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Te main purpose of this article is to investigate the bursting oscillations of the medical shaking tables resulted from friction in
practical application. Using the theoretical method of linear loading, the analytic expression of friction acting on an eccentric
turntable is derived in detail. Besides, through numerical simulation, the decisive role of friction in bursting oscillations is verifed.
On this basis, several practical operation plans are proposed to eliminate harmful vibrations. Last but not least, the efectiveness of
theoretical methods is validated through example calculations in cases with special parameters.

1. Introduction

Due to the low cost and high stability, desktop shakers with
eccentric turntables [1–3] are widely used in the sample
preparation process of medical experiments. Te oscillator
of the desktop shaker and the turntable are connected
through the eccentric shaft [4, 5], forming a typical non-
linear, multiple-scale, and strongly coupled system with
complicated dynamic behaviors. Many valuable studies
[6–8] have been conducted on the application of eccentric
shafts in existing literature, but this does not mean that the
eccentric shaft is perfect. Actually, in its practical applica-
tions, the mechanical failure [9–11] has widely found that
the actual speed of a desktop shaker intermittently exceeds
the set speed after prolonged use, which corresponds to
busting oscillations [12–14] in the rotor-oscillator system
and can be named overspeed oscillation. Diferent from
other current research work focusing on the application of
eccentric shaft technology, the main task of this paper is to
study defects, causes, and solutions of it.

In order to solve this typical medical device failure
problem, the analytical expression of the friction between
the eccentric turntable and adjacent components is bound to

be derived, which is rarely reported in the existing research
studies. On this basis, we should also investigate how the
friction acting on eccentric turntables interferes with the
dynamic behavior of the oscillator and propose the efective
method to eliminate the harmful vibration.

In this paper, the analytical expression of friction
between the turntable with eccentric shaft and the os-
cillator is derived in detail by means of simplifcation of
linear load [10]. Te maximum value of eccentricity and
radius of turntable directly determine the integral in-
terval, which needs to be discussed separately. Te
mathematical model of the rotor-oscillator system [15–17]
is constructed based on the acceleration synthesis theorem
when the embroil motion is translation. Meanwhile, the
equilibrium curves and transformed phase portraits
[18, 19] are used to investigate the mechanism of bi-
furcation and bursting oscillation. Based on these theo-
retical mechanisms and their corresponding physical
signifcance, three feasible methods to eliminate or avoid
the overspeed oscillation are proposed. Finally, the ana-
lytic solution of the friction in the case with a special
parameter is obtained by geometric analysis to verify the
validation of the theoretical method employed.
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2. Derivation of the Analytic Expression of
the Friction

Te physical photo and structural sketch of a desktop
medical shaker with eccentric turntables are shown in
Figure 1. Sliding friction exists between the turntable and its
neighboring members in a rotor-oscillator system.

Te solution of this type of friction can be simplifed to
the following theoretical problem shown in Figure 2. A thin
homogeneous disc of mass m is placed fat on a table (the
plane where the screen is located) and is subjected to sliding
friction when it is rotated around a point O on a fxed axis.
Te coefcient of kinetic friction between the table and the
disk is μ. Try to calculate the friction force between the disc
and horizontal table.

Take the small red triangle ΔOAB with vertex angle dθ as
the area microelement and further mesh this area micro-
element along the normal direction of OA. Notice that the
frictional force on all the meshes of the area microelement is
in the same direction perpendicular to OA and the mag-
nitude is proportional to the area of each mesh. All grids can
be approximated as rectangles with equal dimensions along
the OA direction, while the dimensions along the OA
normal direction are proportional to the distance of that grid
to the point of the axis of rotation O. Terefore, the grid area
is linearly distributed along the OA direction, and thus, the
distribution of the magnitude of the sliding friction force on
each grid along the OA direction can be considered as
a linear load. Based on the simplifcation method of a planar
arbitrary force system, this linear load can be reduced to
a concentrated force as shown in Figure 3.

Since there are many mathematical symbols involved in
the derivation process, we sort out the physical meaning of
each involved mathematical symbol as shown in Table 1.

Step 1: Determine the size of the main vector.
Temagnitude of the microforce acting on amicrospan
of dx shown in can be expressed as follows:

dF � q(x)dx, (1)

where q(x) denotes the load set degree function at that
place, and its expression can be expressed according to
the linear relationship as follows:

x

L
�

q(x)

q
⟹ q(x) �

q

L
x, (2)

where L represents the total distribution length of linear
load while q describes the maximum load set degree.
Summing all force diferential elements, the magnitude
of the principal vector F is obtained as follows:

F � 􏽚 dF � 􏽚
L

0

q

L
xdx �

1
2

qL. (3)

Step 2: Determine the acting point of the
combined force.
From the combined moment theorem, the moment of
the combined force on the point O is equal to the sum

of the moments of the component forces on the point
O. Te mathematical expression of this conclusion is as
follows:

Fx � 􏽚
L

0
x · dF � 􏽚

L

0

q

L
x
2
dx �

q

3L
x
3
􏼌􏼌􏼌􏼌􏼌􏼌

L

0
�
1
3

qL
2
. (4)

Terefore,

x �
(1/3)qL

2

(1/2)qL
�
2
3

L. (5)

Step 3: Derive the expression for the maximum load set
degree.
In order to apply this result, we also need to derive the
expression for the maximum load set degree q.
According to the defnition of the load set degree at
a point, there is the following equation:

q(x) �
dF

dx
, (6)

and the relationship between the force microelement
dF and the grid area dS is as follows:

dF � dS · σ, (7)

where the surface density σ � mgμ/πr2 indicates the
frictional force per unit area.

Substituting the expression for the area of the rectan-
gular grid dS � dx · (x · dθ) into formula (7), one may obtain
the expression for the load set degree function as follows:

dF �(x · σ · dθ) · dx⟹ q(x)
dF

dx
� xσdθ∝ x, (8)

where dθ represents the vertex angle of the microarea
ΔOAB. Notice that q(x) is proportional to x. Tis further
verifes the conjecture that the friction force is linearly
distributed over the area microarea ΔOAB. On this basis, the
maximum load set can be found as follows:

q � q(L) � Lσdθ. (9)

Note that the eccentric shaft may not be located inside
the disc but may also be located outside the disc, which needs
to be discussed separately.

2.1. Case 1: a< r

2.1.1. Main Vector. According to the calculation of the
equivalent concentrated force of the linear load, the
friction force on the area microelement can be expressed as
follows:

df �
1
2

qL �
σ
2

L
2
(θ)dθ. (10)

According to the left-right symmetry of the disc, all
components of sliding friction in the vertical direction
cancel each other, i.e., fy � 0. Te horizontal component of
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Figure 1: (a) Physical photo and (b) structural sketch of the desktop medical shaker with eccentric turntables.
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Figure 2: Schematic representation of a simplifed model of friction.
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Figure 3: Equivalent concentrated force for linear loads.

Table 1: Physical signifcance of each mathematical symbol related to the linear loads.

Mathematical symbol Physical meaning
dx Length of a microspan
dF Magnitude of the microforce acting on a microspan
q(x) Load set degree function
q Te maximum load set degree
L Total distribution length of linear load
F Principal vector of equivalent concentrated force
σ Frictional force per unit area
dS Area of the rectangular grid
dθ Vertex angle of the microarea
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sliding friction to which the area microelement is subjected
can be expressed as follows:

dfx �
1
2

qL cos θ�
σ
2

L
2
(θ) cos θdθ. (11)

According to the cosine theorem in triangle OCA, the
following equivalence relation can be obtained:

cos θ�
a
2

+ L
2

− r
2

2aL
. (12)

Te expression of the length of OA� L can be obtained
through its geometric relationship between the eccentricity
CO� a and radius r as follows:

L � a cos θ+

�����������

r
2

− a
2 sin2 θ

􏽱

. (13)

Terefore, the value of the friction can be expressed in
the form of a defnite integral as follows:

fx �
σ
2

􏽚
2π

0
L
2
(θ) cos θdθ, (14)

where

􏽚
2π

0
L
2
(θ) cos θdθ � 􏽚

2π

0
a
2 cos3 θ+ 2a cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱

+ r
2 cos θ − a

2 cos θ sin2 θ􏼢 􏼣dθ. (15)

Note that the defnite integral of the frst, third, and
fourth terms in the integral range is exactly zero.

0� 􏽚
2π

0
cos3θdθ � 􏽚

2π

0
cos θdθ � 􏽚

2π

0
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Terefore,

fx �
σ
2

􏽚
2π

0
L
2
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0
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2
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􏽱

dθ.

(17)

It is not difcult to fnd that the integral results in an
elliptic integral, indicating that there is no analytic ex-
pression of elementary function. However, the analytic
solution exists in the special case a� r with L � r

(cos θ+ |cos θ|)⟹ L2 cos θ� 2r cos3 θ+ 2r cos2 θ|cos θ|.

fx � σa · 􏽚
2π

0
cos2 θ
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� σr
2
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0
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2
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2
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1
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2
􏽚
1

0
1 − t

2
􏽨 􏽩dt

� 4σr
2

· t−
t3

3
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1

0

�
8
3π
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(18)

It should be noted that the calculation result of this case
must be less than that of a �∞. Te physical signifcance is
as follows: when the eccentric shaft is located at infnity, the
disc makes an instantaneous translation and the value of the
friction is exactly mgμ.

2.1.2. Principal Moment. Applying the simplifed result of
the linear load, the micromoment of equivalent concen-
trated force on the eccentric shaft can be found as follows:

dM � dF ·
2
3

L �
1
3

qL
2

�
1
3

(Lσdθ) · L
2

�
σ
3

L
3
dθ. (19)

Integrating the moment diferential, the principal mo-
ment M of the friction on the simplifed center O can be
obtained as follows:

M �
σ
3

􏽚
2π

0
L
3
(θ)dθ. (20)

From the cosine theorem, the expression of L3 in the
integral sign can be derived as follows:

L
2

− 2aL cos θ+ a
2

− r
2

� 0⟹L
3

� 2aL
2 cos θ+ L r

2
− a

2
􏼐 􏼑.

(21)

In equation (21), the integral of the frst term 2aL2 cos θ
has been calculated during the derivation of the main vector
(18), while r2 − a2 is constant in the second term, so only the
integral of L needs to be calculated as follows:

􏽚
2π

0
L(θ)dθ � 􏽚

2π

0
a cos θ+

�����������

r
2

− a
2 sin2 θ

􏽱

dθ

� 􏽚
2π

0

�����������

r
2

− a
2 sin2 θ

􏽱

dθ.

(22)

Te integral is still an elliptic integral with no analytic
expression of elementary function, but in the special case
a� r, there exists an analytic expression:
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M �
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Te distance D from the acting point of the combined
friction force to the eccentric shaft is equal to the ratio of the
principal moment to main vector.
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In particular, when a� r,

D �
M

fx

�
(32mgμr/9π)

(8mgμ/3π)
�
4
3

r. (25)

2.2. Case 2: a> r. We can still try to handle this case using
the equivalent concentrated force of the linear load shown in
Figure 4. Adding several pairs of equal and opposite sets of
forces to the line OE makes the forces represented in blue

a complete set of linear loads. In this case, the red part also
constitutes a linear load with the opposite direction to the
blue part. Te lengths of the line segments OA and OE as
well as the maximum load set degree on them can be easily
expressed as through geometrical relationships.

Based on the geometrical relationships as shown in
Figure 5, the following geometric dimensions can be
obtained:

OA� L � a cos θ+

�����������

r
2

− a
2 sin2 θ

􏽱

, q � Lσdθ,

OE� L1 � 2a cos θ − L � a cos θ −

�����������

r
2

− a
2 sin2 θ

􏽱

, q1 � L1σdθ,

∠COF� arcsin
r

a
.

(26)

Shock and Vibration 5



2.2.1. Main Vector. Te principal vector size in this case can
be expressed as the diference between the equivalent
concentrated forces of the two sets of linear loads.

df �
1
2

qL −
1
2
q1L1 �

σ
2

L
2
(θ)dθ −

σ
2

L1
2
(θ)dθ

�
σ
2

4a cos θ
�����������

r
2

− a
2 sin2 θ

􏽱

􏼢 􏼣dθ

� 2σa cos θ
�����������

r
2

− a
2 sin2 θ

􏽱

dθ.

(27)

Terefore,

dfx � df cos θ� 2σacos2 θ
�����������

r
2

− a
2 sin2 θ

􏽱

dθ. (28)

It should be noted that the integration interval in this
case becomes

θ ∈ [ − ∠COF, +∠COF] � − arcsin
r

a
, + arcsin

r

a
􏼔 􏼕. (29)

Combined with the left-right symmetry, the calculation
result of the main vector size can be expressed as follows:

fx � 4σa · 􏽚
arcsin(r/a)

0
cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱

dθ. (30)

Substituting a � r into the above result, it can be found
that the result is consistent with the calculation of Case 1.

2.2.2. Principal Moment. Te calculation of the principal
moments is similar to that of the main vectors.

dM �
1
3

qL
2

−
1
3
q1L1

2
�
σ
3

L
3
dθ −

σ
3

L1
3
dθ

�
σ
3

L − L1( 􏼁 L
2

+ LL1 + L1
2

􏼐 􏼑􏽨 􏽩dθ

�
σ
3

2
�����������

r
2

− a
2 sin2 θ

􏽱

2a
2 cos2 θ+ 2r

2
− 2a

2 sin2 θ+ a
2 cos2 θ − r

2
+ a

2 sin2 θ􏼐 􏼑􏼢 􏼣

�
σ
3

2
�����������

r
2

− a
2 sin2 θ

􏽱

3a
2 cos2 θ+ r

2
− a

2 sin2 θ􏼐 􏼑􏼢 􏼣dθ.

(31)

F

E

CO=a

O

C

A

B

θ

(a)

E
q1

A
B

q

O

(b)

Figure 4: (a) Area microelements and (b) load distribution when the eccentric shaft is located outside the turntable.
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Combined with the left-right symmetry, it can be con-
cluded that

M �
4σ
3

􏽚
arcsin(r/a)

0

�����������

r
2

− a
2 sin2 θ

􏽱

3a
2 cos2 θ+ r

2
− a

2 sin2 θ􏼐 􏼑􏼢 􏼣dθ. (32)

In particular, when a � r, the results coincide with the
calculation of Case 1.

M �
4σ
3

􏽚
(π/2)

0
r cos θ 4r

2 cos2 θ􏼐 􏼑􏽨 􏽩dθ

�
16σr

3

3
􏽚

(π/2)

0
cos3θdθ

�
16mgμr

3π
·
2
3

�
32mgμr

9π
.

(33)

2.3.MathematicalModel for Vibration Simulation. Based on
the analysis in the previous subsection for friction, it can be
concluded that the trajectory of the combined friction acting
points turns out to be a circle. To be specifc in the rotation-
vibration system, the friction force functions as an external
excitation of the oscillator shown in Figure 6.

Te disc and the oscillator are connected by an eccentric
shaft, while the oscillation of the eccentric shaft and the
oscillator are synchronized. Te dynamic equations of the
oscillator in this case can be established by Newton’s second
law as follows:

M€x � − c _x − K1x + K2x
3

+ K3x
5

􏼐 􏼑 − Fix(t) + fsx,

Fix(t) � m · aCx.

⎧⎨

⎩ (34)

Te physical meaning of all mathematical symbols in the
dynamic equations is shown in Table 2.

During the vibration of the oscillator, the motion of the
eccentric turntable is in the form of plane motion. Selecting
the intersection point O of eccentric shaft and turntable as

the base point of plane motion, it is not difcult to fnd that
the embroil motion of the turntable is translational. From
the acceleration synthesis theorem when the embroil motion
is translation, the acceleration of the turntable mass center C
can be expressed as follows:

a
→

C � a
→

O + a
→

CO � a
→

O + a
→τ

CO + a
→n

CO � a
→

O + CO · α→ +ω2
· CO �

α� 0
a
→

O +ω2
· CO. (35)

Project the above equation horizontally to obtain the
following equation:

acx � €x +ω2
·CO cos(θ), (36)

where _θ�ω⟹ θ�ωt.
Terefore,

M€x � − c _x − K1x + K2x
3

+ K3x
5

􏼐 􏼑 − m €x +ω2
·COcos(ωt)􏽨 􏽩 + fs sin(ωt)⟹

(M + m)€x + c _x + K1x + K2x
3

+ K3x
5

􏼐 􏼑 + mω2
a cos(ωt) − fs sin(ωt) � 0⟹

€x +
c

M + m
_x +

1
M + m

K1x + K2x
3

+ K3x
5

􏼐 􏼑 +
mω2

a

M + m
cos(ωt) −

fs

M + m
sin(ωt) � 0.

(37)

O θ θ
E

C

AL1

Figure 5: Geometric relationship schematic.
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Assuming that

A �
mω2

a

M + m
, B � −

fs

M + m
, (38)

the external excitation can be expressed as follows:

mω2
a

M + m
cos(ωt) −

fs

M + m
sin(ωt) � F cos ωt + ϕ0( 􏼁. (39)

Te expressions of amplitude F and initial phase ϕ0 are as
follows:

F �
������
A
2

+ B
2

􏽰
,ϕ0 � arctan

fs

mω2
a

. (40)

In summary, the dimensionless equations of the oscil-
lator can be simplifed as follows:

_x � y,

_y � − μ _x − k1x + k2x
3

+ k3x
5

􏼐 􏼑 + F cos ωt + ϕ0( 􏼁,

⎧⎨

⎩ (41)

where μ� (c/M + m), ki � (Ki/M + m), and i � 1, 2, 3.

First, consider the structure of the autonomous system
without periodic excitation, i.e., F � 0.Te equilibrium point
of the system can be represented as E(x, y) � (x0, 0), where
x0 satisfes the following equation:

k1x0 + k2x
3
0 + k3x

5
0 � 0. (42)

With the diferent parameters, the number and stability
of equilibrium points will be diferent, resulting in the di-
verse phase plane structures. Te numerical simulation al-
gorithm is the fourth order Runge–Kutta method compiled
in Fortran language. Origin software is applied for data
plotting, including phase portraits, time histories, equilib-
rium branches, and bifurcation diagrams. Figure 7 shows the
phase plane structure of the system under undisturbed and
disturbed conditions, respectively, in the typical case of fve
equilibrium points.

It can be seen from Figure 7 that damping μ causes three
centers E0, E±2 of the undisturbed system to become the
stable focus, while the stability of two saddle point E±1
remains unchanged after disturbance. From the phase plane
structure diagram Figure 7, it is not difcult to fnd that
damping and nonlinear spring can, respectively, change the
properties and distribution structure of the system attractors
while the friction information is implied in the external
excitation term instead of the autonomous equations.
Terefore, to study the key role of friction in the cluster
oscillation, it is necessary to fnd out the potential friction
information in the external excitation term and the infuence
of the external excitation frequency and amplitude on the
dynamic behaviors of the system.

M

m

Figure 6: Te simplifed model of rotation-vibration system.

Table 2: Physical signifcance of each mathematical symbol related to the governing equations.

Mathematical symbol Physical meaning
M Mass of the oscillator
x Displacement of the oscillator
c Damping coefcient
Ki Stifness parameters of nonlinear spring
Fix Horizontal component force of eccentric shaft acting on the rotary table
m Mass of the eccentric rotary table

fsx

Horizontal component of friction force exerted by the eccentric rotary table on the
oscillator

aC Acceleration of mass center of the rotary table
aCx Horizontal component of acceleration of mass center of the rotary table
aO Acceleration of point O
aCO Relative acceleration of point O to centroid C
aτ

CO Tangential components of aCO
an

CO Normal components of aCO
α Angular acceleration of the turntable
ω Angular velocity of the turntable
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Te traditional phase portrait of trajectory
Π: [x(t), y(t)], t ∈ R􏼈 􏼉 refects the relationship between
diferent state variables in the phase space or the projection
plane. Based on this idea, we can regard the slow-varying
external excitation W(t) � F cos(ωt + ϕ0) as a generalized
state variable; thus, the generalized phase trajectory can be
defned as Π: [x(t), y(t), W(t)], t ∈ R􏼈 􏼉. Te generalized
phase trajectory located in the generalized phase space
(x, y, W) or its projected phase plane is named transformed
phase portrait (TPP), which can be used to reveal the re-
lationship between external excitation and dynamic be-
haviors of the system.

3. Bursting Oscillation Mechanism with the
External Excitation

Te natural frequency Ω of the oscillator can be estimated
using the imaginary part of the eigenvalues of E0 in the
corresponding autonomous system:

Ω�

��

k1

􏽱

. (43)

Trough experiments and simulations, we found that the
violent oscillation of the shaking table is more likely to occur
with relatively low rotary speed of eccentric rotor. Te
theoretical essence of this phenomenon can be described as
follows: Bursting oscillation may occur with an order gap
between the external excitation frequency and the natural
frequency of the system.

Take the external excitation frequency ω� 0.005 satis-
fying ω≪Ω. Terefore, considering the whole external
excitation term W � F cos(ωt + ϕ0) as a slow variable, the
control equations of system (41) can be rewritten as follows:

_x � y,

_y � − μ _x − k1x + k2x
3

+ k3x
5

􏼐 􏼑 + W,

⎧⎨

⎩ (44)

which can be named as generalized autonomous system
because the time variable t is not directly displayed.

3.1. Bifurcation Analysis. We can select external excitation
W as the bifurcation parameter to analyze the dynamic
behavior of the system. Te equilibrium point of the system
can be represented as E(x, y) � (x0, 0), where x0 satisfes the
following equation:

k1x0 + k2x
3
0 + k3x

5
0 � W. (45)

Te stability of the equilibrium point is determined by
the following characteristic equation:

λ2 − μλ+ k1 + 3k2x
2
0 + 5k3x

4
0􏼐 􏼑 � 0. (46)

In engineering practice, the damping μ≠ 0. Terefore,
the characteristic equation has no pure imaginary root,
which indicates that Hopf bifurcation will never occur.
However, the existence of a zero solution to the charac-
teristic equation indicates that the equilibrium will undergo
a fold bifurcation when the following conditions are
satisfed:

FB: k1 + 3k2x
2
0 + 5k3x

4
0􏼐 􏼑 � 0. (47)

Figure 8 refects the equilibrium points and bifurcations
of the generalized autonomous system (44) under two
diferent sets of parameters. Te position of the equilibrium
point is directly determined by the external excitation W.
WhenW changes periodically with time, the trajectory of the
equilibrium points in phase space is the equilibrium curve.
Te equilibrium curve in Figure 8(a) is divided into fve
segments by four fold bifurcation points FB±1, FB±2, which
are, respectively, recorded as E0, E±1, E±2.E0 and E±2 are
stable focuses while E±1 are unstable saddle points. Te
bifurcation point connects a focal point and a saddle point.
Tis form of bifurcation is called the saddle-focus bi-
furcation. In Figure 8(b), the equilibrium curve is divided
into three segments as E0, E±1 by fold points B±1, where E±1
are stable focuses while E0 represents unstable saddle point.

When the slow-varying parameterW changes with time,
a type of codimensional-1 bifurcation named saddle-focus
bifurcation will occur, resulting in the jump of the
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Figure 7: Structure on phase plane with (a) μ� 0.0, k1 � 2.0, k2 � − 3.0, and k3 � 1.0 and (b) μ� 0.1, k1 � 2.0, k2 � − 3.0, and k3 � 1.0.
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equilibrium point. In other words, when the slow-varying
parameter approaches the bifurcation point, the quiescent
state of the fast subsystem will transit. It should be noted that
the amplitude F of the external excitation W directly de-
termines the value range of the equilibrium curve partici-
pating in the dynamic behavior of the system.Terefore, it is
necessary to use numerical methods to simulate the dynamic
behaviors of the oscillator under diferent excitation
amplitudes.

It is not difcult to conclude from Figure 8 that the
amplitude of the external excitation will directly determine
the efective value range of the equilibrium curve. In other
words, the amplitude of external excitation can indirectly
afect the number and structure of equilibrium points in-
volved in the dynamic behavior of the system. In the physical
sense, the introduction of friction can increase the amplitude
of the external excitation and change the oscillation struc-
ture of the shaker.

3.2. Case A. When parameters are set as μ� 0.1, k1 � 2.0,

k2 � − 3.0, and k3 � 1.0, the equilibrium curve of the system
is shown in Figure 8(a). Te numerical results show that
when F≤ 0.6564, the system oscillates periodically with the
same period as the external excitation, and there is no
obvious scale efect.

However, once the amplitude F> 0.6564, the fold bi-
furcation points will participate in interference with the
dynamic behavior of the system, causing the trajectory to
jump between diferent stable equilibrium points, known as
the scale efect. Figure 9 shows the phase portrait and time
history in this case.

Although there are only three stable focuses in the
generalized autonomous system, the stable focus E0 will
enter half-planes corresponding to x> 0 and x< 0 in turn
with the change of external excitation W, causing the tra-
jectory of the system to jump around four equilibrium points
as shown in Figure 9(a). From the time history shown in

Figure 9(b), it can also be seen that within a complete cycle,
displacement x undergoes four oscillations, all of which
exhibit a gradual decrease in amplitude and tend to an
equilibrium state. According to the oscillation characteris-
tics, the system trajectory can be divided into four spiking
states SP±1,±2 and four quiescent states QS±1,±2, corre-
sponding to large amplitude and small amplitude oscilla-
tions, respectively.

Comparing Figure 9 with Figure 7(b), one may fnd that
despite of the greater amplitude of spiking state SP+1, the
occurrence of spiking state SP+2 turns out to be the key factor
which directly destroys the original oscillation structure of
the autonomous system. From the physical point of view, the
friction acting on the eccentric turntable may cause in-
termittent overspeed oscillation of the shaker. To further
reveal the oscillation mechanism, the transformed phase
portrait and equilibrium branches of the system can be
superimposed, as shown in Figure 10.

Assume the trajectory starts from P− 1 in Figure 10, which
corresponds to the minimum value W � − 0.7. With the
increase ofW, the trajectory moves almost strictly along the
stable equilibrium branch E− 2, showing the quiescent state
QS− 2. When the trajectory reaches the bifurcation point
FB− 2, a fold bifurcation occurs, causing the trajectory to
jump towards the stable equilibrium branch E0. Because
there is a certain distance between FB− 2 and E0, the tra-
jectory approaches E0 in the form of large amplitude os-
cillation, appearing the spiking state SP+1, and then
converges to E0, which is shown as the quiescent state QS+1.
Trough numerical analysis, it can be found that the os-
cillation frequency of the spiking state SP+1 is approximately
equal to the imaginary part of a pair of conjugate eigenvalues
of the corresponding equilibrium point on E0.

Te trajectory stabilized on the equilibrium branch
moves almost strictly along E0 until it reaches the bifurcation
point FB+1. Ten, saddle-focus bifurcation makes the tra-
jectory jump to the stable equilibrium branch E+2, pre-
senting the spiking state SP+2. When the amplitude of the
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Figure 8: Equilibrium curves and bifurcations on plane (W, x) with (a) μ� 0.1, k1 � 2.0, k2 � − 3.0, and k3 � 1.0 and (b) μ� 0.1, k1 � − 1.0,

k2 � 1.0, and k3 � 0.0.

10 Shock and Vibration



spiking state SP+2 gradually decreases and fnally converges
to E+2, the half cycle bursting oscillations is completed. Te
oscillation of the other half cycle has symmetry with it and
will not be further elaborated.

It should be noted that the frequency of external exci-
tation exactly equals to the angular velocity of the eccentric
turntable. From the aspect of physical signifcance, the
convergence of spiking states SP+1 and SP− 2 equilibrium
branch E0 indicates that the intermittent overspeed oscil-
lation tends to occur with the middle rotation rate. In an-
other word, if the average change rate of external excitation
4F/(2π/ω) � 2Fω/π is relatively high, the trajectory may fail
to converge to the corresponding equilibrium branch in
time, thus appearing periodic oscillation with less multiple-
time scale phenomena. In order to further verify this in-
teresting conjecture, the amplitude of external excitation can
be appropriately increased for simulation.

Te structure of the bursting oscillation will change with
the increase of the external excitation amplitude F. Figure 11
shows the dynamic behaviors of the system when F� 2.0.
Diferent from the bursting behaviors when F� 0.7, the
trajectory oscillates around only two equilibrium points.

Terefore, the system motion can be divided into four parts,
including two quiescent states and two spiking states, re-
spectively.Te overlap of the transformed phase portrait and
equilibrium branches with F� 2.0 is shown in Figure 12.

Assume the trajectory starts from P− 1 in Figure 10, which
corresponds to the minimum value W � − 2.0. With the
increase ofW, the trajectory moves almost strictly along the
stable equilibrium branch E− 2, showing the quiescent state
QS− 1. Te saddle-focus fold bifurcation causes the trajectory
to jump from the bifurcation point FB− 2 to the stable
equilibrium branch E+2, producing spiking states SP− 1. After
that, the oscillation amplitude of the spiking state will
gradually decrease until the trajectory converges to the stable
equilibrium branch E+2, indicating that the half cycle
bursting oscillations is completed. In terms of bifurcation
mechanism, this kind of oscillation is named periodic
symmetric fold/fold bursting, while from the inspect of
attractor geometric structure, it can also be called point-
point bursting.

Intriguingly, the system produces separated oscillation
modes with diferent amplitudes, while the equilibrium
curve and bifurcations involved are the same. Te biggest
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Figure 9: Bursting oscillations with F � 0.70: (a) phase portrait and (b) time history of x.
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diference between the two oscillation modes is whether the
trajectory converges to the equilibrium branch E0. Since the
external excitation frequency remains constant, the greater
amplitude implies the faster change of the external excita-
tion. In short, when the amplitude is relatively large, the
residence time of the trajectory in the attractive region of E0
is not long enough to make it converge to the
equilibrium point.

In the physical sense, this theoretical result perfectly
confrms our previous conjecture proposed from Figure 10
that the intermittent overspeed oscillation tends to occur
with the middle rotation rate. Besides, combining the
simulation result shown in Figure 10 with formulas (38) and
(40), it can be concluded that controlling the amplitude of
external excitation at a high level by scaling up the rotary
speed is an efective method to eliminate harmful vibrations.

3.3. Case B. Except for the way applied in case A to
eliminate harmful vibrations, there is another theoretical
method to avoid the occurrence of the bursting

oscillations. Te lower degree of nonlinearity of spring
restoring force and oscillator displacement corresponds to
the simpler structure of equilibrium curves. In this case,
scaling down the external excitation amplitude by means
of reducing the friction is also an efective method to avoid
the intermittent overspeed oscillation. In specifc, when
parameters are set as μ� 0.1, k1 � − 1.0, k2 � 1.0, k3 � 0.0,
the equilibrium curve of the system is shown in
Figure 8(b). It can be seen that when F≤ 0.3850, no bi-
furcation of the generalized autonomous system will
occur, implying that there exists no obvious scale efect. In
this case, there is a pair of coexisting periodic oscillatory
attractors, respectively, around the stable equilibrium
branch E±1, whose oscillation frequency is consistent with
the excitation frequency. Te simulation results with
diferent initial values shown in Figure 13 confrm the
coexistence of symmetrical periodic oscillations.

Based on formula (38), the reduction of the friction
indicates the decrease of the amplitude as well as the in-
variant frequency of external excitation. Te theoretical
mechanism of harmful vibration elimination is that the
narrower value range of equilibrium curve may involve less
bifurcation, which makes the system produce simpler
dynamic behaviors. From the physical point of view, it can
be simply summarized that the reduction of friction at
a relatively low rotating speed of the shaker can efectively
eliminate the overspeed oscillation.

Once the amplitude F> 0.3850, the fold bifurcation
points will participate in interference with the dynamic
behavior of the system, causing the trajectory to jump be-
tween diferent stable equilibrium points, known as the scale
efect. Figure 14 shows the phase portrait and time history in
this case.

Te existence of fold bifurcation points FB±1 causes the
trajectory to oscillate alternately around two equilibrium
branches E±1. Te trajectory can be divided into two
spiking states SP±1 and two quiescent states QS±1. To
further reveal oscillation mechanism, the overlap of
transformed phase portrait and equilibrium branches is
given in Figure 15.
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Figure 11: Bursting oscillations with F � 2.0: (a) phase portrait and (b) time history of x.
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Assume the trajectory starts fromP− 1 in Figure 13, which
corresponds to the minimum value W � − 1.0. With the
increase ofW, the trajectory moves almost strictly along the
stable equilibrium branch E− 1, showing the quiescent state
QS− 1.Te fold bifurcation causes the trajectory to jump from
the bifurcation point FB− 1 to the stable equilibrium branch
E+1, producing spiking states SP− 1. Ten, the oscillation
amplitude of the spiking state will gradually decrease until
the trajectory converges to the stable equilibrium branch
E+1, implying that the half cycle bursting oscillations are
completed. Similar to the oscillation described in Figure 12,
this bursting mode is named periodic symmetric fold/fold
bursting or point-point bursting. If the amplitude is further
increased, the equilibrium branches E±1 in the transformed
phase portrait will be extended, but the topology of the
attractors is going to remain unchanged.

In summary, the intermittent overspeed oscillation has
a higher possibility of occurrence with the middle rotation
rate. Tis mechanism can also be used to explain that the
oscillation of washing machine is prone to occur during the
speed reduction process at the end of drying. Te

elimination of such harmful vibration requires specifc
analysis. In the case of relatively high rotary speed, further
increase in rotation rate is a feasible way. In the low fre-
quency case, the reduction of friction acting on the eccentric
turntable is an efective method.

4. Feasibility Analysis and Error Estimation of
the Method

Tere are two methods for selecting the area microelement
when deriving the analytic formula of the eccentric turntable
friction, which, respectively, corresponds to the obtuse
triangle ΔOAB and the right triangle ΔOAD shown in
Figure 16. Diferent area selection may lead to length or area
errors. Tus, it is necessary to compare the diference be-
tween the two area microelement selection methods.

4.1. Integral Error of Area. Result (48) of integrating the area
diferential represented by the right triangle ΔOAB is exactly
equal to the area of the circle.

􏽚
2π

0

1
2

L
2
(θ)dθ �

1
2

􏽚
2π

0
a
2 cos2 θ+ 2a cos θ

�����������

r
2

− a
2 sin2 θ

􏽱

+ r
2

− a
2 sin2 θ􏼢 􏼣dθ

� πr
2

+
a
2

2
􏽚
2π

0
cos 2θdθ

� πr
2

+
a
2

2
􏽚
π

0
cos 2θd2θ

� πr
2
.

(48)

We need to prove that if triangle ΔOAD is selected as the
areamicroelement, the result of its integration is still equal to
πr2, which is equivalent to the conclusion that the integral of

the triangle ΔABD area on the corresponding interval is
zero. Assuming the complementary angle of ∠ACO equals to
α, it should be noticed that

lim
dθ⟶0

SΔABD

SΔOAB
� lim

dθ⟶0

(1/2)(Ldθ)
2 tan(α − θ)

(1/2)(Ldθ)L − (1/2)(Ldθ)
2 tan(α − θ)

� lim
dθ⟶0

1
(L/(Ldθ)tan(α − θ)) − 1

� 0.

(49)

From the sugar water inequality,

min
bi

ai

􏼨 􏼩≤
b1 + b2 + . . .bn

a1 + a2 + . . .an

≤max
bi

ai

􏼨 􏼩, ai, bi ∈ R
+
, i ∈ N, (50)

it can be concluded that

min
SΔABD

SΔOAB
􏼚 􏼛≤

􏽐 SΔABD

􏽐 SΔOAB
≤max

SΔABD

SΔOAB
􏼚 􏼛, (51)

where

lim
dθ⟶0

min
SΔABD

SΔOAB
􏼚 􏼛 � lim

dθ⟶0
max

SΔABD

SΔOAB
􏼚 􏼛 � 0. (52)

From the squeeze theorem, it can be obtained that
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lim
dθ⟶0

􏽐 SΔABD

􏽐 SΔOAB
�

􏽒
2π
0 (1/2)(Ldθ)

2 tan(α − θ)

􏽒
2π
0 (1/2)L

2
dθ − 􏽒

2π
0 (1/2)L

2 tan(α − θ)(dθ)
2

� 0�
0
π2

r
. (53)

Terefore,

lim
dθ⟶0

􏽘 SΔABD � 􏽚
2π

0

1
2
L
2 tan(α − θ)(dθ)

2
� 0. (54)

Te integral of the area of ΔABD is zero, and its geo-
metric signifcance is that if the integrand approaches zero
on a fnite integral interval, the area under its curve tends to
be zero.

In the calculation process of friction, the error caused by
the selection of area elements is mainly refected in the
expression of the maximum load concentration. In specifc,

[L − L tan(α − θ)dθ]σdθ< q< Lσdθ. (55)

Te minimum and maximum terms in this inequality
correspond to the maximum load set degree when the span
values are OA length and OB length, respectively. Applying
the squeeze theorem, it can be proved that the integral error
converges to zero by substituting these two terms into the
integral calculation of friction force, which indicates that the
calculation method proposed is feasible.

4.2. Integral Error of Length. Result (56) of integrating the
length of the bottom edge AD is not equal to the circum-
ference of the circle.

􏽚
2π

0
L(θ)dθ � 􏽚

2π

0
a cos θ+

�����������

r
2

− a
2 sin2 θ

􏽱

dθ

� 􏽚
2π

0

�����������

r
2

− a
2 sin2 θ

􏽱

dθ

< 2πr.

(56)

When using triangle ΔOAB as an area element for in-
tegration, the area error converges to zero, while the length
error cannot be ignored. Te reason for this result is that
when the vertex angle of the triangle ΔOAB approaches zero,

the angle ∠OAB does not tend to be a right angle, but
satisfes the following isometric relationship:

∠OAB�
π
2

− ∠BAD�
π
2

− ∠CAO�
π
2

− α+ θ <
π
2

. (57)

In other words,

lim
dθ⟶ 0

α − θ≠ 0. (58)

On this basis, the error in length can be expressed as

lim
dθ⟶0

AB − AD

AB
� lim

dθ⟶0

Ldθ[(1/cos(α − θ)) − 1]

Ldθ · (1/cos(α − θ))

� lim
dθ⟶0

1 − cos(α − θ)≠ 0.

(59)

4.3. Correctness Verifcation in Special Case: a⟶ +∞.
Te validity of this result can be verifed by taking the limit
where the eccentricity tends to be infnite.

4.3.1. Main Vector

lim
a⟶+∞

fx � lim
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4σa · 􏽚
arcsin(r/a)
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cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱
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􏽚
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0
a cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱

dθ.

(60)

Make a vertical line of OA through the center of the
circle C and intersect with OA and OB at points G and H,
respectively, as shown in Figure 17. Notice that the ex-
pressions inside the integral limit integral sign have geo-
metric signifcance as follows:

GH� a cos θdθ,AG�

�����������

r
2

− a
2 sin2 θ

􏽱

. (61)
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Figure 16: Area microelement ΔOAB and ΔOAD.
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Terefore, the area of quadrilateral ABGH can be
expressed as

SABGH ≈ GH × AB� a cos θ
�����������

r
2

− a
2 sin2 θ

􏽱

dθ. (62)

All the yellow microarea in the integration interval can
be stitched together to form exactly a quarter circle. Based on

this geometric meaning, we can derive the following integral
limit:
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Next, we need to prove that the following two limits of
integration are equal:

lim
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Te method applied is to make a diference between
these two limits of integration and prove that the limit of the
diference is zero.

lim
a⟶+∞

􏽚
arcsin(r/a)

0
a cos θ

�����������

r
2

− a
2 sin2 θ

􏽱

dθ − lim
a⟶+∞

􏽚
arcsin(r/a)

0
a cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱

dθ

� lim
a⟶+∞

􏽚
arcsin(r/a)

0
a cos θ − cos2 θ􏼐 􏼑

�����������

r
2

− a
2 sin2 θ

􏽱

dθ.

(65)

Notice that CG� a sin θ≤ r is a bounded quantity; thus,
the following inequality can be obtained through identity
transformation:

0≤ a cos θ − cos2 θ􏼐 􏼑 �
a cos θ − cos2 θ􏼐 􏼑

a sin θ
· a sin θ ≤

a cos θ − cos2 θ􏼐 􏼑

a sin θ
· r. (66)

C G H

A B

CO=a

θ

O

C
GH = a cos θdθ

AG = r2 – a2 sin2 θ

Figure 17: Te geometric signifcance of the calculation result with a⟶ +∞.

16 Shock and Vibration



Besides, it is easy to know from Lopita’s Law,

lim
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Terefore, the following limiting expression holds from
the squeeze theorem combined with the bounded quantity
AG�

�����������
r2 − a2 sin2 θ

√
:
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a cos θ − cos2 θ􏼐 􏼑 � 0⟹ lim
a⟶+∞
θ⟶0

􏽚
arcsin(r/a)

0
a cos θ − cos2 θ􏼐 􏼑

�����������

r
2

− a
2 sin2 θ

􏽱

dθ� 0. (68)

In summary, when the eccentricity distance a tends to be
infnite, the main vector size of the friction is exactly

lim
a⟶+∞

􏽚
arcsin(r/a)

0
a cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱

dθ�
πr

2

4
⟹

lim
a⟶+∞

fx � 4σ lim
a⟶+∞

􏽚
arcsin(r/a)

0
a cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱

dθ

� 4 ·
mgμ
πr

2 ·
πr

2

4
� mgμ,

(69)

which is completely consistent with the physical meaning of
a⟶ +∞. In specifc, a⟶ +∞ implies that the motion
state of the turntable is instantaneous translation. According
to Coulomb’s law, the frictional force in this case can be
obtained as mgμ.

4.3.2. Principal Moments. Based on the analytical process of
the main vector, the principal moment when the eccentricity
distance tends to be infnite can be calculated as follows:

lim
a⟶+∞

M � lim
a⟶+∞

4σ
3

􏽚
arcsin(r/a)

0

�����������

r
2

− a
2 sin2 θ

􏽱

3a
2 cos2 θ + r

2
− a

2 sin2 θ􏼐 􏼑􏼢 􏼣dθ

� lim
a⟶+∞

4σ
3

􏽚
arcsin(r/a)

0
3a

2 cos2 θ
�����������

r
2

− a
2 sin2 θ

􏽱

􏼢 􏼣dθ

� lim
a⟶+∞

4σa · 􏽚
arcsin(r/a)

0
a cos2 θ

�����������

r
2

− a
2 sin2 θ

􏽱

􏼢 􏼣dθ

� mgμ · a

� +∞.

(70)
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5. Conclusion

Te distribution of friction turns out to be linear on a tri-
angular area element with the intersection point of the
eccentric shaft and the turntable plane as the vertex. Te
theoretical calculation results indicate that the friction be-
tween the horizontal plane and the eccentric turntable can be
simplifed as a combined force, with its vector direction
perpendicular to the line connecting the eccentric shaft and
the centroid of the turntable.

Terefore, the friction functions as an extra external
excitation term in the oscillator, and the numerical value of
its resultant force is positively correlated with the amplitude
of the external excitation. Te numerical results show that
the structure of the equilibrium branches involved in the
dynamic behavior of the system will change with diferent
external excitation amplitudes.

Te jumping phenomenon of the trajectory to the
stable focus caused by fold bifurcation is manifested as the
overspeed oscillation of the desktop medical shaker in
engineering practice. From both practical and theoretical
perspectives, it is found that the intermittent overspeed
oscillation has a higher possibility of occurrence with the
middle rotation rate. According to the bifurcation theory,
the fundamental way to eliminate this harmful phe-
nomenon without changing the internal parameters of the
system is to increase the average change rate of the ex-
ternal excitation or simplifed the attractor structure. In
engineering practice, there are three methods to achieve
these goals:

(1) Control the rotating speed ω of the turntable at
a high level

(2) Lubricate the turntable to reduce the friction fs in
the case of low rotating speed

(3) Replace the turntable with smaller eccentricity a in
the case of middle rotation rate

Te three basic solutions mentioned above correspond
to the situation when intermittent overspeed oscillation
occurs at diferent working speeds, which can remedy the
defects of eccentric shaft technology in practical application
to a certain extent. Besides, these theoretical results also
provide new ideas and perspectives for the transformation
and upgrading of components with eccentric shaft, such as
the eccentric turntable with adjustable eccentricity and
pressure sensitive detection-feedback equipment.

 . Discussion

Tis paper makes some idealized assumptions and ap-
proximations such as

(1) Te rotating speed ω of the turntable remains
constant

(2) Friction between turntable and eccentric shaft can be
ignored

(3) Te oscillator vibrates only in the horizontal
direction x

(4) Te contact between the oscillator and the horizontal
plane is smooth

(5) Te diameter of the eccentric shaft is negligible
relative to the size of the turntable

In engineering practice, these assumptions may not be
strictly true. Te circumstances with the failure of these
mentioned assumptions and approximations need to be
explained by more accurate and complex theoretical models,
which will be carried out in our subsequent research work.
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