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Accurate estimation of the cable force afects the bridges’ long-term integrity and serviceability directly. Te frequency method is
often used for cable tension testing in bridge engineering. However, the generally used cable tension calculation formulae are
based on “ideal hinge” or “ideal fxed” boundary conditions. Te inclination, bending stifness, and sag-extensibility of the cable
are not properly considered, which results in non-negligible errors. A frequency-based method for precisely determining the
tensile force of a cable with unknown rotational and support constraint stifnesses at the boundary was proposed. A nonlinear
mathematical model of the vibration of the cable was established. In addition to parameters such as inclination, sag, and bending
stifness, the efects of unknown rotational and support constraint stifnesses at both ends of the cable were also considered. Te
fnite diference method was employed to discretize and solve the mode equation of the cable vibration. A frequency-based
sensitivity-updating algorithmwas applied that can identify simultaneously several system parameters using multiorder measured
natural frequencies. Calculation of the matrix eigenvalue derivatives was the key to obtaining the system sensitivity matrix.
Numerical examples indicated that the algorithm can be used efciently and precisely to identify multiple system parameters of the
cable, including its tension, bending stifness, and boundary constraint stifnesses.

1. Introduction

Cables are widely used in bridge engineering, for applica-
tions such as stay cables for cable-stayed bridges, fexible
hangers for tied-arch bridges, and hangers for suspension
bridges. Te accuracy of the cable force testing afects the
bridge construction monitoring, the structural stress state
assessment, and the maintenance strategy formulation.
Based on the basic principle that there is specifc corre-
spondence between the natural vibration frequencies and the
cable tension, the cable tension can be determined by the
measurement of the vibration frequencies. Te frequency-
based method is simple in operation and low in cost during
bridge construction and service. In consequence, the ap-
proach is widely used for tension testing. However, practical
applications have shown that the frequency-based method
may produce non-negligible errors, mainly because of the

inclination, sag-extensibility, bending stifness, and
boundary conditions of the cable have not been properly
considered. Especially for applications with short and thick
(high linear stifness) cables, e.g., the short hangers of
suspension bridges, this method has been observed to have
low accuracy and may even lead to completely incorrect
results. Te main reason is that the vibration frequencies of
the short hangers are particularly afected by boundary
constraint stifnesses.

In the earlier research, there were mainly three classical
calculation theories of the frequency-based method. (1) Te
fat taut string theory neglects the infuence of bending
stifness and sag-extensibility of the cable. Te cable tension
is obtained directly according to the measured frequency
and frequency order. It applies only to fat and slender cables
with low bending stifness. (2) Te axial-loaded slender
beam theory considers the infuence of bending stifness but
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ignores the sag-extensibility of the cable. It also requires the
boundary condition to be ideally hinged or fxed. Several
researchers studied the cable with pinned end conditions at
the two ends [1, 2] and the cable with fxed end conditions at
the two ends [3–5]. However, in engineering, the boundary
conditions of the cable mostly show unknown rotational and
support constraint stifnesses. For example, one end of the
anchorage cable strand of a suspension bridge is connected
to the cantilever linkage of the front anchor facet. Te
opposite end is stacked with the other strands in the saddle
groove and the “bearings” at both the ends of the cable
vibrate in pace with the vibration of the cable. (3) Te last
approach is the application of practical calculation formulae
that consider the bending stifness and sag efect of the cable.
However, to use these formulae, the bending stifness and
axial stifness of the cable must be known. In practical
engineering, the deformation mechanism of a beam and that
of a cable are not exactly the same. Terefore, the use of the
formulae for a beam to calculate the axial stifness and
bending stifness of a cable is not always trustworthy.

Many researchers have conducted in-depth research on
the vibration method for the estimation of cable tension.
Irvine et al. [6] systematically studied the out-of-plane and
in-plane linear vibration of the cable with a sag-to-span ratio
of within 1 : 8 and verifed the theoretical correctness
through experiments. Shimada and Nishimura [7] explored
the infuence of cable bending stifness on cable tension
estimation through experimental research.Tey found that a
larger error resulted when using the vibration method to
estimate the tensile force of a short cable, as the method
ignores bending stifness. Zui et al. [3] expressed the physical
properties of the cable in the form of dimensionless pa-
rameters. Tey derived practical formulae for cable tensile
force estimation which were presented by piece-wise
functions and suitable for any cable regardless of the tensile
force and the length of the cable. Mehrabi and Tabatabai [8]
introduced a fnite diference method for discretizing the
vibration mode equation of the horizontal cable. A lot of
important parameters such as the sag, bending stifness, and
the intermediate dampers or springs of the cable were taken
into account. Based on the energy method and the curve
ftting method, Ren et al. [4] gave empirical formulae
adopting only the fundamental frequency of the cable.

Many difculties in cable tension estimation will be
imposed by the unknown complex boundary conditions
when adopting the traditional cable force identifcation
methods. Yan et al. [9] developed an innovative method-
ology independent of the cable boundary conditions. Te
problem of identifying the cable force was transformed into
searching the zero-amplitude points from the mode shapes
of the cable in their research. Chen et al. [10] put forward a
new approach for cable tension identifcation using mode
shape functions to eliminate the efects of complex boundary
conditions. Tey considered that the cable with complex
boundary conditions can be generally predicted by adopting
an explicit formula of an equivalent cable model with pinned
end conditions at the two ends. Te abovementioned re-
search attempted to give practical formulae for estimating
the cable tension based on the vibration method but did not

consider systematically the efects of cable inclination,
bending stifness, sag-extensibility, and the unknown
boundary constraint stifnesses on the dynamic character-
istics of the vibration of the cable. Terefore, their appli-
cations have relatively large limitations.

In recent years, some numerical iterative algorithms
which can estimate cable tensile force, bending stifness, and
some other parameters of the cable have been put forward.
Kim and Park [11] established a fnite element model taking
into account the bending stifness and sag efect of the cable.
A frequency-based sensitivity-updating algorithm was
adopted to determine the parameters of the cable model
from the measured multiorder frequencies. Liao et al. [12]
eliminated the errors between the frequencies calculated by
an accurate fnite element model of the cable and the
measured frequencies by adopting a least squares optimi-
zation technique. Tis method can also determine the cable
tension and other system parameters simultaneously. Li et al.
[13] put forward an extended Kalman flter algorithm that
can identify the cable tension varying with time in real-time.
Zarbaf et al. [14] introduced an error function that corre-
sponds to the diferences between the calculated frequencies
and the measured frequencies of the stay cable. Ten, the
particle swarm optimization algorithm and genetic algo-
rithm were employed to minimize the error function and
obtain the cable tension. However, the models established in
these studies still did not consider systematically cable in-
clination, sag efect, bending stifness, and the unknown
boundary constraint stifnesses at the cable end.

Te technique developed in the present paper solves the
disadvantages of classical theories. Compared with some
modern cable theories, this paper established a nonlinear
analytical model of the cable vibration which accurately
accounted not only for the cable’s inclination, bending
stifness, and sag efect but also for the infuence of unknown
rotational constraint stifness and lateral support stifness at
the cable ends. Te fnite diference method was utilized to
discretize the vibration mode equation of the cable, which
transformed the complex analytical solution process into a
simple numerical solution process. On this basis, the fre-
quency-based sensitivity-updating algorithm could be used
to identify simultaneously and accurately multiple system
parameters of the cable according to multiple measured
frequencies, including the cable tensile force, axial stifness,
bending stifness, and unknown rotational and lateral
stifnesses at the cable end. Finally, the efectiveness and
feasibility of the method developed in the present paper were
verifed by numerical examples.

2. Overall Idea

Te overall idea of the method put forward in the present
paper is shown in Figure 1. First, an analysis of the free
vibration of the cable was conducted to establish the free
vibration equation. Te equation considers the inclination,
bending stifness, and sag-extensibility of the cable, which
then was converted into a vibration mode equation by the
mode separation method. Second, the boundary constraint
equilibrium equations at the cable ends were established.
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Ten, the fnite diference method was used to discretize the
vibration mode equation and the boundary constraint
equilibrium equations to obtain the overall stifness matrix
of the cable. After the discretized vibration mode equation
was established, the modal frequencies and mode shapes
could be determined by eigenvalue analysis. Finally, a fre-
quency-based sensitivity-updating algorithm was applied to
identify simultaneously several system parameters using
multiorder measured natural frequencies, including cable
tension, axial stifness, bending stifness, and cable-end
constraint stifnesses.

Te frequency-based sensitivity-updating algorithm for
cable parameter identifcation is based on the concept of the
Newton–Raphson method. Its derivative-based root-fnding
feature gives the algorithm a satisfactory convergence speed.
Herein, the “sensitivity” refers to the variation of the cable’s
vibration eigenvalues (frequencies) along with the cable
parameters; and the “updating” denotes the automatic up-
date of the cable parameters with the help of the eigenvalue
sensitivity matrix α in each iteration. Te detailed process is
described as follows. First, proper initial iterative values of
the system parameters were set to gain the initial overall
stifness matrix of the cable. Second, the eigenvalue analysis
was conducted to obtain the eigenvalue diference vector δ λ
which represents the diferences between the calculated and
measured vibration eigenvalues. Tird, the derivatives of the
vibration eigenvalues with respect to the system parameters
were calculated, and then, the eigenvalue sensitivity matrix α
was obtained. Essentially, α is the Jacobian matrix repre-
senting the fastest decreasing direction of the eigenvalue
diference δ λ (or say the fastest convergent direction) in the

solution space during the iteration. Finally, the correction
coefcient of each cable parameter (denoted by F) could be
determined based on α and δ λ. Te initial iterative values of
the cable parameters for the second iteration could be gained
using F obtained from the frst iteration. Te above-
mentioned process was repeated until convergence, and
then, the accurate values of the system parameters were
obtained. Tis algorithm could run automatically and ef-
ciently when the appropriate initial iterative values were frst
determined.

3. Methodology

3.1. Free Vibration Analysis

3.1.1. Free Vibration Equation. Figure 2 shows the schematic
of an inclined cable model along with the coordinate system.
Point A is taken as the coordinate origin. Compared with the
previous study [6–8], the proposed model gives systematic
consideration to the inclination angle, bending stifness, sag-
extensibility, and geometric nonlinearity of the cable. Es-
pecially, the complex boundary constraints at the cable ends
were frst comprehensively modeled, which would be in-
troduced in detail in Section 3.3.

Only the in-plane vibration of the cable is considered.
Assume that it is uncoupled between the axial vibration and
the transverse in-plane vibration of the cable. According to
the D’Alembert principle, the equations of the chord-wise
and transverse in-plane motions of the inclined cable are
derived from the following equations:

Free vibration 
equation 

Vibration mode 
equation 

(i) Cable inclination 
(ii) Sag-extensibility 
(iii) Bending stiffness 

Mode separation→ 
Eigenvalue problem 

Discretization of 
vibration mode equation

Discretization of boundary 
constraint equation 

Solve the discretized mode equation 
Obtain the modal frequencies and shapes 

(2) Finite difference method for discretizing and solving 
the differential equations 

(i) Linear stiffness matrix of cable 
(ii) Static profile of the cable 
(iii) Nonlinear stiffness matrix of cable 
(iv) Overall stiffness matrix 

(3) Frequency-based sensitivity-updating algorithm 

Cable length L Known 
Known Distributed mass m

Cable tension Hm
Axial stiffness EA
Bending stiffness EI
Rotational stiffness Kr
Lateral stiffness Ks

Eigenvalue analysis → 
Calculated frequencies 

Eigenvalue 
difference 
vector δλ

Overall stiffness matrix 

Derivatives of eigenvalues with 
respect to system parameters 

System 
Sensitivity
matrix α 

Gain the parameter correction coefficients F = α-1δλ,
and iterate until convergence 

Accurately identify the unknown system parameters 

(1) Analysis of the free vibration of cable

Field measurement → 
Measured frequencies 

(Accurate values)

Unknown
Unknown
Unknown
Unknown
Unknown

Initial value
Initial value
Initial value
Initial value
Initial value

Figure 1: Overall idea fowchart.
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where T(x) denotes the initial cable tension; τ(x, t) denotes
the additional tension caused by vibration; s is the arc-length
coordinate; y(x) denotes the static equilibrium profle;
u(x, t) and v(x, t) represent the displacement in the x-di-
rection and y-direction caused by vibration, respectively;
η(x, t) � y + v denotes the sum of the displacements in the
y-direction; g denotes the gravitational acceleration; EI(x)
denotes the bending stifness;m(x) denotes the mass per unit
length; θ denotes the inclination angle; cu

′(x) and cv
′(x)

represent the axial and transverse in-plane viscous damping
coefcient per unit length, respectively. In addition, Hm
denotes the mean value of the chord-wise component of
T(x); EA(x) denotes the axial stifness; and L denotes the
cable length.

It is generally known that T + τ � (H + h)ds/dx, where
H and h denote the chord-wise component of T and τ,
respectively. Furthermore, the axial vibration of the cable
can be neglected. Ten, equations (1) and (2) become
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If the sag-to-span ratio of the cable is no more than 1/10,
zs can be replaced by zx. In this case, we can fnd that zh/
zx� 0 according to equation (3), therefore, h(t) becomes a

variable varying with time alone. Substituting the static
equilibrium diferential equation into equation (4) and
neglecting the second-order terms results in
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Equation (5) is the free vibration equation of an inclined
cable, and the following steps are taken to transform it into
an eigenvalue calculation.

3.1.2. Vibration Mode Equation. Te vibration of a cable is
the superposition of several modes, by using the mode
separation method; the variable v(x, t) can be expressed as
follows:

v(x, t) � w(x)q(t), (6)

where w(x) denotes the mode shapes independent of time,
and q(t) denotes the generalized coordinates dependent on
time alone. Considering the damped free vibration of a cable,
q is generally written as q(t) � ept, where p � − ζω ± iωD, in
which ζ denotes the damping ratio; ω and ωD denote the
nondamping and damped circular frequencies of the free
vibration of the cable, respectively.

With the separation of the variable v(x, t), equation (5)
becomes
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Expressing the additional cable tension component h as a
linear correlation expression of the generalized coordinates
q, then, the generalized coordinates q can be factored out as a
common factor. Based on the relationship between the
additional cable tension (τ) and the cable elongation, Irvine
[1] derived the following expression:
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Due to the assumption that chord-wise displacement u
equals zero, the frst term of the right side of equation (8) is
zero. As h is a variable varying with time alone, h can be
written as follows:
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Substituting equation (9) into (7), eliminating the
common factor q, and expanding the frst term of equation
(7) results in
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Equation (10) is the nonlinear vibration mode equation
of an inclined cable.Te frst fve terms of the left side are the
linear stifness part of the cable while the sixth term denotes
the nonlinear stifness part. By using the fnite diference
method to discretize this fourth-order nonlinear diferential
equation, the eigenvalue problem will be solved by a nu-
merical technique below.

3.2. Finite Diference Method for Discretizing the Mode
Equation. Te diferential schemes of individual terms in

equation (10) are transformed into diference schemes after
using the fnite diference method for discretization. Figure 3
shows a schematic of a discretized inclined cable with n
internal nodes and n+ 1 segments.Te projection length on
the chord line of each cable segment is expressed as a� L/
(n+ 1).

Defning the diference schemes of mode shape functions
w(x) in the following forms:
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a
4 .

(11)

Furthermore, the diference schemes of EI(x), EA(x), and
y(x) are the same as w(x).

Converting the diferential scheme into the diference
scheme at node i (i� 1, 2, . . ., n) by adopting the above-
mentioned formulae, which then gives the matrix form of
the discretized mode equation:

Kw + Cpw + Mp
2w � 0. (12)

In which,

K � K1 + K2,

wT
� w1, w2, . . . , wn􏼈 􏼉; M � diag m1, m2, . . . , mn􏼈 􏼉; C � diag cv1′ , cv2′ , . . . , cvn

′􏼈 􏼉,
(13)

where K1 and K2 are the linear stifness matrix and the
nonlinear stifness matrix, respectively; n represents the
number of internal nodes; wi and mi denote the mode shape
displacement andmass per unit length at node i (i� 1, 2, . . ., n),
respectively; cvi

′ � cvi/a, and cvi denotes the transverse in-plane
viscous damping coefcient of the damper at node i.

Te linear stifness matrix K1 is expressed as follows:
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Each internal node of the discretization model of the
cable corresponds to one row of K1, in which:
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where EIi and Hi are the bending stifness and the chord-wise
component of the cable tensile force at the internal node i,
respectively. D and U incorporate the efect associated with the
inclined angle of the cable, compared with previous research on
horizontal cables [8]. Meanwhile, the efect of the boundary
conditions is incorporated into Q, T, R, and P. Te expressions
for them need to be determined based on the boundary equi-
librium equations described below.

Te nonlinear stifness matrix K2 is expressed as follows:

K2 � rsT; rT � r1, r2, . . . , rn􏼈 􏼉; sT � s1, s2, . . . , sn􏼈 􏼉, (16)
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ri �
si

􏽐
n
i�1t

3
i /EAi

; si �
yi+1 − 2yi + yi− 1

a
2 ; ti � yi+1 − yi− 1( 􏼁/2a􏼂 􏼃

2
+ 1􏽮 􏽯

1/2
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It is necessary to solve the static equilibrium profle
due to the self-weight of the cable because some of the
terms used depend on y as is refected in the expressions
for K2.

When the damping ratio ζ is very small, the efect of
damping can be neglected. At this time, the damped circular
frequencies ωD is equal to the undamped circular frequencies ω
of the free vibration of the cable, and p2� –ω2. Ten, equation
(12) becomes

Kw − Mω2w � 0, (18)

Equation (18) indicates that the modal frequencies and the
mode shapes of a cable in free vibration are the generalized
eigenvalues and eigenvectors of the mass matrix and stifness
matrix of a cable, respectively.

3.3. Boundary Constraint Equilibrium Equations. In order to
calculate the elements Q, T, R, and P in the matrix K1, the
boundary conditions of the cable should be taken into account.

θ

A

x, u
m, L, EI, EA, H

m

H
B +h

B

y
v

y, v

H
A +h

Figure 2: Schematic of an inclined cable.
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θ
i=1 

i=2 
i=3 

i-1
i

i+1 

i=n-1 i=n

i=n+1

i=0 

Figure 3: Schematic of a discretized inclined cable.
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In practical engineering, the constraints at the cable ends are
usually neither simply pinned nor completely fxed. Herein, it is
assumed that the boundary conditions of the cable are elastic
support and elastic embedding at both ends. Figure 4 shows an
inclined cable model under the boundary conditions of elastic
support and elastic embedding, in which Kr1 and Kr2 are the

rotational stifness at the cable ends, and Ks1 and Ks2 are the
lateral support stifness at the cable ends.

According to the equilibrium of the moment and shear
force at the two ends of the cable, the boundary constraint
equilibrium equations of the cable are derived as follows:

Kr1
dw
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�0
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dx2
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dx3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�0
� 0, (19)

Kr2
dw

dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�l
+ EI

d2w
dx2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�l

� 0, Ks2w|x�l + H
dw

dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�l
− EI

d3w
dx3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�l

� 0. (20)

After discretizing the calculation model of the cable,
equations (19) and (20) become

Kr1
w1 − w− 1

2a
− EI0

w1 − 2w0 + w− 1

a
2 � 0, (21)

Ks1w0 − H0
w1 − w− 1

2a
+ Kr1

w1 − 2w0 + w− 1

a
2 � 0, (22)

Kr2
wn+2 − wn

2a
+ EIn+1

wn+2 − 2wn+1 + wn

a
2 � 0, (23)

Ks2wn+1 + Hn+1
wn+2 − wn

2a
+ Kr2

wn+2 − 2wn+1 + wn

a
2 � 0.

(24)

To determine the elements Q and T, one should replace
w− 1 and w0 with a factor containing w1 and replace wn+1 and
wn+2 with a factor containing wn. Analogously, to determine
the elements R and P, w0 should be expressed by a factor
containing w1, and wn+1 should be expressed by a factor
containing wn. Based on equations (23)–(26), one can obtain
the following equations:

w0 �
2EI0H0 − 2K

2
r1

Ks1a Kr1a + 2EI0( 􏼁 + 2EI0H0 − 2K
2
r1

w1

w− 1 �
Kr1a − 2EI0

Kr1a + 2EI0
w1 +

4EI0

Kr1a + 2EI0
·

2EI0H0 − 2K
2
r1

Ks1a Kr1a + 2EI0( 􏼁 + 2EI0H0 − 2K
2
r1

w1

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wn+1 �
2EIn+1Hn+1 − 2K

2
r2

Ks2a Kr2a + 2EIn+1( 􏼁 + 2EIn+1Hn+1 − 2K
2
r2

wn

wn+2 �
Kr2a − 2EIn+1( 􏼁

Kr2a + 2EIn+1
wn +

4EIn+1

Kr2a + 2EIn+1
·

2EIn+1Hn+1 − 2K
2
r2

Ks2a Kr2a + 2EIn+1( 􏼁 + 2EIn+1Hn+1 − 2K
2
r2

wn.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Ten, the elementsQ, T, R, and P in the matrixK1 can be
determined as follows:

θ
x, u

m, L, EI, EA, H
m

H
B +h

y
v

y, v

H
A +h

K
s2

K
s1

K
r2

K
r1

Figure 4: Schematic of a cable under the boundary of elastic embedding and elastic support.
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Q � S1 +
Kr1a − 2EI0

Kr1a + 2EI0
V1 +

2EI0H0 − 2K
2
r1

Ks1a Kr1a + 2EI0( 􏼁 + 2EI0H0 − 2K
2
r1

D1 +
4EI0

Kr1a + 2EI0
V1􏼠 􏼡, (26)

T � Sn +
Kr2a − 2EIn+1

Kr2a + 2EIn+1
Wn +

2EIn+1Hn+1 − 2K
2
r2

Ks2a Kr2a + 2EIn+1( 􏼁 + 2EIn+1Hn+1 − 2K
2
r2

Un +
4EIn+1

Kr2a + 2EIn+1
Wn􏼠 􏼡, (27)

R � D2 +
2EI0H0 − 2K

2
r1

Ks1a Kr1a + 2EI0( 􏼁 + 2EI0H0 − 2K
2
r1

V2, (28)

P � Un− 1 +
2EIn+1Hn+1 − 2K

2
r2

Ks2a Kr2a + 2EIn+1( 􏼁 + 2EIn+1Hn+1 − 2K
2
r2

Wn− 1, (29)

where EI0 and EIn+1 denote the bending stifness at the two
ends, and H0 and Hn+1 denote the chord-wise component of
the cable tensile force at the two ends.

3.4. Static Profle of the Cable. One of the premises of fnding
the value of each element in the stifness matrix K2 is to obtain
the static displacement yi (i� 1, 2, . . ., n) of each node of the
cable under the static equilibrium state.Tat is, it is necessary to
calculate the static equilibrium profle due to the self-weight of
the cable. Te static profle is often presumed to be a parabola
[1]. Tis assumption is appropriate when the cable is an equal-
section horizontal cable that does not consider the bending
stifness. However, when the bending stifness of the cable
cannot be neglected, or the sectional characteristic varies along

the cable, the true static profle of the cable will deviate sig-
nifcantly from the parabola. Terefore, the fnite diference
method is employed to calculate the static profle of the cable in
this study.

Te static equilibrium diferential equation of an in-
clined cable subjected to tension is as follows:

d2

dx
2 EI

d2y
dx

2􏼠 􏼡 − H
d2y
dx

2 � mg cos θ. (30)

Similar to the discretization of the vibration mode
equation, the abovementioned equation can also be written
in the following matrix form:

Ksy � mg cos θ in which, yT � y1, y2, . . . , yn􏼈 􏼉; mT
� m1, m2, . . . , mn􏼈 􏼉, (31)

where Ks is the static stifness matrix. Tis is basically the
same as for K1 in equation (14) but with the expressions for
elements Di and Ui in the matrix modifed as follows:

Di �
1
a
4 2EIi+1 − 6EIi( 􏼁 −

Hi

a
2 ; Ui �

1
a
4 − 6EIi + 2EIi− 1( 􏼁 −

Hi

a
2 . (32)

According to equation (31), the static profle can be
calculated for solving the vibration mode equation.

3.5. Multiparameter Identifcation Algorithm. To accurately
identify the cable tension utilizing the measured frequencies
in situ, it is necessary to identify some other parameters in
the cable vibration system besides the cable tension. Te
deformationmechanism of a beam and that of a cable are not
exactly the same, thus, it is not always trustworthy to use the
formulae for a beam to compute the axial stifness and
bending stifness of a cable. Hence, the mean value of the
chord-wise component of the cable tension Hm, the axial
stifness EA, the bending stifness EI, the rotational con-
straint stifness, Kr1 and Kr2, at the two ends of the cable, and
the lateral support stifness, Ks1 and Ks2, at the two ends of

the cable, were selected to be the physical parameters that
need to be identifed in the cable vibration system. A fre-
quency-based sensitivity-updating algorithm was applied for
the multiparameter identifcation of the cable using multi-
order frequencies, as shown in Figure 5.

Te physical parameters to be identifed in the cable
vibration system constitute the parameter vector X of the
order of p × 1:

X � Hm EI EA Kr1 Kr2 Ks1 Ks2􏼈 􏼉
T
. (33)

Assuming that for the nth-order vibration eigenvalue
λn �ω2

n, then, the variation of λn is as follows:

δλn � λn(X + ∆X) − λn(X). (34)
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Performing Taylor expansion on the frst term of the
right side of equation (34), one can obtain the following:

δλn � 􏽘

p

k�1

zλn

zxk

∆xk � 􏽘

p

k�1

zλn

zxk

xk

∆xk

xk

, (35)

where xk is the kth element of the parameter vector X.
If N frequencies are used for the identifcation of system

parameters, from equation (35) the following can be
obtained:

αF � δλ, (36)

in which,

F � ∆x1/xeva
1 ∆x2/xeva

2 . . . ∆xp/xeva
p􏽮 􏽯

T
,

δλ � δλ1 δλ2 . . . δλN􏼈 􏼉
T
,

α �

zλ1
zx1

x
eva
1

zλ1
zx2

x
eva
2 · · ·

zλ1
zxp

x
eva
p

zλ2
zx1

x
eva
1

zλ2
zx2

x
eva
2 · · ·

zλ2
zxp

x
eva
p

⋮ ⋮ ⋮ ⋮

zλN

zx1
x

eva
1

zλN

zx2
x

eva
2 · · ·

zλN

zxp

x
eva
p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(37)

where xeva
k is the initial evaluated value for the kth element of

X.
Te coefcient matrix α in equation (36) is a Jacobian

matrix combined with the initial evaluated values of cable
parameters. Te parameter vector X becomes a dimen-
sionless vector F when the initial evaluated values of cable
parameters are introduced into α. In this case, the sensitivity
of vibration eigenvalues to the cable parameters is truly
refected in the coefcient matrix α, regardless of the ab-
solute value of each element of X. Introducing the initial
values into α is also an efective technique to decrease the
condition number of α and improve the stability of solving
the linear equations numerically.

An iterative solution of equation (36) yields an accurate
value for each parameter in the parameter vector X, which
comprises the following nine steps:

Step 1. Select the appropriate initial value of each parameter.
Calculate Heva

m according to the practical formula [3]. Cal-
culate EIeva and EAeva according to the formulae in material
mechanics for calculating the bending stifness and the axial
stifness.Te dimension ofKr is the same as the dimension of
EI/a, and the dimension ofKs is the same as the dimension of
EI/a3. When the ratio of the Kr to EI/a exceeds 4.0, the
frequencies of the cable are close to converging. Terefore,
the search range of Keva

r1 and Keva
r2 can be set to be [0.0, 4.0]EI/

a. Similarly, according to the result of the parameter sen-
sitivity analysis, when the ratio of the Ks to EI/a3 exceeds

20.0, the frequencies of the cable are close to converging.
Terefore, the search range of Keva

s1 and Keva
s2 can be set to be

[0.0, 20.0]EI/a3. In practical engineering, it is essential to
conduct a trial of convergence based on experience.

Step 2. Calculate the linear stifness matrix K1 of the cable.

Step 3. Calculate the static profle of the cable.

Step 4. Calculate the nonlinear stifness matrix K2 and
obtain the overall stifness matrix K.

Step 5. Perform eigenvalue analysis and obtain the calcu-
lated eigenvalues λtn of the cable.

Step 6. Calculate δ λ according to the following formula:

δλ � λm1 − λt1 λm2 − λt2 . . . λmn − λtn . . . λmN − λtN􏼈 􏼉
T
,

(38)

where λmn is the measured value (i.e., accurate value) of the
nth-order eigenvalue and λtn is the nth-order calculated ei-
genvalue after t iterations.

Step 7. Calculate the matrix α. Calculation of the vibration
eigenvalue derivatives zλn/zxk is the key aspect of the cal-
culation of matrix α. Te analytical method for calculating
the eigenvalue derivatives of the cable vibration will be
described in detail in the Appendix.

Step 8. Calculate F according to equation (39). To obtain a
defnite solution for equation (39), the number of measured
frequencies should be equal to or greater than the number of
parameters to be estimated. When the number of measured
frequencies is equal to the number of parameters to be
identifed, i.e., N� p, F can be solved by the following:

F � α− 1δλ. (39)

When the number of measured frequencies is greater
than the number of parameters to be identifed, i.e., N> p,
equation (36) becomes an overdetermined equation and can
be solved by the least squares technique. Te same method
applies when N� p. Te objective function of the least
squares technique is the sum of squares of δλn � (λmn − λtn):

E � 􏽘
N

n�1
δλn( 􏼁

2
� δλTδλ. (40)

According to the principle of the least squares technique,
zE/zF� 0, the following expression can be obtained:

F � αTα􏼐 􏼑
− 1
αTδλ

Fk,min <Fk <Fk,max(k � 1, 2, . . . , p),
(41)

where Fk, min and Fk, max are employed to constrain the
search range of xk. It is an efcient way to constrain the
search ranges of parameters to enhance the robustness of the
least squares technique. Based on the actual situation and
engineering experience, the search range of xk can be
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predetermined approximately. For instance, in the cable
tension calculation, the error of Heva

m with the calculation
result using the practical formula [3] is generally within 20%.
Terefore, the variation range of FHm

can be constrained to
within [–0.2, +0.2].

Step 9. Te following equation is used to obtain the values of
corrected system parameters, which will be used in the (t+ 1)
th iteration:

x
t+1
k � 1 + F

t
k􏼐 􏼑x

t
k, (42)

where xt
k is the k

th identifcation parameter of Xt after the tth
iteration. Ft

k is the kth element of Ft after the tth iteration.
Te abovementioned steps are repeated until F ap-

proaches zero.

4. Case Study

4.1. Introduction toNumericalCables. Four numerical cables
with signifcantly diferent characteristics used in the pre-
vious studies [8, 11, 15] were adopted to evaluate the method

of the present paper. Teir main physical parameters are
listed in Table 1. Except for those, they have the same length
(L� 100m) and mass per unit length (m� 400 kg/m).
Moreover, the cables’ inclination angles θ were all set to 30°
and the damping of the cables was ignored. In the discretized
model, the cable was divided into 100 segments along the x-
direction, with a total of 99 internal nodes (n� 99 and
a� 1m).

It can be found in Table 1 that Cable 1 has small sag-
extensibility and small fexural stifness; Cable 2 has large
sag-extensibility and small fexural stifness; Cable 3 has
small sag-extensibility and large fexural stifness; and Cable
4 has large sag-extensibility and large fexural stifness. Tey
were believed to be able to cover a variety of cable features in
practical engineering.

4.2. Infuence of Boundary on Structural Behaviors

4.2.1. Infuence on Cable’s Static Profle. Te static dis-
placement yi of the cable participated in the formation of
matrix K2. In other words, the change of the cable’s static

Static profile y

System parameter vector
X= {Hm EI EA Kr1 Kr2 Ks1 Ks2}T

Linear stiffness
matrix K1

Nonlinear stiffness
matrix K2

Overall stiffness matrix K = K1 + K2

Eigenvalue analysis

Calculate the eigenvalue derivatives ∂λn/∂xk

Sensitivity matrix α

Correction coefficient vector F = α-1δλ

xk
t+1 = (1 + Fk

t) xk
t

EndYes

No

Calculate the eigenvalue difference vector δλ

F converges to 0

Figure 5: Block diagram of the sensitivity-updating algorithm for system parameter identifcation.

Table 1: Physical parameters of four numerical cables.

No Hm (106N) E (Pa) A (m2) I (m4) λ2 ξ
Cable 1 2.9036 1.5988E+ 10 7.8507E − 03 4.9535E − 06 0.79 605.5
Cable 2 0.7259 1.7186E+ 10 7.611E − 03 4.6097E − 06 50.70 302.7
Cable 3 26.13254 2.0826E+ 13 7.8633E − 03 4.9204E − 06 1.41 50.5
Cable 4 0.7259 4.7834E+ 8 0.7345E − 01 5.9506E − 03 50.70 50.5
Note. Te nondimensional parameters λ2 [3] and ξ [1] characterize the fexural stifness and sag-extensibility of the cable, respectively. Te cable sag-
extensibility increases with λ2, and the fexural stifness decreases with ξ.
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Figure 6: Infuence of (a) rotational constraint stifness Kr and (b) lateral support constraint stifness Ks at the cable ends on cable’s static
profle.
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Figure 7: Infuence of boundary constraint stifnesses on cable’s frst two vibration frequencies.
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profle caused by the variation of boundary conditions
will afect the cable’s nonlinear stifness matrix. First, to
investigate the efect of the rotational stifnesses at the

cable ends on the cable’s static profle, taking Cable 3 as
an example, assuming the boundary rotational stifnesses
Kr at two ends were the same and the boundary lateral

Hm (N) ×106
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Figure 8: Illustration of calculated derivatives of the frst eigenvalue (frequency) of cable 2 with respect to its system parameters: (a) Hm;
(b) EI; (c) EA; (d) Kr; and (e) Ks.
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support stifnesses Ks were infnity, the static profles of
the cables with diferent Kr (i.e., EI/a, 2 EI/a, 4 EI/a, and
∞) were calculated and compared, as shown in
Figure 6(a). It could be seen that the static deformation of
the cable declined with the increase of Kr. However,
generally speaking, Kr exhibited a slight efect on the
cable’s static profle.

Next, as depicted in Figure 6(b), the efect of the
lateral support stifnesses at the cable ends on the cable’s
static profle was analyzed, taking Cable 2 as an example.
Analogously, the boundary lateral support stifnesses Ks
were assumed to be the same at the two ends, and the
boundary rotational stifnesses Kr at the two ends were
both set as EI/a. Five conditions were analyzed, namely,
Ks �EI/a3, 2 EI/a3, 4 EI/a3, 8 EI/a3, and ∞, respectively.
One can fnd that with the decrease of Ks, the cable’s
static profle presented an approximate overall transla-
tion, in addition to the increase of the static deformation
of the cable. Moreover, when Ks became larger, the
sensitivity of the cable’s static profle to Ks decreased.

4.2.2. Infuence on Cable’s Vibration Frequencies. As shown
in Figure 7, the frst two frequencies of the vibration of each
cable under diferent boundary conditions were calculated
and compared, to learn the infuence of the boundary on the
cable’s vibration characteristics. Noteworthy is that the
boundary constraints at the two cable ends were assumed to
be the same during the analysis.

First, keeping the lateral support stifness Ks being infnity,
the frst two frequencies of the cables with diferent boundary
rotational stifnesses Kr (i.e., 0, EI/a, 2 EI/a, and ∞) were
compared. One can fnd in Figure 7 that Kr had a signifcant
infuence on Cables 3 and 4 with large fexural stifnesses, which
indicated that the sensitivity of the cable vibration frequency to
Kr is afected by the fexural stifness of the cable.However, larger

sag would weaken the infuence of Kr. For example, the fre-
quencies of Cable 4 with large sag showed weaker sensitivity to
Kr compared to Cable 3 with small sag.Tese results proved that
Kr mainly afects the dynamic characteristics of the cables with
large fexural stifness but small sag.

Ten, keeping the rotational stifness Kr at boundary
being EI/a, the frst two frequencies of the cables with
diferent lateral support stifnesses Ks (i.e., EI/a3, 2 EI/a3, 10
EI/a3, and ∞) were also compared. It could be found in
Figure 7 that the Ks presented a complex infuence on the
cables’ vibration frequencies. With the increase of Ks: the
frequencies of Cables 1 and 2 increased signifcantly; the
frequencies of Cable 3 decreased slightly; and the frequencies
of Cable 4 did not change much. Te reason could be found
in the expressions of the elements Q, T, R, and P within the
stifness matrix K1 shown in equations (29)–(32). One can
fnd that there is a common term EI · H − K2

r in the nu-
merators and denominators of these equations and the term
Ks appears only in the denominators. Terefore, the size
relationship between K2

r and EI · H will determine the in-
fuence of Ks on the elements Q, T, R, and P within the
stifness matrix K1 and further the cables’ vibration
frequencies.

4.3. Validation of Eigenvalue Derivative Calculation Results.
As stated before, the calculation of the vibration eigenvalue
derivatives zλn/zxk is the key aspect of the calculation of
matrix α. To verify the derived equations for computing the
eigenvalue derivatives, the eigenvalue derivatives were frst
transformed into frequency derivatives using the following
equation derived from λ�ω2 � (2πf )2,

zf

zxk

�
1

8π2f
zλ
zxk

. (43)

Table 2: Accurate and initial values of system parameters of the four cables.

No Items Hm (N) EI (Pa∙m4) EA (Pa∙m2) Kr1 (N∙m) Kr2 (N∙m) Ks1 (N/m) Ks2 (N/m)

Cable 1
Accurate value 2.9036E6 7.9197E4 1.2552E8 1.5839E5 3.1679E5 3.9599E5 7.9197E5
Initial value 2.3229E6 6.3358E4 1.0042E8 7.9197E4 1.5839E5 1.9799E5 3.9599E5

Initial error (%) 20 20 20 50 50 50 50

Cable 2
Accurate value 7.2590E05 7.9222E04 1.3080E08 1.5844E05 3.1689E5 3.9611E5 7.9222E5
Initial value 5.8072E05 6.3378E04 1.0464E08 7.9222E4 1.5844E5 1.9806E5 3.9611E5

Initial error (%) 20 20 20 50 50 50 50

Cable 3
Accurate value 2.6133E7 1.0244E8 1.6371E11 2.0488E8 4.0976E8 5.1220E8 1.0244E9
Initial value 2.0906E7 8.1952E7 1.3097E11 1.0244E8 2.0488E8 2.5610E8 5.1220E8

Initial error (%) 20 20 20 50 50 50 50

Cable 4
Accurate value 7.2590E5 2.8464E6 1.3080E8 5.6928E6 1.1386E7 1.4232E7 2.8464E7
Initial value 5.8072E5 2.2771E6 1.0464E8 2.8464E6 5.6928E6 7.1160E6 1.4232E7

Initial error (%) 20 20 20 50 50 50 50

Table 3: Accurate modal frequencies of the four cables (Hz).

No 1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order
Cable 1 0.420 0.821 1.232 1.644 2.057 2.470 2.885
Cable 2 0.410 0.431 0.648 0.850 1.063 1.275 1.488
Cable 3 1.374 2.671 4.044 5.459 6.932 8.472 10.092
Cable 4 0.414 0.445 0.678 0.909 1.154 1.411 1.682
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Ten, the calculated frequency derivatives with respect to
each cable parameter were presented visually in the form of
tangents at several selected points on the frequency-parameter
curve (i.e., f-xk curve). Taking Cable 2 as an example, the
derivatives of the frst-order frequency with respect to its
multiple system parameters were calculated and illustrated in
Figure 8 (due to the limited space, the derivatives of the fre-
quencies of the other orders were not shown here). It could be
seen that the calculated tangents (blue short solid lines) had
good agreement with the actual curve slopes on each fre-
quency-parameter curve, proving the accuracy of the analytical
method for calculating zλn/zxk derived in this article.

Noteworthy is that, when obtaining the curves that
frequency varies with Hm, EI, and EA, respectively, in
Figure 8, the boundary conditions of the cable were assumed
to be fxed at the two ends; when obtaining the curve that
frequency varies with Kr, it was assumed that the boundary

constraints at the two cable ends were the same and Ks were
infnity; and when obtaining the curve that frequency varies
with Ks, it was assumed that the boundary constraints at the
two cable ends were the same and Kr �EI/a.

4.4. Multiparameter Identifcation of the Cable

4.4.1. Model Setup. Te four numerical cables in Table 1 were
adopted to illustrate the efectiveness of the frequency-based
sensitivity-updating algorithm for identifyingmultiple system
parameters using the multiorder frequencies. To consider the
efects of elastic embedding and elastic support at the cable
boundary, for all four cables, assume that the accurate values
of the rotational constraint stifnesses (Kr1 and Kr2) at the two
ends of the cables were 2 EI/a and 4 EI/a, respectively, and
that the accurate values of the lateral support stifness (Ks1 and
Ks2) at the two ends of the cables were 5 EI/a3 and 10 EI/a3,
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Figure 9: Convergence of the relative errors of cable system parameters with iteration times: (a) Cable 1; (b) Cable 2; (c) Cable 3; and
(d) Cable 4.
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respectively. Moreover, in the frst iteration, it was assumed
that the errors of the initial iteration values of Heva

m , EIeva, and
EAeva of each cable were all 20%, and the errors of the initial
iteration values of Keva

r1 , Keva
r2 , Keva

s1 , and Keva
s2 of each cable

were all 50%, as shown in Table 2.Te accurate frequencies of
the cables, fmn, which should be measured in the feld in
practical engineering, were calculated from the accurate
system parameters in Table 2 in this paper, as listed in Table 3.

4.4.2. Results. Using the method described in Section 3.5, the
identifcation of the multiple system parameters of the four
numerical cables was complemented based on their true model
frequencies listed in Table 3. In order to enhance the robustness
of the iteration, the variation ranges of FHm

, FEI, and FEA were
constrained to within [–0.3, +0.3], and the variation ranges of
FKr1

,FKr1
,FKs1

, andFKs2
were constrained towithin [–0.5, +0.5].

Figure 9 shows the convergence process of the relative
errors of cable system parameters with the iteration times.
It can be observed that the cable system parameters ob-
tained after the frst iteration still had relatively large errors.
After a total of 10 iterations, the relative errors of cable
system parameters converged to zero for all four cables. At
this time, the system parameters tended to be stable and to
converge to the accurate values. Te abovementioned re-
sults indicated that the frequency-based sensitivity-
updating algorithm could be adopted to identify the
multiple system parameters quickly and efectively for
diferent kinds of cables.

To give more details, taking Cable 1 as an example, the
convergence of the correction coefcients and system pa-
rameters of Cable 1 is shown in Figure 10. It could be seen

that, among the system parameters of the cable, Hm and EA
converged faster. After 3 iterations, their identifcation er-
rors were less than 0.5%. In contrast, the other system
parameters converged relatively slowly. After 8 iterations,
the identifcation errors of all system parameters were less
than 0.5%. Figure 11 depicts the comparison between the
frequencies calculated from the initial iterative values, fnal
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Figure 10: Convergence of (a) correction coefcients Fk, (b) Hm, (c) EI, (d) EA, (e) Kr1, (f ) Kr2, (g) Ks1, and (h) Ks2 of cable 1 during the
identifcation process.
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iterative values, and accurate values of the cable parameters,
respectively. It can be observed that the errors of the fre-
quencies calculated from the initial iterative values of the
system parameters were very large. After repeated iterations,
the frequencies calculated from the fnal iterative values
showed good agreement with the accurate frequencies. Tis
also illustrated the efectiveness of the frequency-based
sensitivity-updating algorithm.

5. Concluding Remarks

A nonlinear mathematical model of the vibration of the
cable was established in this study with a systematical and
comprehensive consideration of the infuence of the incli-
nation, bending stifness, and sag-extensibility of the cable,
particularly of the rotational constraint stifness and the
lateral support stifness at the cable ends. Te fnite difer-
ence method was used to discretize the cable model, and the
expressions of the linear stifness matrix and the nonlinear
stifness matrix of the cable were strictly derived. Finally, a
frequency-based sensitivity-updating algorithm was applied
to identify multiple system parameters of the cable according
to multiple frequencies. Te results obtained made it pos-
sible to draw the following conclusions:

(1) Te frequency-based sensitivity-updating algorithm
can simultaneously and accurately identify the sys-
tem parameters for diferent kinds of cables utilizing
multiple frequencies;

(2) Calculation of the derivatives of the eigenvalues of
the cable vibration is a key to obtaining the system
sensitivity matrix. Te developed calculation for-
mulae were proved to be able to calculate accurately
the derivatives of the vibration eigenvalues of an
inclined cable;

(3) To enhance the robustness of the sensitivity-
updating algorithm during the iteration, the varia-
tion range of the cable parameter could be con-
strained to a proper interval;

(4) Te cable’s boundary conditions have a complex
infuence on the static and dynamic characteristics of
the cable: the rotational stifness Kr exhibits a slight

efect on the cable’s static profle but the variation of
lateral support stifnesses Ks will cause an approxi-
mate overall static profle translation; Kr mainly
afects the frequencies of the cables with large fex-
ural stifness but small sag; and the size relationship
between K2

r and EI · H will determine the infuence
of Ks on frequencies. It is necessary to take into
account the efects of boundary conditions of the
cable for the estimation of the cable tension.

Appendix

Eigenvalue Derivative Calculation
Te eigenvalue derivative of the matrix plays an im-

portant role in updating the model [16]. In the following, the
analytical method to compute the eigenvalue derivatives is
introduced.

To obtain the derivatives of the vibration eigenvalues,
equation (20) adopts the following form:

[K(X) − λ(X)M(X)]w(X) � 0, (A.1)

in which, λ(X)�ω2(X). Assume that λ1 and w1 are an ei-
genvalue and its corresponding eigenvector of the above-
mentioned eigenvalue equation, respectively, when X�X∗.
Based on equation (A.1), Ma [17] derived the following
equation for computing eigenvalue derivatives:

zλ1 X∗( 􏼁

zxk

� wT
1Mw1􏽨 􏽩

− 1
wT
1 λ1

zM
zxk

−
zK X∗( 􏼁

zxk

􏼢 􏼣w1. (A.2)

Equation (A.2) shows that it is essential to compute the
derivative of the stifness matrix, zK/zxk, and the derivative
of the mass matrix, zM/zxk, of the cable to solve the ei-
genvalue derivatives of cable vibration. It is easy to fnd that
zM/zxk= 0. Diferentiating each element in the linear
stifness matrix K1 directly, the derivative of K1 with respect
to xk can be determined. Te derivatives of each element in
K1 with respect to xk are as follows (due to the limited space,
the derivatives of the elements T and P are not given here,
which have similar forms with those of elements Q and R,
respectively, and can be obtained by proper mathematical
derivation):
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It should be noted from the expression of K1 that zK1/
z(EA)� 0.

Similarly, the derivative of the nonlinear stifness matrix
K2 with respect to the system parameters can be obtained by
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It can be seen that the derivative of each element in the
stifness matrix K2 is related to the static displacement
derivative of the cable concerning the system parameters. To
obtain the static displacement derivative of the cable, the
following formula is considered:

z K1Y( 􏼁
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Terefore,
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1
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where YT � {y1, y2, . . ., yn}, yi represents the static dis-
placement of each node under static equilibrium.

Finally, the derivative of the overall stifness matrix K
with respect to the system parameters of the cable is as
follows:

zK
zxk

�
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zxk

+
zK2
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. (A.18)
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