, can be expressed by

Tr � Tc To. (30)

Both transformation matrices ro and rc are determined
using Tait–Bryan angles, which describe the three successive
rotations of the three-dimensional beam element.

1 2

1
2

v

w

fx1

fx1

fx2

fx2

mz1

my1

mz2

my2

yi
–

zi
–

θz1

θy1

θz2

θy2

xi
–

xi
–

Figure 3: Te ith beam element displacement and internal force vector components with the attached corotational local frame in planes
(xi − yi) and (xi − zi).

1 2ith element

xi = 0
ξ = -1
– xi = LC

ξ = 1
– Xi

–

Figure 4: Te values of ξ function along the ith beam element
end nodes.
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3.1. Transformation from the Fixed Global Frame to the Fixed
Local Frame. Te frst stage is to transform from the fxed
global system to the fxed local system using the three
successive rotations βo, co, αo, as shown in Figures 5–8, as
follows:

(1) Rotation βo of the (X, Y, Z) coordinate axes about the
Y axis:Tis rotation places theX and Z axis along Xβo

and Zβo
, respectively, while the Y axis remains the

same, as shown in Figure 5.
Using the direction cosines of βo frame (Xβo

, Y, Zβo
)

with respect to the global frame (X, Y, Z), shown in
Figures 5 and 8, the rotation matrix rβo

can be de-
termined as follows:

rβo
�

cos βo 0 sin βo

0 1 0

−sin βo 0 cos βo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (31)

where

cos βo �
CX

CXZ

,

sin βo �
CZ

CXZ

,

CX �
X2 − X1

Lo

,

CY �
Y2 − Y1

Lo

,

CZ �
Z2 − Z1

Lo

,

CXZ �

���������

CX
2

+ CZ
2

􏽱

,

Lo �

�������������������������������

X2 − X1( 􏼁
2

+ Y2 − Y1( 􏼁
2

+ Z2 − Z1( 􏼁
2

􏽱

.

(32)

(2) Rotation co of the (Xβo
, Y, Zβo

) coordinate axes
about the Zβo

axis: Tis rotation places the Xβo
and

Y axis along Xco
and Yco

, respectively, while the Zβo

axis remains the same, as shown in Figure 6. One
can use the direction cosines of the co frame (Xco

,
Yco

, Zβo
) with respect to the βo frame (Xβo

, Y, Zβo
),

and the rotation matrix rco
can be obtained as

follows:

rco
�

cos co sin co 0

−sin co cos co 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (33)

where

cos co � CXZ,

sin co � CY.
(34)

(3) Rotation αo of the (Xco
, Yco

, Zβo
) coordinate

axes about Xco
axis: Tis rotation places the Yco

and Zco
axis along y

∧
i and z

∧
i, respectively, while the

Xco
axis remains the same. It has to be noticed that

x
∧
i coincides with the axis Xco

, as shown in
Figure 7.

By assuming a point P lies in the (x
∧
i, y
∧
i) plane, as shown

in Figure 8, the point P coordinates relative to the starting
point of the ith beam element with respect to the fxed global
system coordinate (X, Y, Z) can be written as follows:

XP1 � XP − X1,

YP1 � YP − Y1,

ZP1 � ZP − Z1.

(35)

Consequently, the coordinates of point P with respect to
the (Xco

, Yco
, Zco

) frame, as shown in Figure 9, can be
obtained as follows:

XPco
YPco

ZPco
􏽨 􏽩

T
� rco

rβo
XP1 YP1 ZP1􏼂 􏼃

T
, (36)

which leads to

XPco
� CX XP1 + CYYP1 + CZZP1,

YPco
� −

CX CY

CXZ

XP1 + CXZ YP1 −
CY CZ

CXZ

ZP1,

ZPco
� −

CZ

CXZ

XP1 +
CX

CXZ

ZP1.

(37)

Now, using the direction cosines of αo frame (Xαo
, Yαo

,
Zαo

), which coincides with the (x
∧
i, y
∧
i, z
∧
i) frame, with respect

to previous frame (Xco
, Yco

, Zco
), the rotation matrix rαo

can
be determined as follows:

rαo
�

1 0 0

0 cos αo sin αo

0 −sin αo cos αo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (38)

where

cos αo �
YPco��������������

YPco
􏼐 􏼑

2
+ ZPco

􏼐 􏼑
2

􏽱 , (39)

sin αo �
ZPco��������������

YPco
􏼐 􏼑

2
+ ZPco

􏼐 􏼑
2

􏽱 . (40)

Hence, the rotation matrix ro can be obtained as
follows:

ro � rαo
rco

rβo
. (41)

By substitution, this matrix takes the form as follows:
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Z

X

βo

βo
βo

Y,Y

Z

X

Figure 5: Rotation angle βo of coordinate axes about Y axis (X, Y, X) to (Xβo
, Y, Zβo

).

Y,Y

Y

X

γo

Z ,Z

γo

γo

X

Figure 6: Rotation angle co of coordinate axes about Zβo
axis (Xβo

, Y, Zβo
) to (Xco

, Yco
, Zβo

).

Y

αo
̂yi,Y

̂zi,Z

,ZZ

αo

αo

xi,X̂ ,X

Figure 7: Rotation angle αo of coordinate axes about Xco
axis (Xco

, Yco
, Zβo

) to (x
∧
i, y
∧
i, z
∧
i).
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ro �

CX CY CZ

−CX CY cos αo − CZ sin αo

CXZ
CXZ cos αo

−CY CZ cos αo + CX sin αo

CXZ

CX CY sin αo − CZ cos αo

CXZ
−CXZ sin αo

CY CZ sin αo + CX cos αo

CXZ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

3.1.1. Special Cases. It should be noted that the rotation
angle αo is insignifcant, in the case of a circular cross section
element. Tus, the rotation matrix ro can be calculated as
follows:

ro � rco
rβo

. (43)

Tere is another special case where the initial position of
the element is vertical, in the Y-axis direction. In order to get
ro, there are only two successive rotations not three as in the
general case. Te frst rotation co is either 90° or 270°, as
shown in Figure 10, depending on whether CY is +1 or −1.
Te other rotation is αo, which is shown in Figure 11, and

X

Z

P

1

2Lo

αo

γo

Y
Y,Y

XP1

Lo CX

ZP1
Lo CZ

Lo Cy

X

YP1

βo

βo

γo

αo

,ZZ

,Xxi,X̂

̂

yi,Ŷ

zi,Z

Figure 8: Tree successive rotations (βo, co, αo) of a three-dimensional beam element.

αo

αo

Z

Y

Z

Y

zî

yî

Figure 9: Te reference point (P) coordinates relative to the frame (Xco
, Yco

, Zco
).
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can be determined using a reference the point P that lies in
the (x
∧
i, y
∧
i) plane. In this case, equations (39) and (40) are

modifed as follows:

cos αo � −
XP1�������������

XP1( 􏼁
2

+ ZP1( 􏼁
2

􏽱 CY( 􏼁,

sin αo �
ZP1�������������

XP1( 􏼁
2

+ ZP1( 􏼁
2

􏽱 .

(44)

Tus, the matrix ro in equation (43) can be written as
follows:

ro �

0 CY 0

−CY cos αo 0 sin αo

CY sin αo 0 cos αo

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (45)

Substituting equation (42) or equation (45) into equation
(25), the matrix To can be determined.

3.2. Transformation from the Fixed Local Frame to theMoving
Corotational Local Frame. Te second stage is to transform
from the fxed local system (x

∧
i, y
∧
i, z
∧
i) to the moving

corotational local system (xi, yi, zi), at the current confg-
uration, using the three successive rotations βc, cc, and αc, as
shown in Figure 12. Tese rotations are similar to the ro-
tations βo, co, and αo in Figures 5–7; however, the calculation
method depends upon the relative displacements.

(1) Using the direction cosines of the βc frame (Xβc
, Yβc

,
Zβc

) with respect to fxed local frame (x
∧
i, y
∧
i, z
∧
i),

which is shown in Figure 12, the rotation matrix rβc

can be determined as follows:

rβc
�

cos βc 0 sin βc

0 1 0

−sin βc 0 cos βc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (46)

where

cos βc �
Lo + U
∧ r

i

P1P2′
,

sin βc �
W
∧ r

i

P1P2′
,

P1P2′ �

������������������

Lo + U
∧ r

i􏼠 􏼡

2

+ W
∧ r

i􏼠 􏼡

2

􏽶
􏽴

.

(47)

Of particular interest is to notice that in [29],
a difculty arises when angle βc > 90° since this
reference gave only an expression of the cosine of the
angle. In this work, an expression for sine is also
given. Both trigonometric relations can specify the
location of the element exactly. As shown in Fig-

ure 12, U
∧ r

i , V
∧ r

i , and W
∧ r

i are the ith beam element
relative translational displacements with respect to
the fxed local frame. Tese relative displacements of
the ith beam element can be determined from the
relative displacement with respect to the fxed global
system calculated from theDti vector in equation (4)
and the transformation matrix ro in equation (41) or
equation (43) for the vertical member as follows:

U
∧ r

i V
∧ r

i W
∧ r

i
􏼔 􏼕 � −ro ro􏼂 􏼃Dti, (48)

where

U
∧ r

i � ro(1,1)
U2 − U1( 􏼁 + ro(1,2)

V2 − V1( 􏼁 + ro(1,3)
W2 − W1( 􏼁, (49)

V
∧ r

i � ro(2,1)
U2 − U1( 􏼁 + ro(2,2)

V2 − V1( 􏼁 + ro(2,3)
W2 − W1( 􏼁, (50)

W
∧ r

i � ro(3,1)
U2 − U1( 􏼁 + ro(3,2)

V2 − V1( 􏼁 + ro(3,3)
W2 − W1( 􏼁. (51)

(2) Similarly, one can use the direction cosines of the cc

frame (Xcc
, Ycc

, Zcc
) with respect to frame (Xβc

, Yβc
,

Zβc
), and the rotation matrix rcc

can be obtained as
follows:

rcc
�

cos cc sin cc 0

−sin cc cos cc 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (52)

When employing the technique outlined in [29],
a complication rises when the angle cc > 90°, as this
reference solely provides an expression for the sine of
the angle. In this study, however, we present an ex-
pression for the cosine as well, enabling precise de-
termination of the element’s position. Tese two
trigonometric relationships can be expressed as
follows:
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cos cc � (SN)
P1P2′

Lc

, (53)

sin cc �
V
∧ r

i

Lc

, (54)

where

Lc �

���������������

P1P2′􏼐 􏼑
2

+ V
∧ r

i􏼠 􏼡

2

,

􏽶
􏽴

(55)

and SN is equal +1 if (Lo + U
∧ r

i )≥ 0 and −1 if

(Lo + U
∧ r

i )< 0.
Te rotation matrix for relative translational

displacements can be written as follows:

rdc
� rcc

rβc
, (56)

rdc
� −

cos βc cos cc sin cc sin βc cos cc

cos βc sin cc cos cc −sin βc sin cc

−sin βc 0 cos βc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (57)

In case when an element becomes vertical, that
means it is parallel to the Y-axis, the rotation βc

vanishes, and the rotation cc is either 90° or 270°,
depending on the element position. Traditionally,
this case could create singularity and it had been the
source of many difculties [31], and the authors of
this research work suggested preventing the rotation
cc to be either 90° or 270°. In this work, this problem
is solved by letting the code search for the alignment
of the element, that means to specify if the rotation cc

is either 90° or 270°.Tematrix rdc
can be rewritten as

follows:

X

1

2

Y

1

2

CY=+1
CX=0
CZ=0

CY=-1
CX=0
CZ=0

γo= 90° γo= 270°

Y

Z,Z Z,Z

Y,xi,X̂

xi , X̂

X,Y

Figure 10: Vertical member cases and the rotation angle co.

X
1

2

Y

1

2

P P

αo

αo

YP1

ZP1

XP1

YP1

ZP1

XP1

X,Y

Y,xi,X̂ ,X

zi,Ẑ

zi,Ẑ

yi,Ŷ

yi,Ŷ

Y

Z,Z Z,Z

xi,X̂ ,X

Figure 11: Vertical member cases and the rotation angle αo with the reference point.
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rdc
�

0 CY
′ 0

−CY
′ 0 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (58)

where CY
′ can be specifed using the current vector

of the nodal coordinates in equation (7) as follows:

CY
′

�
Y2 − Y1

Lc

. (59)

Hence, the value of CY
′ is either +1 and the ro-

tation cc is 90° or −1 and the rotation cc is 270°.
(3) When the third rotation angle αc is computed by

assuming a reference point P as has been done for αo,
it is very hard to assume a point in the (xi, yi) plane
every iteration with diferent consequence positions
and directions. Accordingly, the model experienced
some difculties in converging using this method.
Tus, an incremental procedure [29] is employed
here to compute this angle as follows:

∆αc �
1
2
∆θx1 + ∆θx2( 􏼁, (60)

where ∆θx1 and ∆θx2 are the incremental twist
angles about the xi axis. Tese incremental angles
can be determined using the following procedure.
First, the incremental rotational displacement vector,
with respect to the fxed global frame in equation (6),
is transformed to the corresponding vector in the
fxed local frame using the procedure indicated in
equation (24) as follows:

∆θ
∧
xn ∆θ
∧
yn ∆θ
∧
zn􏼢 􏼣

T

� ro ∆θXn ∆θYn ∆θZn􏼂 􏼃
T
. (61)

Ten, the incremental rotational vector relative to the
fxed local frame is transformed to the corotational local
frame as follows:

∆θxn ∆θyn ∆θzn􏼂 􏼃
T

� rdc
∆θ
∧
xn ∆θ
∧
yn ∆θ
∧
zn􏼢 􏼣

T

. (62)

Terefore, ∆αc in equation (60) can be determined using
the following relation:

∆αc �
1
2

cos βc cos cc ∆θ
∧
x1 + ∆θ

∧
x2􏼠 􏼡 + sin cc ∆θ

∧
y1 + ∆θ

∧
y2􏼠 􏼡 + sin βc cos cc ∆θ

∧
z1 + ∆θ

∧
z2􏼠 􏼡􏼠 􏼡. (63)

Consequently, the angle αc, at the current confguration,
can be determined as follows:

αc � αj
c + ∆αc, (64)

where αj
c is the twist rotation about the xi axis, at the jth

equilibrium confguration. Tis equation is used as a pre-
dictor between two successive time steps. Also, it is used as
a corrector between two successive iterations.

Tus, the rotation matrix rαc
can be determined as

follows:

rαc
�

1 0 0
0 cos αc sin αc

0 −sin αc cos αc

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (65)

Te rotation matrix rc in equation (27) can be expressed
as follows:

rc � rαc
rdc

. (66)
Substituting equations (65) and (57) (or equation (58) in

case of vertical member) into equation (66), the matrix rc can
be determined. Hence, the transformation matrix Tc in
equation (27) has been specifed. Ten, the transformation
matrix Tr in equation (30) has been determined.

4. Strain Energy and the Stiffness Matrix

Considering isotropic elastic materials, the constitutive re-
lation between the stress vector σi and the strain vector ϵi of
the ith beam element can be defned by the following
equation:

σi � Ei ϵi, (67)

where Ei is the symmetric matrix of the elastic coefcients.
Te strain vector is given by the following equation:

ϵi � Df vq, (68)

where Df is the diferential operator matrix and vq is the
deformation vector, which can be defned using the shape
functions in equation (15) as follows:

vq � Ni di, (69)

where Ni is the shape functions matrix, which is given in
Appendix A.1. Substituting equation (69) into equation (68),
the strain vector can be expressed as follows:

ϵi � Df Ni di. (70)

Combining equations (67) and (70), the stress vector can
be rewritten as follows:

σi � Ei Df Ni di. (71)

Te strain energy for the ith beam element Πi is given by
the following equation:

Πi �
1
2

􏽚
Vi

σT
i ϵi dVi, (72)

where Vi is the volume. Substituting equations (70) and (71)
into equation (72), the strain energy can be expressed as
follows:
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Πi �
1
2

􏽚
Vi

Ei Df Ni di􏼐 􏼑
T
Df Ni di dVi. (73)

Te element local displacement vector di is independent
of the volume Vi. Subsequently, equation (73) can be
simplifed to the following form:

Πi �
1
2
dT
i kidi, (74)

where ki is the symmetric element stifness matrix in the
corotational local coordinate system, which can be defned
as follows:

ki � 􏽚
Vi

BT Ei B dVi, (75)

and B is defned as follows:
B � Df Ni. (76)

Equation (74) can be written as follows:

Πi �
1
2
dTi ki di �

1
2

Tr Di( 􏼁
T ki Tr Di( 􏼁� DT

i Ki Di,

Ki � Tr
T ki Tr,

(77)

where Ki is the symmetric element stifness matrix in the
fxed global coordinate system.

For the beam element used in this research work, the
element stifness matrix in the local coordinate system ki can
be expressed as follows:

ki � k1 + k2, (78)

where k1 is the axial and bending stifness matrix and k2 is
the geometric stifness matrix for the ith beam element.
Stifness matrices are attached in Appendix A.2 and A.3.

5. The Kinetic Energy and the Mass Matrix

Te kinetic energy for the ith beam element KEi is given by
the following equation:

KEi �
1
2

􏽚
Vi

ρ _RT
i

_Ri dVi, (79)

where _() is the diferentiation with respect to time t, ρ is the
density of the ith beam element, and _Ri is the velocity of
a general point in the ith beam element with respect to the

global coordinate system. Te velocity of a general point in
the ith beam element with respect to the corotational local
coordinate system _ri can be expressed as follows:

_ri � Tr
_Ri, (80)

where _ri can be written in the following form:

_ri � Ni
_di, (81)

where _di is the nodal velocity vector of the i
th beam element

with respect to the local coordinate system.Te vector _di can
be expressed as follows:

_di � Tr
_Di, (82)

where _Di is the nodal velocity vector of the i
th beam element

in the global coordinate system. Combining equations (79)
and (80), the kinetic energy can be written as follows:

KEi �
1
2
􏽚

Vi

ρ Ni Tr
_Di􏼐 􏼑

T
Ni Tr

_Di􏼐 􏼑 dVi. (83)

Te velocity vector _Di and the transformation matrix Tr

are independent of the volume Vi. Subsequently, equation
(83) can be simplifed to the following form:

KEi �
1
2

_DT

i T
T
r mi Tr

_Di, (84)

where mi is the symmetric element mass matrix in the local
corotational coordinate system defned as follows:

mi �
1
2
􏽚

Vi

ρNT
i Ni dVi. (85)

Equation (84) can be written in the following form:

KEi �
1
2

_DT
i Mi

_Di, (86)

where Mi is the symmetric element mass matrix in the fxed
global coordinate system defned as follows:

Mi � TT
r mi Tr. (87)

For the beam element used in this research work, the
element mass matrix in the local coordinate system mi can
expressed as follows:

Lo

αc

αc

βc

βc

γc

γc

Lc

P2

P1

P'
2

yi,Y
–

Ur
i

̂

Vr
i

̂

Wr
i

̂

yi ,Ŷ

xî

zî

Y

,Xxi,X–

X
zi,Z
–

,ZZ

Figure 12: Tree successive rotations (βc, cc, αc) of a three-dimensional beam element.
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mi � m1 + m2, (88)

where m1 is the ith beam element mass matrix for the
translational inertia and m2 is the mass matrix of the ith

beam element for the rotational inertia. Te mass matrices
are attached in Appendices A.4 and A.5.

It is worth mentioning that the rotation is non-
commutative. However, in our analysis, we used the three-
coordinate system that separates the large rigid-bodymotion
from the internal deformation. We restrict our analysis to
the small strain theory, as we mention in subsection (2.1),
and the internal rotational displacements within each ele-
ment in each time step are always small. Terefore, the usual
vector addition rules can be applied to these rotational
displacements. Hence, the obtained stifness and mass
matrices are symmetric.

6. The Equation of Motion

Lagrange’s equation reported by [36, 37] is used to derive the
equation of motion in this section. It can be written for the
ith beam element as follows:

d

dt

zKEi

z _Di

􏼠 􏼡

T

−
zKEi

zDi

􏼠 􏼡

T

+
zΠi

zDi

􏼠 􏼡

T

�
zWDi

zDi

􏼠 􏼡

T

, (89)

where KEi is the kinetic energy, Πi is the strain energy, WDi

is the work done by the external forces, _Di is the nodal
velocity vector in the global coordinate system, andDi is the
nodal displacement vector in the global coordinate system.
Tework done by the external forces on the ith beam element
is given by the following equation:

WDi � DT
i F

P
i , (90)

where FP
i is the vector of the external applied forces on the ith

beam element in the fxed global coordinate system.
Using equation (86), one can write the frst two terms in

the left-hand side of the previous relation as follows:

d

dt

zKEi

z _Di
􏼠 􏼡

T

−
zKEi

zDi
􏼠 􏼡

T

� Mi
€Di

. (91)

Using equation (77), the third term in the left-hand side
of equation (89) can be written as follows:

zΠi

zDi

􏼠 􏼡

T

� Ki Di. (92)

Also, one can write

zWDi

zDi

􏼠 􏼡

T

� FP
i . (93)

Substituting equations (91)–(93) in equation (89), one
obtains

Mi
€Di + Ki Di � FP

i . (94)

One can write

Fe
i � Ki Di � TT

r f
e
i , (95)

where Fe
i is the internal elastic force vector in the fxed global

and fe
i is the internal elastic force vector in the local co-

ordinate systems, which is given by

fe
i � ki di. (96)

Substituting equation (95) in equation (94) gives

Fe
i + Mi

€Di − FP
i � 0. (97)

Equation (97) is the equation of motion of the ith beam
element. Assembling the element force vectors, acceleration
vectors, andmass matrices leads to the equation of motion of
the overall structure, which takes the following form:

Fe
+ M €D − FP

� 0, (98)

where FP is the vector of the external applied forces of the
entire structure and Fe is the internal elastic force vector of
the entire structure. Both FP and Fe are defned in the fxed
global coordinate system.M is the mass matrix in the global
coordinate system of the entire structure, and €D is the ac-
celeration vector in the global coordinate system of the
entire structure. Rayleigh damping is used in equation (98)
to read

Fe
+ C _D + M €D − FP

� 0, (99)

where C is the damping matrix in the global coordinate
system of the entire structure and _D is the velocity vector in
the global coordinate system of the entire structure. Te
damping matrix C is defned in terms of the stifness matrix
and the mass matrix as follows:

C � μM + ηK, (100)

where μ and η are the damping coefcient which can be
determined from the vibration modes of the system. K is the
assembled stifness matrix in the global coordinate system of
the entire structure.

7. Numerical Algorithms

Te equation of motion is solved using an incremental it-
erative procedure. Tis procedure is based on the full
Newton–Raphson and the Newmark direct integration
implicit method [13, 38]. Equation (99) can be rewritten as
follows:

ψ � Fe
+ C _D + M €D − FP

� 0, (101)

where ψ is the out of balance force.Te iteration equilibrium
convergence criterion is given by the following equation:

‖ψ‖≤ er ψf
����

����, (102)

where ψf is the reference out of balance force, which is
assumed to be the out of balance force in the frst iteration,
and er is the error tolerance.

It is worth mentioning that it is well known that element
matrices are used only in the iterative process for the in-
cremental solution, and they do not have to be exact. Tey are
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required to allow the solution to converge and satisfy the
specifed tolerance during the solution iterations. Tat is why
many authors have used tangent, secant, or even initial stifness
matrices in their nonlinear FE formulations. Using exact
matrices typically costs more time because of the storage of
nonsymmetric matrices compared with the storage of only the
triangular part in the symmetric matrices. Terefore, we are
confdent that the restriction we made in subsection (2.1),
which produced symmetric stifness matrices, allows the whole
solution to go faster without afecting the overall accuracy of
the results. Trough the solution of various numerical ex-
amples in the next section, we have assessed the efectiveness
and the accuracy of this method.

At the beginning of the solution, it is assumed that the
displacement, velocity, and acceleration vectors are null. Te
values of the vectors D, _D, and €D, at a known equilibrium
confguration and time t � tN, are DN, _DN, and €DN, re-
spectively. Likewise, the values of D, _D, and €D, at time
t � tN + ∆t, are DN+1, _DN+1, and €DN+1, where ∆t is the time
step. Using the geometric data, one can search for vertical
member, which is handled diferently, as stated in Section 3.
Te numerical solution procedure is described in the fol-
lowing steps at the beginning of each time step:

(i) Compute ki, mi, and fe
i for each element using

equations (78), (88) and (96), respectively.
(ii) In the frst iteration, calculate the matrices ro and

To using equations (25) and (41). In all other it-
erations, calculate rc and Tc using equations (27)
and (66).

(iii) Determine the transformation matrix Tr for each
member using equation (30).

(iv) Obtain Ki,Mi, and Fe
i according to equations (77),

(87), and (95).
(v) Get K, M, and Fe for the entire structure, by as-

sembling the stifness matrices, the mass matrices,
and the internal elastic force vectors for all ele-
ments of the analysed structure.

(vi) Calculate the out of balance force ψ from equation
(101).

(vii) If the convergence condition in equation (102) is
satisfed, stop the iteration and go to step ix.
Otherwise, start the following iteration:

(a) Using the Newton–Raphson method, a dis-
placement corrector vector R is calculated as
follows:

R � −K− 1 ψ, (103)

where K is the efective matrix that can be
defned as follows:

K �
1

τ ∆t
2 M +
∃
τ∆t

C + K, (104)

where τ and ∃ are the Newmark
parameters [38].

(b) Update the incremental displacement vector as
follows:

∆D � ∆D0 + R, (105)

where ∆D0 is the incremental displacement
vector in the previous iteration, which is
considered to be zero in the frst iteration.

(c) Extract vector ∆Di for each element from
vector ∆D. Consequently, one can update the
vectors Di and Xi using equations (3) and (7).

(d) Using Di and ro, the relative displacements are
calculated, as in equations (49)–(51).

(e) From the coordinate vector Xi, the model can
check for each element position to apply either
the regular rotations matrices in equations
(42), (57), and (65) or the vertical member
rotations matrices in equations (45), (58), and
(65). Ten, Tc and Tr are updated for each
element.

(f ) Using the relative displacements, the rigid-
body rotations can be obtained as follows:

μY � tan− 1 W
∧ r

i����������

Lo + U
∧ r

i􏼠 􏼡

2
􏽳

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

μZ � tan− 1 V
∧ r

i������������������

Lo + U
∧ r

i􏼠 􏼡

2

+ W
∧ r

i􏼠 􏼡

2
􏽳

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(106)

(g) Eliminate the rigid-body rotations from the
rotational components θYn and θZn in the
vector Di, for each element, as follows:

θY
̖
n � θYn + μY,

θZ
̖
n � θZn − μz.

(107)

(h) Transform the pure rotations θXn.θY
̖
n and

θZ
̖
n, which are relative to the fxed global

frame, to determine the corresponding rota-
tional components θxn. θyn and θzn for vector
di in the current corotational local frame which
are always relative to the element chord, using
the procedure detailed in equations (24)
and (26).

(i) Te axial displacement u2 in equation (17) is
obtained from equation (23).

(j) Using equations (17) and (96), di and fe
i can be

determined, respectively.
(k) Using the Newmark direct integration method

[38], _DN+1 and €DN+1 can be calculated as
follows:

€DN+1 �
∆D
τ ∆t

2 −
_DN

τ∆t
−

1
2 τ

− 1􏼒 􏼓 €DN
,

_DN+1 � _DN + ∆t (1 − ∃) €DN + ∃ €DN+1􏼐 􏼑.

(108)

(viii) Going to the start of step iv again.
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(ix) Te displacement vector at time t � tN + ∆t can be
updated as follows:

DN+1 � DN + ∆D. (109)

(x) Start the next time step.

It should be noted that this code includes a detection
function in the MATLAB code, which accurately determines
the position of each element using the nodal coordinate vector.
Tus, it can easily select the appropriate trigonometric rules
and the sign of rotations. Te detection function specifes the
position of the element using the nodal coordinate vector Xi

given in equation (7). When the relative diference between the
coordinate in X and Z direction of the element end nodes
approaches zero together, the code detects that the angle βc

turns to be zero and the element is in the direction of theY axis.
In this case, the code searches for the alignment of the element
based on the sign of CY

′ in equation (59). In addition, when the

relative displacement V
∧ r

i turns out to be zero, the angle cc

vanishes. Likewise, if the relative displacement W
∧ r

i turns out to
be zero, the angle βc vanishes; however, the element in general
is not vertical. Hence, the programdeals with these special cases
separately.

Tis function also controls the angle cc when the rotation
is outside the interval [π/2, −π/2]. Te sign SN in equation
(53) specifes the cosine of the angle cc to meet the corre-
sponding element position during the motion because the
terms P1P2′ and Lc are always positive which cannot refect
the real sign of cosine of cc. At the same time, the sine of cc is
already specifed with the sign of V

∧ r

i . Tis function conserves
the code to converge efciently. Tis numerical algorithm
steps are organized in Figure 13.

8. Numerical Examples

8.1. Simple Supported Beam Subjected to a Concentrated Step
Load. Te frst example is a simply supported beam whose
geometric properties are L� 12m, A� 8.06X 10− 3m2, and
IY � IZ � 1.858X 10− 4m4 and material properties are
E� 210GPa, G� 80.775GPa, and ρ� 7850kg/m3, as shown in
Figure 14.Te beam is subjected to a vertical concentrated load,
at point C, which increases linearly to reach the value of 10KN
at 0.15 second before being steady, as can be seen in Figure 15.
Six beam elements are used in the analysis, and time step ∆t �

5X 10− 4 s and the error tolerance er is chosen to be 10− 4. Liu
[6] solved this problem using a corotational formulation based
on Euler’s theorem. He compared his results with the theo-
retical results [6]. Te present results are compared with the
results in [6], as shown in Figure 16. Tis comparison reveals
that the present results remarkably agreed with the theoretical
results in [6].

8.2. Clamped-Clamped Beam Subjected to a Concentrated
Vertical Loadat theMidspan. In this part, a clamped-clamped
beam is analysed.Te geometric data of the beam are shown in
Figure 17. Te beams modulus of elasticity equals 30,000 ksi,
density is 0.098 lb/in3, and Poisson’s ratio is considered to be
zero. Tis beam is subjected to a dynamic concentrated step

load. Tis load is assumed to be applied suddenly to the
midspan, as can be shown in Figure 18. Tis problem is solved
byMondkar and Powell [39] using various time steps. A secant
stifness concept is utilized to solve this problem by Chan [40].
Te present results are obtained using ten element and error
tolerance er � 10− 2. Te present results are compared with the
results of [39] and the linear analysis results, using the same
time step ∆t � 50μs.Te dynamic load is applied over a period
of 5000μs (0.005 s). As can be shown in Figure 19, the present
results are signifcant in agreement with the results in [39].
Figure 19 also clarifes the considerable diferences between
linear and the nonlinear results. Another comparison is made
between the present results, the results of Chan [40], and the
results of Mondkar and Powell [39]. In this comparison, the
time step is ∆t � 100μs and the time duration is 10000μs
(0.01 s). Tese results are compared with the so-called exact
solution in [39], which is obtained by using a shorter time step
of ∆t � 25 μs. Figure 20 reveals that the present results are
closer to the so-called exact solution than the other results.

8.3. Damped Cantilever Beam Subjected to a Ramp-Ramp
Load at the Free End. In this example, a cantilever beam
subjected to a ramp-ramp dynamic load is presented, as shown
in Figures 21 and 22. Te geometric data of the beam are
L� 120 in (0.508m), A� 21.9 in2 (0.014m2), and IY� IZ�

100 in4 (4.16×10−5m4). Te material density ρ is 4.567
× 10−3 lb.s2/in4 (4.8808×104 kg/m3), the modulus of elasticity
E� 30×106 psi (207GPa), and Poisson’s ratio v � 0.3. In this
example, a viscous damping coefcient equal to 10 lb/in/s
(1.7513×103N/m/s) is applied for each translational degree of
freedom.Tis problem is classifed as a large rotation and large
displacement problem [6]. Liu [6] solved this problem using
a lumped mass matrix using eight elements. However, he did
not clarify the time step used in the analysis. Behdinan et al. [41]
also analysed this problem using two diferent formulations,
the consistent corotational formulation and the updated La-
grangian formulation. Tey used a diferent time step in each
formulation. However, they did not specify clearly the time step
used in each formulation. Te present results are obtained
using eight elements, with the error tolerance er � 10− 2 and
time step ∆t � 1 x 10− 3. Tese results are compared with the
results in [6, 41].Tis comparison clearly shows that the results
are well consistent, as shown in Figure 23.

8.4. Cantilever Beam Subjected to a Sinusoidal-Concentrated
End Load and a Concentrated End Moment. A cantilever
beam of length L=10m with uniform cross section, as can be
seen in Figure 24, is solved in this section. Te beam is sub-
jected to a vertical concentrated sinusoidal out of plane dy-
namic force FZ(t) and a bendingmomentMZ(t) at the free end,
as shown in Figure 25. Te circular frequency of the force is
ω=50 rad/s, Young’s modulus E is 210GPa, material’s density
is ρ=7,850 kg/m3, and Poisson’s ratio is v=0.3. Te di-
mensions of the cross section are e=0.25m and a=0.3m. Ten
beam elements are used in the analysis, time step is ∆t �

5 x 10− 4 s, and the error tolerance is er � 10− 2. Le et al. [26]
solved this problem using two diferent beam elements (cubic
and linear) based on spatial spin variables and spatial rotational
vector as a parametrization method for fnite rotations. Tey
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Figure 13: Te solution strategy.
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Figure 14: Geometrical data for the simply supported beam.
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Figure 15: Te dynamic load history of the simply supported beam.
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Figure 16: Time-vertical displacement at the point C curve for the simply supported beam.
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Figure 17: Geometrical data of the clamped-clamped beam.
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obtained a reference solution with 20 beam elements.Tey also
compared their results with the results of Simo and Vu-Quoc
[42]. Te results of the proposed formulation are closer to the
so-called reference solution than the results of other formu-
lations given in [26], as shown in Figures 26–28.

8.5. A Right Angle Cantilever Beam Subjected to a Sinusoidal-
Concentrated End Load. A right-angle cantilever beam is
solved, as shown in Figure 29. Tis problem is classifed as
a three-dimensional large deformation problem [6]. Te
geometric properties of the beam are A� 21.9in2 (0.014m2)

and IY � IZ � 100in4 (4.16 X 10− 5m4) and material

properties are E� 30X 106 psi (207GPa) and mass density
ρ� 4.567X 10− 3 lb.s2/in3 (126.4 kg.s2/m3). Te beam is
subjected to a concentrated vertical sinusoidal dynamic force
FY (t)� 500000 sin(50t)lb (2224 sin(50t) kN). Liu [6]
solved this problem using eight elements with lumped mass.
He compared his results with the results of ANSYS program
using the same number of elements. Eight beam elements are
used in the proposed analysis, time step is ∆t � 3 x 10− 4 s,
and the error tolerance is er � 10− 2. Te present results are
compared with the results in [6], as can be seen in Figure 30.
Tis comparison shows that the present results are in
agreement with the results in [6].

t

PY (t)

640 lb

Figure 18: Te dynamic load history of the clamped-clamped beam.
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Figure 23: Time-tip displacement curve for the cantilever beam.
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Figure 26: Time-displacement UX of the point A curve for the cantilever beam.
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Figure 27: Time-displacement UZ of the point A curve for the cantilever beam.
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Figure 28: Time-displacement UY of the point A curve for the cantilever beam.
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9. Conclusion

A modifed corotational fnite element formulation for
geometrically nonlinear dynamic analysis of spatial beams
and frames has been presented in this paper. Te following
points are the main outcomes of this study:

(i) Owing to the nature of the used corotational frame,
which continuously updates and translates with
each element, the used formulation condenses the
computed local displacement vector compared to
other formulations. In addition, it can smoothly
separate the rigid-body rotations from the de-
formational rotations.

(ii) Since the deformation is always small with respect
to the corotational frame, the small strain theory
has been applied. Accordingly, the stifness and
mass matrices are symmetric which signifcantly
reduces the required storage memory and

consequently reduces the computational time and
improves the convergence rate.

(iii) A two-stage procedure is proposed to transform
vectors and matrices from the fxed global frame to
the moving corotational frame. Tis procedure
depends essentially on Tait–Bryan angles, which are
computed successively. Trigonometric rules for all
rotation angles with their diferent cases have been
defned in terms of kinematics parameters. Ac-
cordingly, the proposed method deals with the
problems of the vertical members and the rotation
angles greater than π/2. Tis contribution has been
used for handling some of the reported cases which
are classifed as singularity problems.

(iv) For the numerical solution, an incremental iterative
method based on the full Newton–Raphsonmethod
and the Newmark direct integration implicit
method has been used to solve the equations of
motion. A MATLAB code has been written for this
purpose. Tis code includes detection functions,
which successfully control the sign of rotations
during the analysis. Terefore, no convergence
problems have been detected throughout the study.

(v) Each iteration, the element coordinate, stifness,
and mass matrices are updated regularly. Tough
this updating requires time in each iteration, it
signifcantly decreases the overall time of the
analysis.

(vi) Te results have been compared with the published
results to show the efectiveness and accuracy of the
proposed formulation and the numerical algo-
rithm. Tough these problems have been solved
using an adequate number of elements, accurate
results have been obtained compared with the
published results.

(vii) Te proposed formulation provides a rapid con-
vergence rate and does not need special parame-
trization for fnite rotations. However, it requires
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Figure 29: Geometrical data of the right-angle frame.

-250

-200

-150

-100

-50

0

50

100

0 0.1 0.2 0.3 0.4 0.5

V
er

tic
al

 d
isp

la
ce

m
en

t a
t t

ip
 (i

n)

Time (s)

Liu [6]
ANSYS [6]
Present study

Figure 30: Te dynamic response of the right-angle frame.
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the adjustment of the time step and the element size
in order to adjust the relative chordal rotations
during each time step.

Appendix

A.1. The Shape Function Matrix

Ni �

N1 0 0 0 0 0
0 N2 0 0 0 N3
0 0 N2 0 −N3 0
0 0 0 N1 0 0
0 0 N2

′ 0 −N3
′ 0

0 N2
′ 0 0 0 N3

′

N4 0 0 0 0 0
0 N5 0 0 0 N6
0 0 N5 0 −N6 0
0 0 0 N4 0 0
0 0 N5

′ 0 −N6
′ 0

0 N5
′ 0 0 0 N6

′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

where ( )′ is the frst derivatives with respect to xi. A.2. The Axial and Bending Stiffness Matrix
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where E is the modulus of elasticity, G is the modulus of
rigidity, ai is the cross-sectional area, Iyi

and IZi are the
moment of inertia about y

∧
i and z

∧
i axes, and Ji is the polar

moment of inertia.

A.3. The Geometric Stiffness Matrix
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where fx2 is the axial force of the second node in xi direction,
which is presented in equation (11).

A.4. The Mass Matrix for the
Translational Inertia
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A.5. The Mass Matrix for the Rotational Inertia
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