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Flutter-type dynamic instability induced by friction is a highly nonlinear phenomenon and computationally expensive to model
through transient analysis. An efcient way to make inference of such instabilities in a dynamical system is through analyzing the
frst-order efect of a perturbation at one of its equilibrium with eigenvalue analysis. Te contact characteristics of such dynamical
systems are typically modelled through the normal compliance approach with inference from experiments. In this case, the
dynamical response of the system is implied to be sensitive to the contact stifness modelled through the normal compliance
approach. Typically, with the normal compliance approach, the continuum of the contact interface is approximated through a set
of nonlinear springs which can be interpreted as a collocation method. Such approximations or the numerical implication of
contact formulations in general for such problems is not largely studied. We focus on a variational formulation-based contact
formulation without domain decomposition which is computationally efcient with small sacrifce in accuracy, where we imply
that the dynamical response can be robustly modelled with the given accuracy. Further, we expose the inadequacy of the
collocation method for such problems, where the dynamical system is observed to be sensitive to the extent of inaccuracy as a
result of collocation for low values of contact stifness. Te inferences numerically imply the characteristics of the dynamical
system for variation in contact stifness.

1. Introduction

Friction naturally occurs in sliding contact. Typically, as a
result of friction, the kinetic energy is largely dissipated as
heat, while some of the energy is conserved as vibration
which as a consequence can lead to acoustic noise [1]. Te
resulting noise generated by friction is more complex to
model mathematically and cannot be typically explained by a
single mechanism [2–4].Te complexity can be largely owed
to modelling the contact interface properties and the
mechanism of friction at various scales. Te sound produced
from friction can be purely as a result of unsteady excitation
or by reaching a steady state through self-excitation [5].
Squeal noise is largely identifed as the latter case, where as a

result of perturbations around equilibrium, the system
reaches a new steady-state characterizing self-excitation
behavior. Tis can be understood as coalescence of modes
where two modes exist at a same frequency, leading to self-
excitation between the modes under favourable conditions
in the presence of friction. Even though friction is com-
monly associated with damping, in the case of sliding
contact, it is understood that the interaction as a result of
friction between the normal forces and the tangential forces
relative to a contact surface gives rise to self-excitation
behaviour which characterizes futter instability. Tis is
evident in the literature even from early analyses based on
lumped models, which greatly improved the understanding
of futter-type instabilities induced by friction [6, 7].
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Flutter instability induced by friction can be inferred
through transient analysis with the presence of a limit cycle
[8] which is nevertheless expensive to model given the
nonsmooth nature of friction and to capture the high fre-
quency characteristics over human audible range [9]. One of
the most common ways to circumvent the expensive
computation of such problems is through analyzing the
perturbations around the equilibrium state of the dynamic
problem. Te equilibrium state of sliding contact problem
with friction can be typically characterized as steady-sliding
or quasistatic equilibrium depending on the nature of the
external forces present [10, 11]. With some assumptions
made over the nature of the perturbations such that the
dynamics of the system for a perturbation can be expressed
linearly, the system can be analysed through eigenvalue
analysis. It should be noted that such linear assumptions can
only characterize instabilities very close to the equilibrium.
Te presence of the limit cycle is inferred through complex
conjugate pairs of eigenvaluesR(λ) ± I(λ) or its equivalent
form ± R(λ) + I(λ) depending on the assumed solution,
and hence, such analyses are termed as complex eigenvalue
analysis. A complex conjugate pair of eigenvalues only
characterizes divergence from the equilibrium to reach a
limit cycle but does not give any information on the actual
characteristics of the limit cycle [12]. Nevertheless, CEA has
been widely accepted in industrial applications such as for
designing of automotive and aircraft brakes to mainly
predict the presence of limit cycle which can in turn indicate
the presence of squeal phenomenon and also whirl phe-
nomenon in systems such as aircraft brakes.

Even though fnite element methods are used in dis-
cretizing a complex domain, the contact interface is typically
modelled through a set of linear or nonlinear springs which
can be regarded as the collocation method. Te sensitivity of
such an approximation made over the continuum contact
interface in the estimation of steady-sliding equilibrium or
the prediction of instabilities through CEA is largely not
studied. In this paper, we give a simple way for approxi-
mating the integrals defned over the contact interface, the
variational form of contact and friction, which is similar to
Gauss point to surface (GPTS) approach [13, 14] regarded as
a mortar based method [15] without domain decomposition.
It is intuitive that such an approximation without domain
decomposition for dissimilar meshes at the contact interface
is not empirically accurate. But the accuracy required de-
pends on the quantity of interest, where in our case the
sensitivity of steady-sliding equilibrium and CEA to the
approximation. We focus on the variational approach
without domain decomposition since it provides the best
balance between computational cost and accuracy, in
comparison to domain decomposition approaches which are
also more complex to implement. Te variational formu-
lation is also satisfed through collocation for comparison to
show the efcacy of the GPTS approach for CEA. We do not
focus on the linearization part typically associated with large
sliding contact problems since to compute steady-sliding
equilibrium and the linearization to be made around the
equilibrium for CEA requires no defnition of velocity terms.
We expand the defnitions based on the normal compliance

approach [7, 16] where the unknown contact boundary
conditions of normal stress are defned to be displacement
dependent. Tis can be regarded as the classical mesh-tying
constraint enforced through the penalty approach, where the
term mesh-tying expresses the coupling of the displacement
feld between the domains at the contact interface. Further,
we consider the isogeometric approach [17] for discretiza-
tion owing to the accuracy provided in structural dynamics
application [18] and contact problems [19] where the higher-
order continuity of spline basis functions could be exploited
[20–22].

Te meaning of penalty term in classical sense is es-
sentially to satisfy the contact constraints, where an ideal
penalization is of order infnity. But in a numerical context,
penalization is taken to be a high value to enforce the
constraints, considering the condition number of the ma-
trices. Tis could be unrealistic for a dynamical system,
where the dynamical response is sensitive to stifness at the
interface which is essentially the normal compliance ap-
proach models. Tis is in contrast to the zero compliance
model of Signorini conditions which the penalty approach
essentially tries to satisfy. Tis means that the discretization
scheme should also be accurate at lower values of penali-
zation which could refect the contact stifness to be mod-
elled with the normal compliance approach. Tis is because
for some formulations, the accuracy of the normal stress
could be improved considerably with a large value of pe-
nalization, given that the condition number of the matrices
does not make it numerically unstable [19, 23]. Hence, we
also focus on the accuracy of normal stress at low values of
contact stifness which is classically ignored.

We also make some inference on numerical character-
istics of CEA in relation to contact stifness and the accuracy
of modelling normal stress at the contact interface, such that
the sensitivity of CEA could also be implied. Tis is im-
portant in approximating the integrals defned over a contact
domain such that it characterizes the contact interface in the
interest of CEA independent or with little inference from
experiments. Tis could be useful in applications such as
optimization of systems for friction-induced dynamic in-
stability through numerical simulations. Tis is mainly
evident in the shape optimization of the contact interface
itself [24, 25] since the contact interface has to be modelled
numerically independent of experiments for a given shape
variation in optimization, given the necessary experimental
inference initially, parameters inferred to model normal
compliance for example.

2. Modelling

We give a general overview of continuum formulations in
this section which is useful to defne the variational for-
mulation of contact and friction, for which the discretization
will be expanded in the following section. We start with the
dynamical problem of contact and friction considering
contact between an elastic domain and a rigid domain for the
sake of simplicity §. From this, we defne the steady-sliding
equilibrium problem § and the problem of the dynamics of
perturbation around the equilibrium §. Followed by, we
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defne the problem for the dynamics of perturbation ex-
plicitly §, where we defne explicitly the quantities of interest
required to be calculated from steady-sliding equilibrium.
Tis is to understand the approximation of the integrals
defned over a contact domain for given quantities of interest
which are to be defned explicitly in the interest of studying
contact formulations given in §. Further, for the dynamics of
the perturbation problem defned explicitly, contact is
considered between two elastic domains so as to give clarity
in the expansion of the contact formulation in §. Finally, we
express the discretized form of the problems, also in matrix
form for all the preceding continuum problems defned §.

2.1. Initial-Boundary Value Problem. Te initial-boundary
value problem for a domain in contact with a rigid body in
the presence of friction can be given as

ρ€u + ∇.σ(u) � f inΩ,

u � uD on ΓD,

σ(u).􏽢vn � tN on ΓN,

(1a)

gn ≥ 0, σn ≤ 0, gnσn � 0, (1b)

_ut
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���� � 0⟹ σt

����
���� − μ σn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0,

_ut

����
����≠ 0⟹ σt − μ σn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

_ut

_ut
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����

� 0,

on ΓC,

(1c)

where u: Ω3⟶ R3, ΓN ∪ΓD ∪ ΓC � zΩ, with zΩ defning
the boundary ofΩ, and 􏽢vn defning the unit normal vector on
zΩ. Under isotropic material consideration, the constitutive
equations can be defned as σ � 2μLε + λLtr(ε)I, where μL �

E/2(1 + ]) and λL � ]E/(1 + ])(1 − 2]) are 3D Lamé pa-
rameters expressed in terms of Young’s modulus E and
Poisson’s ratio ]. Te kinematic relation for the strain tensor
ε under infnitesimal displacement is defned as

ε � 1/2(∇u + ∇uT). For a system with domains Ω(a) and
Ω(b) in contact, gn � [X(a) −X⃖(b)].􏽢vn, whereX represents the
material coordinates. X⃖(b) on Ω(b) is defned as the outward
normal projection 􏽢vn from zΩ(a).

Signorini conditions (1b) and Coulomb’s law (1c) defne
elegant mathematical models for contact and friction, re-
spectively, in macroscopic view. But such conditions have
been found to lack the characteristics of contact interface in
reality [7]. Tis leads to the view of the normal compliance
approach [16] to defne an approximation of the charac-
teristics at a contact interface, also through which regula-
rization for the multivalued mapping of (1b) can be
achieved. We do not focus on the regularization of (1c)
which is not useful in the scope of steady-sliding equilibrium
and with the nature of the perturbations to be considered.
Normal compliance is defned by σn as the function of
relative normal displacement un � [u(a)(X(a)) − u(b)

(X⃖(b))].􏽢vn (Considering Ω(b) is a rigid body, u(b) � 0 in this
case) at the interface in relation to the initial gap gn, given as

−σn � cn un − gn( 􏼁
mn

+ , (2)

where (.)+ allows only a positive value. Tis can be extended
to friction as

_ut

����
���� � 0⟹ σt

����
���� − ct un − gn( 􏼁

mt

+ ≤ 0,

_ut

����
����≠ 0⟹ σt − ct un − gn( 􏼁

mt

+

_ut

_ut

����
����

� 0,

on ΓC,

(3)

where the parameters cn, mn, ct, and mt characterize in-
terface properties and are to be determined from experi-
ments. We consider the friction model purely based on
Coulomb’s law to focus on numerical modelling, and hence,
ct � μcn and mt � mn in this case. With ΓC known as the
active set which satisfes the normal compliance constraint
(.)+ at a given time, the problem can be expressed as var-
iational inequality [26], given as

􏽚
Ω
ρ€u.(δu − _u) dΩ + 􏽚

Ω
σ(u): (∇δu − ∇ _u) dΩ

+ 􏽚
ΓC

cn un − gn( 􏼁
mn

+ δun − _un( 􏼁 dΓC − 􏽚
ΓC
μcn un − gn( 􏼁

mn

+ δut

����
���� − u

.

t

����
����􏼐 􏼑 dΓC

− 􏽚
ΓN
tN.(δu − _u) dΓN − 􏽚

Ω
f .(δu − _u)dΩ≥ 0,

(4)

where δu is the directional derivative. Te solution to the
above dynamical problem is often discussed in the context of
nonsmooth mechanics [27, 28] which we do not focus here.
But through regularization of the nondiferentiable friction
functional, mainly as ‖ _ut‖⟶ ψ(‖ _ut‖), the abovementioned
inequality can be expressed as variational equation [7, 11]. In
this case, ψ corresponds to a continuous function over
velocity for transition from stick to slip state. Given the

initial conditions u0 and _u0 which satisfy the inequality at the
initial time, the system can be numerically integrated with
time.

We focus on modelling futter-type dynamic instability
through classical theories of linear analysis, where the frst-
order efect of perturbations around a fxed point is ana-
lyzed. Hence, the stability of the dynamical system with
frictional contact can be characterized by determining the
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fxed points which are typically of quasistatic or steady-
sliding equilibrium depending on the external forces and
defning the dynamics for the perturbation around such
fxed points. We only focus on steady-sliding equilibrium for
the following discussions.

2.2. Steady-Sliding Equilibrium. Te dynamical system can
be expressed as steady-sliding equilibrium when no net
acceleration is present in frictional contact. Tis can be seen
as a series of unchanging equilibrium states with respect to
time, where the equilibrium characteristics remain the same
except for the relative velocity at the contact interface.
Nevertheless, the problem can be expressed purely by static
forces. Te steady-sliding equilibrium explicitly character-
izes slip condition at constant sliding velocity, and hence, at

the equilibrium, σt � μσn on ΓC. Further, empirically, the
knowledge of sliding direction 􏽢vk at any point on ΓC is
defned to be known a priori, and hence, σt � μσn􏽢vk. Tis
means that the nondiferential friction term of (4) as a result
of the inequality (3) can be expressed as variational equation
at pure slip state (Te normal compliance terms inmodelling
σn make it nonlinear. But eventually through linearization of
the normal compliance model, bilinearity could be achieved
which will be discussed in the following). Since the equi-
librium characteristics remain the same for all the time, the
equilibrium state could be expressed with no time-depen-
dent forces but purely by static forces. Te problem of
steady-sliding equilibrium can hence be expressed as

􏽚
Ω
σ(u): ∇δu dΩ + 􏽚

ΓC
cn un − gn( 􏼁

mn

+ δu.􏽢vndΓC
􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽

σn,δu〈 〉

− 􏽚
ΓC
μcn un − gn( 􏼁

mn

+ δu.􏽢vkdΓC
􏽼√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√􏽽

σt ,δu〈 〉

− 􏽚
ΓN
tN.δu dΓN − 􏽚

Ω
f .δu dΩ � 0.

(5)

Te nonlinear problem can be solved through the
Newton–Rhapson method to obtain the steady-sliding so-
lution u. It should be noted that for steady-sliding case with
friction, nonunique solutions can exist [10, 29].

2.3. Initial-Boundary Value Problem for Perturbation. Te
perturbation of the displacement feld relative to the steady-
sliding equilibrium can be given as

u � u + 􏽥u(t), (6)

where 􏽥u(t) and t correspond to perturbed displacement feld
and time, respectively. Te dynamics of the perturbation can
be deduced by substituting u + 􏽥u in the variational equation
form of (4) (Te variational equation can be deduced by
regularization of the nondiferentiable friction functional of
the variational inequality (4). For the sake of simplicity, we
do not focus on regularization since at the steady-sliding
equilibrium and for perturbations around the equilibrium,
the system is considered to operate beyond the discontinuity
of Coulomb’s friction law, and hence, regularization has no
efect) and subtracting with (5) to obtain

􏽚
Ω
ρ€􏽥u.δu dΩ + 􏽚

Ω
σ(􏽥u): ∇δu dΩ + 􏽚

ΓC
cn 􏽥un + un − gn( 􏼁

mn

+ − cn un − gn( 􏼁
mn

+( 􏼁δu.􏽢vndΓC − 􏽚
ΓC

μcn 􏽥un + un − gn( 􏼁
mn

+ − cn un − gn( 􏼁
mn

+( 􏼁δu.􏽢vkdΓC � 0.

(7)

Te idea is to analyze the dynamics of the system for a
small perturbation such that the stability of the dynamical
system can be characterized through the evolution of the
dynamics for perturbation close to the steady-sliding
equilibrium, where we hypothesize that the evolution of the
dynamics can be sufciently characterized linearly. Tis
brings the question of linearizing normal compliance.

We start with the discussion of linearizing the operator (.)+

under necessary conditions.Te perturbation 􏽥un on ΓC may not
result in the same active set ΓC, which introduces nonlinearities
defned by (.)+ (Separation on ΓC defnes un − gn < 0⟹p

(un − gn)mn
+ ⟶ 0 which can only be taken into account

nonlinearly.Tis is also true for the case contrary to separation).
Tis can be linearized with the hypothesis that the onset of
instability to model occurs close to the equilibrium u such that

the perturbation 􏽥u is small to defne ΓC as stationary. But this
may not be true since ΓC is stationary only when un + 􏽥un −

gn > 0 (in the view of normal compliance, the perturbation 􏽥un

for no variation of ΓC defnes the variation of σn. Tis would
have been impossible with Signorini conditions which can be
regarded as the zero compliance model, where 􏽥un > 0 leads to
strict contact separation on ΓC), implying that σn≪ 0 must be
true on ΓC at steady-sliding equilibrium, conceivably as a result
of external forces. Tis can lead to a new active set ΓC in the
current confguration X + u(X) that satisfes un(X) + 􏽥un(X +

u(X)) − gn(X)> 0 on zΩ, which depends on the nature of the
perturbation 􏽥un(X + u(X)) and σn(X) at steady-sliding
equilibrium. Perhaps, this could reveal if the linearization of the
operator (.)+ is realistic for a given system. To simplify, we
consider ΓC as stationary for the perturbation 􏽥u, which evades

4 Shock and Vibration



the operator (.)+. With further linearization for the polynomial
terms of the normal compliance, the frst-order efect of the
perturbation 􏽥u close to u can be expressed as

cn 􏽥un + un − gn( 􏼁
mn

+ − cn un − gn( 􏼁
mn

+( 􏼁
􏼌􏼌􏼌􏼌un�un

≈ mncn un − gn( 􏼁
mn− 1

􏼌􏼌􏼌􏼌􏼌un�un

􏽥un.
(8)

An illustration of the linearization is shown in Figure 1. It is
also possible that the nonlinearity defned by the normal
compliance parameters couldmean that the linearization at very
low values of un − gn could yield very low mncn(un − gn)mn− 1.
Hence, the assumption of stationary ΓC could be justifed in this
case.

We provide discussions on the presumed characteristics of
friction for the perturbation 􏽥u to express the dynamics of the
perturbation to be linear. Even though steady equilibrium is
expressed by static forces, for the perturbation 􏽥u(t), the state of
friction can change from slip state of steady-sliding equilibrium,
where without regularization for friction, the dynamics of the
perturbation resembles the variational inequality of equation
(4). Hence, this requires further assumptions on the nature of
the perturbation 􏽥u such that the system is always in slip state,
which is reasonable for small perturbations and also preserves
the variational equation form. For the given example, we
consider contact between an elastic domain and a rigid domain,
and in this case, the assumption of stationary ΓC at sliding is
fairly easy to consider on the elastic domain.With the dynamics
considering two elastic domains in contact, for steady-sliding
equilibrium, the forces at the contact interface are stationary,
and hence, ΓC can also be taken to be stationary even in the
presence of relative motion. But for the perturbation 􏽥u(t) of
such problems, the variation of forces on ΓC at slip state means
that the assumption of stationary ΓC may not be realistic.Tis is
true unless _􏽥u(t). 􏽢vk for the dynamical system (4) is negligibly
relative to the natural frequencies of the system, which is taken
to be the case here. Tis is evident in applications such as brake
system, where the rotational frequency of brake discs is much
lower than the natural frequencies of the brake system.

We defne p(X) � mncn(un(X) − gn(X))mn−1
+ which can

be interpreted as contact stifness for perturbations close to
steady-sliding equilibrium. For the following discussions, we do

not relate to the experimental determination of the parameters
cn and mn. We mainly focus on the fnite element discretization
of the integrals defned over ΓC for the dynamics of the per-
turbation and the consequence of p(X) on the discretization
schemes. Hence, the focus on the infuence of discretization
schemes in the estimation of steady-sliding equilibrium is not
considered in this study. u efectively defnes ΓC at steady-sliding
equilibrium, also at which normal compliance is linearized to
defne p(X). But ΓC and p(X) can be defned explicitly, for
which a new initial-boundary value problem (9) can be con-
sidered. Tis is to simplify the comparison of discretization
schemes for (17) with constant ΓC and p(X), rather than to
deduce from steady-sliding equilibrium where ΓC and p(X)

could indeed vary depending on the discretization scheme.

2.4. Initial-Boundary Value Problem for Perturbation: Ex-
plicitly Defned. Te preceding problem (1a) was expressed for
contact between an elastic domain and a rigid body to simplify
the expressions in focus on the nature of the problem. But to
generalize the following problem for contact between elastic
bodies, the subscript k is introduced to distinguish the domains
in contact. With ΓC and p(X) known a priori, either from
steady-sliding equilibrium or defned explicitly, the strong form
of the dynamics for 􏽥u can be expressed as

ρ(k)€􏽥u(k)
+ ∇.σ(k)

􏽥u(k)
􏼐 􏼑 � 0 inΩ(k)

,

􏽥u(k)
� 􏽥u(k)

D on Γ(k)
D ,

σ(k)
n 􏽥u(k)

􏼐 􏼑􏽢vn � −p􏽥un
(k)

􏽢vn, σ(k)
t 􏽥u(k)

􏼐 􏼑􏽢vk � μp􏽥un
(k)

􏽢vk on Γ
(k)
C .

(9)

Te parameters p(X) and μ are defned to be constant on
ΓC between all the domains in contact. Te variational
formulation of the problem can hence be expressed as

􏽚
Ω(k)

ρ(k)€􏽥u(k)
.δu(k)

dΩ(k)
+ 􏽚
Ω(k)

σ(k)
􏽥u(k)

􏼐 􏼑: ∇δu(k)
dΩ(k)

− 􏽚
Γ(k)

C

t(k)
C .δu(k)

dΓ(k)
C � 0. (10)

un − gn

σn

u–n(X) − gn(X)

mncn(un − gn)mn − 1
un = u–n

cn(un − gn)+
mn

u~n(X + u–n(X))

Possible separation at low
contact stress

Figure 1: Linearization of contact defned by the normal com-
pliance approach for the perturbation 􏽥u at the steady-sliding
equilibrium u.
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Te traction force tC can be decomposed as

􏽚
Γ(k)

C

t(k)
C .δu(k)

dΓ(k)
C � 􏽚

Γ(k)

C

σ(k)
n 􏽢vn.δu(k)

dΓ(k)
C

+ 􏽚
Γ(k)

C

σ(k)
t 􏽢vk.δu(k)

dΓ(k)
C .

(11)

Hence, with the expansion of the traction forces for nk

domains in contact, equation (10) can be expressed as

􏽘

nk

k�1
􏽚
Ω(k)

ρ(k)€􏽥u
(k)

.δu(k)
dΩ(k)

+ 􏽚
Ω(k)

σ(k) 􏽥u(k)
􏼒 􏼓: ∇δu(k)

dΩ(k)
�

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

􏽚
Γ(k)

C

− p􏽥un

(k)
􏽢vn.δu(k)

dΓ(k)
C

􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽

σ(k)
n ,δu(k)

􏽄 􏽅
Γ(k)

C

+ 􏽚
Γ(k)

C

μp􏽥un

(k)
􏽢vk.δu(k)

dΓ(k)
C

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽

σ(k)
t ,δu(k)

􏽄 􏽅
Γ(k)

C

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(12)

To simplify, we consider contact between two domains
Ω(a) and Ω(b), with the derivation of traction forces on Ω(a).

Hence, the inner products σ(a)
n , δu(a)􏽄 􏽅Γ(a)

C

and
σ(a)

t , δu(a)􏽄 􏽅Γ(a)

C

can be expressed as

σ(a)
n , δu(a)

􏽄 􏽅Γ(a)

C

� −􏽚
Γ(a)

C

p􏽥un
(a)

􏽢vn.δu(a)
dΓ(a)

C � −􏽚
Γ(a)

C

p 􏽥u(a)
− 􏽥u(b)

􏼐 􏼑.􏽢vn􏽨 􏽩δu(a)
.􏽢vndΓ(a)

C , (13)

σ(a)
t , δu(a)

􏽄 􏽅Γ(a)

C

� 􏽚
Γ(a)

C

μp􏽥un
(a)

􏽢vn.δu(a)
dΓ(a)

C � 􏽚
Γ(a)

C

μp 􏽥u(a)
− 􏽥u(b)

􏼐 􏼑.􏽢vn􏽨 􏽩δu(a)
.􏽢vkdΓ(a)

C . (14)

Te traction forces onΩ(b) can similarly be defned from
the conservation of momentum as σ(a)

n � −σ(b)
n and σ(a)

t �

−σ(b)
t .

2.5. Finite Element Approximation. We introduce the
function space V: � δu ∈ (H1(Ω))3 | δu � uD on ΓD􏽮 􏽯 in
which we seek the solution u, where the Sobolev space
(H1(Ω))3: � δu ∈ (L2(Ω))3,∇δu ∈ (L2(Ω))3􏽮 􏽯 and the L2

norm: ‖δu‖L2 � δu, δu〈 〉 � 􏽒Ωδu
2dΩ<∞. A subspace

(H1/2(ΓC))3 can be defned as the restriction of (H1(Ω))3 on
ΓC, i.e., u ∈ H1(Ω)⟶ H1/2(ΓC), defned through the
normal compliance approach. Even though t is typically
defned to be in (L2(Ω))3, the unknown a priori conditions

of t on ΓC imply σn, σt ∈ (H− 1/2(ΓC))3, where (H− 1/2(ΓC))3

is the dual of the space (H1/2(ΓC))3.
Te solution u ∈ V can be expressed as

u � 􏽐
∞
i viui,∀(vi)

3 � ∀vi ∈ V. With the fnite element ap-
proach, we defne a fnite-dimensional function space
hV ⊂ V, and hence, there is some bound on vi ∈ hV. Te
approximation of u in hV can be expressed as u ≈ hu ∈ hV.
We focus on the defnition of the space hV with the iso-
geometric approach in the next section. But in general, we
give the matrix form of the variational formulations derived
with hV.

Te fnite element approximation of u ∈ hV for equation
(5) considering the two domains Ω(a) and Ω(b) in contact
can be expressed as

􏽘
a,b

k
􏽚
Ω(k)

σ(k)
hu

(k)
􏼐 􏼑: ∇v(k)

i dΩ−􏽚
Γ(k)

C

μcn hun−hgn( 􏼁
mn

+ v(k)
i .􏽢vkdΓC+􏽚

Γ(k)

C

cn hun − hgn( 􏼁
mn

+ v(k)
i .􏽢vndΓC − 􏽚

Γ(k)

N

ht
(k)
N .v(k)

i dΓN−􏽚
Ω(k)h

f (k)
.v(k)

i dΩ � 0􏼨 􏼩,

∀v(k)
i ∈hV

(k)
,

(15)

where hgn � [X(k)(Ξ(k)) −X⃖(∼k)(Ξ(∼k))].􏽢vnand hun � [hu(k)

(X(k))−hu(∼k)(X⃖(∼k))].􏽢vn. ∼ k defnes the domains which
are not k, i.e., in the case of contact betweenΩ(a) andΩ(b), k � a

implies ∼ k � b and vice-versa. hgn implies the realization of gh

with the parameterization of domains. Te abovementioned
expression can be expressed in the matrix form as
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K
(a− b)U(a− b)

− F(a−b)
C U(a− b)

􏼒 􏼓 − F(a−b)
F U(a−b)

􏼒 􏼓 � F, (16)

where K is the stifness matrix, FC and FF are the nonlinear
traction force vectors of contact and friction, respectively,
and with F being the classical force vector implying external
forces. Te linearization of the integrals defned over ΓC in
solving the steady-sliding equilibrium (5) through the

Newton–Rhapson method takes the similar form of. Tis
means that the tangent matrices of F(a−b)

C (U(a− b)
) and

F(a−b)
F (U(a− b)

) to solve for U(a− b) has the form K(a−b)
C and

K(a−b)
F , respectively, to be discussed.
Similarly, with the substitution of equation in equation

(7), for 􏽥u ∈hV, results in the following form:

􏽘
a,b

k
􏽚
Ω(k)

ρ(k)
h
€􏽥u(k)

.v(k)
i dΩ(k)

+ 􏽚
Ω(k)

σ(k)
h􏽥u(k)

􏼐 􏼑: ∇v(k)
i dΩ(k)

+ 􏽚
Γ(k)

C

mncn hun−hgn( 􏼁
mn− 1

􏽥un v
(k)
i .􏽢vndΓ(k)

C􏼨

− 􏽚
Γ(k)

C

μmncn hun−hgn( 􏼁
mn− 1

􏽥un v
(k)
i .􏽢vkdΓ(k)

C 􏼩 � 0, ∀v(k)
i ∈hV

(k)
,

(17)

which can be expressed in the matrix form as

M(a− b) €􏽥U
(a− b)

+ K(a− b)
− K(a−b)

C − K(a−b)
F􏼐 􏼑 􏽥U(a− b)

� 0. (18)

Te properties of the matrices can be given as follows,
whereM andK are symmetric and positive defnite matrices.
KC is also symmetric which essentially defnes the conser-
vation of momentum at the interface for normal contact.
While KF is nonsymmetric which defnes the nonconser-
vative nature of friction at slip state. Hence, all the contact
forces are expressed as displacement-dependent forces lin-
early. Considering a solution of the form Θeλt for 􏽥U, the
characteristics of the eigenvalue problem which we refer to
here as CEA can be expressed as

λ2M(a− b)
+ K(a− b)

− K(a−b)
C − K(a−b)

F􏼐 􏼑􏼐 􏼑Θ � 0. (19)

It is evident that λ determines the state of the perturbed
solution 􏽥U. Given an eigenvalue of the form λ � R(λ) +

I(λ), the I(λ) part models the oscillatory behaviour while
the stability of the given mode is defned by R(λ). R(λ)> 0
can be understood to characterize an unstable mode and
defnes the divergent nature of the solution. Similarly,
R(λ)< 0 can be understood to characterize a stable mode
which can be interpreted as damping. Te occurrence of a
pair of eigenvalues ± R(λ) + I(λ) defnes the presence of a
limit cycle which is of interest for applications concerning
futter-type instability induced by friction. Damping can also
be factored through the defnition of a matrix C, typically
through modal or Rayleigh damping. In the scope of
modelling rotational inertia efects, gyroscopic matrix G can
also be defned, where C and G are both velocity dependent.
We factor out damping and gyroscopic efects in our model
to mainly focus on contact and friction modelling.

2.6. Isogeometric Approach for Discretization of the Contact
Integrals. We defne the space hV through the isogeometric
approach to take advantage of the properties of the spline
basis functions. Te higher-order continuity of the spline
basis functions between the knots provides superior ap-
proximation properties. Te infuence of the continuity in
contact problems has also been largely studied for various

formulations in the context of penalization or mixed
formulation approach to enforce the contact constraint
[19]. Tis is mainly true for dissimilar meshes between the
domains in contact at the contact interface, where simple
discretization schemes through collocation were shown to
provide improved accuracy. Te higher-order solution
continuity is a consequence of the geometric continuity
provided by spline parameterization. Te geometric
continuity greater than c0 is also useful to defne the actual
normal of the contact surface and also avoids numerical
discrepancies in large displacement contact problems, as a
result of the faceted c0 continuity of classical fnite element
meshes.

2.7. NURBS for Approximation. B-spline basis functions can
be defned by Cox de Boor’s formula as follows:

Ni,0(ξ) �

1, ξi ≤ ξ < ξi+1,

0, otherwise,

⎧⎪⎨

⎪⎩

Ni,p(ξ) �
ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ),

(20)

where p is defned recursively for p> 0 to obtain a curve of
degree p, which starts with a piecewise constant at p � 0.
Naturally, a uniform knot vector can be defned as
ξ � ξ1, ξ2, . . . , ξn+p+1􏽮 􏽯, where any ξi − ξi+1 is uniformly
spaced. Te knot vector need not be equidistant, and the
multiplicity of a knot ξi by M in the knot vector decreases
the continuity by cp−M across the knot ξi, which defnes a
nonuniform knot vector. Trough B-spline basis functions
and a knot vector ξ � ξ1, . . . , ξn+p+1􏽮 􏽯, a B-spline curve can
be defned with the basis functions and its coefcients as
follows:

Xc(ξ) � 􏽘
n

i�1
Ni,p(ξ)Pi. (21)

Te coefcients Pi ∈ Rd are the control points, with d

being the dimension of the space. Te defnition of a
weighing parameter wi > 0 associated with a respective basis
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function Ni, normalized defnes rational B-splines where it
respects the partition of unity, given as follows:

Xc(ξ) � 􏽘
n

i�1

wiNi,p(ξ)

􏽐
n
i�0wiNi,p(ξ)

􏽼√√√√√􏽻􏽺√√√√√􏽽
Ri,p

Pi.
(22)

Te parameter wi provides a new dimension for con-
trolling the geometry through projective transformation,
while the afne transformation is achieved by Pi. Hence, the
combination of nonuniform knot vectors and rational basis
functions defnes NURBS. Te higher dimensional NURBS
are a natural extension of its 1-dimensional precursor
through tensor product defnition where the order of the
tensor is the same as the dimension of the geometry. Hence,
a tensor product NURBS surface can be defned as

Xs(ξ, η) � 􏽘
n

i�1
􏽘

m

j�1
Ri,p(ξ)Rj,q(η)Pi,j, (23)

which is supported by knot vectors ξ � ξ1, . . . , ξn+p+1􏽮 􏽯 and
η � η1, . . . , ηm+q+1􏽮 􏽯, for the domain [ξ1, ξm+q+1]×

[η1, ηm+q+1], with n × m net of control points Pi,j. Similarly, a
tensor product NURBS volume can be defned as

Xv(ξ, η, ζ) � 􏽘
n

i�1
􏽘

m

j�1
􏽘

l

k�1
Ri,p(ξ)Rj,q(η)Rk,r(ζ)
􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

Ri,j,k(Ξ)

Pi,j,k, (24)

where the knot vectors are given as ξ � ξ1, . . . , ξn+p+1􏽮 􏽯, η �

η1, . . . , ηm+q+1􏽮 􏽯 and ζ � ζ1, . . . , ζ l+r+1􏼈 􏼉. Te above-
mentioned expression can be simply expressed in the matrix
form as Xv(Ξ) � R(Ξ)P. We also give the following nota-
tions, where to express the same degree for all the knot
vectors defning a NURBS parameterization in R3 is simply
defned as Dx, i.e., (p � q � r � x): � Dx. Similarly, for the
same continuity y between the internal knots in all the knot
directions is expressed as Cy.

Te parameterization of a domain Ω ∈ R3 as an initial
geometric description through NURBS can be expressed as
�X(k)

v (�Ξ(k)) � �R(k)(�Ξ(k))�P(k), X: 􏽢Ω⟶Ω, where X defnes
the mapping from the parametric domain 􏽢Ω to the physical
domainΩ, and for simplicity, we consider the parameterization
of the domainΩ through only a single patch: [ξ1, . . . , ξn+p+1] ×

[η1, . . . , ηm+q+1] × [ζ1, . . . , ζ l+r+1]. Te analysis-suitable pa-
rameterization X6 (for simplicity of the notation, we defne X
to be the default notation for analysis-suitable parameterization
of a domain Ω ∈ R3) can be achieved through the refnement
of �X⟶ Xwith one or several of the refnementmethods: h, p
, and k, whereX can be defned asXv(Ξ) � R(Ξ)P to take into
account of the modifed knot vectors and control points. Te
isogeometric approach for the approximation of a solution is
achieved through the bases Ri,j,k, where for the vector-valued
function space hV, the vectorial defnition of the bases
Ri,j,k ∈ R3 can be defned as

Ri,j,k

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

0

Ri,j,k

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
∪

0

0

Ri,j,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (25)

Tis can be expressed in the matrix form as Ri,j,k(Ξ) �

Ri,j,k(Ξ)I, with I being the identity matrix. Hence,

R(Ξ) � R1,1,1(Ξ) · · · Rn,m,l(Ξ)􏼂 􏼃,

P � P1,1,1 · · · Pn,m,l􏼂 􏼃
T
,Pi,j,k � P

x
i,j,k P

y

i,j,k P
z
i,j,k􏽨 􏽩.

(26)

In an abstract sense, the bases Ri,j,k(Ξ) in parametric space
are transformed into the bases ϕi,j,k(x, y, z) in physical space
using the push-forward operator °, where the bases ϕi are
defned with the property ϕi � ϕi,j,k(X) � Ri,j,k(Ξ)°X− 1.
Hence, the approximation of a feld variable on Ω is defned
through all the bases ϕi spanning the fnite-dimensional
function space Φ. For the isogeometric approach, we express
the fnite-dimensional space hV asΦ and its associated bases vi

as ϕi. Te approximation of 􏽥u∈ Φ can be defned as h􏽥u �

􏽐∀i∈Ωϕi􏽥ui, expressed in thematrix form as h􏽥u � N(X) 􏽥U, where

N(X) � ϕ1(X) · · · ϕn×m×l(X)􏼂 􏼃,

ϕ(X) ≔ ϕ(X)I,

􏽥U � 􏽥U1 · · · 􏽥Un×m×l􏽨 􏽩
T
, 􏽥Ui � 􏽥U

x

i
􏽥U

y

i
􏽥U

z

i􏽨 􏽩.

(27)

Te variational form of contact and friction given in
equations (13) and (14) expressed in the function space Φ
can be defned as

σ(a)
n ,ϕ(a)

i􏽄 􏽅Γ(a)

C

� 􏽚
Γ(a)

C

− p h􏽥u(a)
−h􏽥u(b)

􏼐 􏼑.􏽢vn􏽨 􏽩ϕ(a)
i .􏽢vndΓ(a)

C , ∀ϕ(a)
i ∈ Φ

(a)
,

σ(a)
t ,ϕ(a)

i􏽄 􏽅Γ(a)

C

� 􏽚
Γ(a)

C

μp h􏽥u(a)
−h􏽥u(b)

􏼐 􏼑.􏽢vn􏽨 􏽩ϕ(a)
i .􏽢vkdΓ(a)

C , ∀ϕ(a)
i ∈ Φ

(a)
.

(28)

Te expansion of the abovementioned expressions also
generalizes for the defnition of the tangent matrices for the
nonlinear terms of contact and friction in equation (15). Te
parameterization of the domainsΩ(a) andΩ(b) with NURBS
can be expressed as X(a) � R(a)(Ξ(a)) and X(b) � R(b)(Ξ(b)).

Te active sets Γ(a)
C and Γ(b)

C is defned with the property gn �

0: X(a).􏽢vn � X⃖(b).􏽢vn, where 􏽢vn in this case is taken to be the
outward normal projection from Γ(a)

C to Γ(b)
C .Tis means that

X⃖(b): X⃖(b)(X(a)), hence for X(a) that parametrizes Γ(a)
C , a
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projection exists that maps X(a) on Γ(b)
C as X⃖(b). For the

following explanations, we detail the derivation of traction
forces on Γ(a)

C , which can be extended to Γ(b)
C depending on

the considered discretization scheme.

σ(a)
n , ϕ(a)

i􏽄 􏽅Γ(a)

C

� 􏽚
Γ(a)

C

− p N(a) X(a)
􏼐 􏼑 􏽥U(a)

− N(b) ⃖X(b)
􏼒 􏼓 􏽥U(b)

􏼒 􏼓.􏽢vn􏼔 􏼕ϕ(a)
i .􏽢vndΓ(a)

C , ∀ϕ(a)
i ∈ Φ

(a)
,

σ(a)
t , ϕ(a)

i􏽄 􏽅Γ(a)

C

� 􏽚
Γ(a)

C

μp N(a) X(a)
􏼐 􏼑 􏽥U(a)

− N(b) ⃖X(b)
􏼒 􏼓 􏽥U(b)

􏼒 􏼓.􏽢vn􏼔 􏼕ϕ(a)
i .􏽢vkdΓ(a)

C , ∀ϕ(a)
i ∈ Φ

(a)
,

(29)

were 􏽢v: � 􏽢vx 􏽢vy 􏽢vz􏼂 􏼃
T. Essentially, the abovementioned

equations are a construct of the matrix form as

􏽚
Γ(k)

C

ϕ(l)
i .􏽢vr􏼐 􏼑 N(k)

.􏽢vq􏼐 􏼑 dΓ(k)
C � 􏽚

Γ(k)

C

ϕ(k)
1 .􏽢vq􏼐 􏼑

T
ϕ(l)

i 􏽢vx
r · · · ϕ(k)

n×m×l.􏽢vq􏼐 􏼑
T
ϕ(l)

i 􏽢vx
r

ϕ(k)
1 .􏽢vq􏼐 􏼑

T
ϕ(l)

i 􏽢vy
r · · · ϕ(k)

n×m×l.􏽢vq􏼐 􏼑
T
ϕ(l)

i 􏽢vy
r

ϕ(k)
1 .􏽢vq􏼐 􏼑

T
ϕ(l)

i 􏽢vz
r · · · ϕ(k)

n×m×l.􏽢vq􏼐 􏼑
T
ϕ(l)

i 􏽢vz
r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dΓ(k)
C . (30)

For k � l � a, the defnition of the integrals is straight
forward. In contrast, for k � b and l � a, we have terms of

the form 􏽒Γ(a)

C

(ϕ(b)
j .􏽢vq)Tϕ(a)

i 􏽢v.
rdΓ

(a)
C which can be expanded

as

􏽚
Γ(a)

C

ϕ(b)
j

⃖X(b)
􏼒 􏼓.􏽢vq􏼒 􏼓

T

ϕ(a)
i X(a)

􏼐 􏼑􏽢v.
rdΓ

(a)
C

� 􏽚
Γ(a)

C

ϕ(b)
j

⃖X(b)
􏼒 􏼓ϕ(a)

i X(a)
􏼐 􏼑􏽢vx

q 􏽢v.
r ϕ

(b)
j

⃖X(b)
􏼒 􏼓ϕ(a)

i X(a)
􏼐 􏼑􏽢vy

q 􏽢v.
r ϕ

(b)
j

⃖X(b)
􏼒 􏼓ϕ(a)

i X(a)
􏼐 􏼑􏽢vz

q􏽢v.
r􏼔 􏼕dΓ(a)

C ,

(31)

where the integrals are simultaneously defned over the bases
of the two domains in contact since ϕ(b)

j ∈ H− 1/2(Γ(b)
C ) and

ϕ(a)
i ∈ H− 1/2(Γ(a)

C ). Even though the defnition of integral for
ϕ(b)

j (X⃖(b)) on Γ(a)
C exists through the projection X⃖(b)(X(a)),

for dissimilar meshes at the contact interface, the defnition
of numerical quadrature scheme for the integrals of such
form requires domain decomposition to fnd the common
span: (ϕ(a)

i (X(a))∩ϕ(b)
j (X⃖(b))): ϕ(a)

i (X(a))ϕ(b)
j (X⃖(b))≠ 0.

Tis means that the integral exists between ϕ(a)
i (X(a)) and

ϕ(b)
j (X⃖(b)) only on the span where the projection X⃖(b)(X(a))

exists and hence requires a quadrature scheme specifc on
the span.

Inferring from the variational form of equations (29) and
(30) with the expansion provided in equation (30), the
following relation should hold:

􏽚
Γ(a)

C

􏽘

n×m×l

j�1
ϕ(a)

j .􏽢vq􏼐 􏼑
T
ϕ(a)

i 􏽢v.
rdΓ

(a)
C � 􏽚

Γ(a)

C

􏽘

n×m×l

j�1
ϕ(b)

j .􏽢vq􏼐 􏼑
T
ϕ(a)

i 􏽢v.
rdΓ

(a)
C , (32)

where it verifes the conservation of linear momentum at the
contact interface. Since we deal with contact between fat
surfaces, for the normal compliance approach which can be
viewed as coupling of displacement feld between the contact

surfaces, conservation of angular momentum is implicitly
satisfed.

We give some intuition through the collocation ap-
proach to satisfy the conservation of momentum at the
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contact interface and extend it to the defnition of quad-
rature scheme without domain decomposition. For collo-
cation, the integral 􏽒ΓC

ϕidΓC on one of the domains, in this

case, Γ(a)
C – can be defned as 􏽒Γ(a)

C

ϕ(a)
i dΓ(a)

C ⟶ 􏽐∀i∈i(a)
iϕ(a)

i ,

where i(a) is the set of points on Γ(a)
C which depends on the

collocation scheme [21, 30]. It should be noted that this is in
contrast to the collocation of the strong form. Hence, the
relation (32) satisfed discretely at the collocation points
takes the form as follows:

􏽘

∀i∈i(a)

􏽘

n×m×l

j�1

iϕ(a)
j .􏽢vq􏼐 􏼑

Tiϕ(a)
i 􏽢v.

r � 􏽘

∀i∈i(a)

􏽘

n×m×l

j�1

iϕ(b)
j .􏽢vq􏼐 􏼑

Tiϕ(a)
i 􏽢v.

r,

(33)

where iϕ :�iϕ I, iϕ(a) :� ϕ(a)(iX(a)), and iϕ(b) :� ϕ(b)

(X⃖(b)iX(a))). Tis satisfes conservation of momentum at the
contact interface, even though the integral 􏽒Γ(a)

C

ϕ(a)
i ϕ(b)

1 dΓ(a)
C

cannot be defned accurately. For any i, the following re-
lation holds:

􏽘

n×m×l

j�1

iϕ(a)
j .􏽢vq􏼐 􏼑

Tiϕ(a)
i 􏽢v.

r � 􏽘
n×m×l

j�1

iϕ(b)
j .􏽢vq􏼐 􏼑

Tiϕ(a)
i 􏽢v.

r � ϕ(a)
i 􏽢v.

r 􏽢vx
q + 􏽢vy

q + 􏽢vz
q􏼐 􏼑. (34)

Tis means that any quantity defned at a collocation
point i over iϕ(a)

i is projected equally over the bases in
H− 1/2(Γ(a)

C ) and H− 1/2(Γ(b)
C ). Tis is as a result of the

properties of the NURBS basis functions similar to classical
fnite element basis functions which satisfy partition of
unity. Since the integral is satisfed only at discrete
points, the solution may not be to the necessary accuracy.
Te collocation strategy can be replaced by a numerical
quadrature scheme as 􏽒Γ(a)

C

ϕ(a)
i dΓ(a)

C ≈ 􏽐∀i∈i(a)
iwiϕ(a)

i where

i(a), in this case, corresponds to the quadrature points with
iw being the quadrature weights. But the notion of iw on
ϕ(b) ∈ H− 1/2(Γ(b)

C ) may not be realistic when iw is defned for
ϕ(a) ∈ H− 1/2(Γ(a)

C ). Tis is where the higher-order continuity
of the spline basis functions and increasing the number of
quadrature points can be useful, which will be discussed in
the next section. Hence, equations (29) and (30) approxi-
mated through a quadrature scheme can be expressed as

K(a)
C K(a,b)

C􏽨 􏽩 􏽥U(a− b)
� − 􏽘

∀i∈i(a)

i
w p

iN(a)
.􏽢vn􏼐 􏼑

T iN(a)
.􏽢vn􏼐 􏼑

iN(a)
.􏽢vn􏼐 􏼑

T
−

iN(b)
.􏽢vn􏼐 􏼑􏼔 􏼕 􏽥U(a− b)

,

K(a)
F K(a,b)

F􏽨 􏽩 􏽥U(a− b)
� 􏽘

∀i∈i(a)

i
w μp

iN(a)
.􏽢vt􏼐 􏼑

T iN(a)
.􏽢vn􏼐 􏼑

iN(a)
.􏽢vk􏼐 􏼑

T
−

iN(b)
.􏽢vn􏼐 􏼑􏼔 􏼕 􏽥U(a− b)

,

(35)

where 􏽥U(a− b)
�

􏽥U(a)

􏽥U(b)􏼢 􏼣 and iN: � iϕ1 · · ·
iϕn×m×l􏽨 􏽩. Te integral defned over the parametric space 􏽢Ω for the

isogeometric approach takes the form.

K(a)
C K(a,b)

C􏽨 􏽩 � − 􏽘

∀i∈i(a)

i
w p iR(a)

.􏽢vn􏼐 􏼑
T iR(a)

.􏽢vn􏼐 􏼑
iR(a)

.􏽢vn􏼐 􏼑
T

−
iR(b)

.􏽢vn􏼐 􏼑􏼔 􏼕
iJ(a)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (36)

K(a)
F K(a,b)

F􏽨 􏽩 � 􏽘

∀i∈i(a)

i
w μp iR(a)

.􏽢vt􏼐 􏼑
T iR(a)

.􏽢vn􏼐 􏼑
iR(a)

.􏽢vk􏼐 􏼑
T

−
iR(b)

.􏽢vn􏼐 􏼑􏼔 􏼕
iJ(a)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (37)

where iR: � R(iΞ) and iΞ being the collocation point in the
parametric space and J is the Jacobian matrix for the
mapping Ξ⟶ X. iΞ(b) is the corresponding map of X⃖(b) in
the parametric space, which can be determined through the
Newton–Rhapson method in solving for X(b)(iΞ(b)) �

X⃖(b)(X(a)(iΞ(a))). Hence, there exists a mapping
iΞ(a)⟶ iΞ(b) for which X(a)(iΞ(a)) � X(b)(iΞ(b)).

From the conservation of momentum at the interface, the
following relation holds σ(a)

n � −σ(b)
n and σ(a)

t � −σ(b)
t . Hence,

the traction stresses on Γ(b)
C can similarly be defned as
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K(b,a)
C K(b)

C􏽨 􏽩 � − 􏽘

∀i∈i(a)

i
wp iR(b)

.􏽢vn􏼐 􏼑
T

−
iR(a)

.􏽢vn􏼐 􏼑
iR(b)

.􏽢vn􏼐 􏼑
T iR(b)

.􏽢vn􏼐 􏼑􏼔 􏼕
iJ(a)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (38)

K(b,a)
F K(b)

F􏽨 􏽩 � 􏽘

∀i∈i(a)

i
wμp iR(b)

.􏽢vt􏼐 􏼑
T

−
iR(a)

.􏽢vn􏼐 􏼑
iR(b)

.􏽢vk􏼐 􏼑
T iR(b)

.􏽢vn􏼐 􏼑􏼔 􏼕
iJ(a)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (39)

It should be noted that for the abovementioned equa-
tions, even though the traction forces are defned over Γ(b)

C as
〈hσ(b), ϕ(b)

i 〉Γ(b) , the quadrature points’ set i(a) is determined
only on Γ(a)

C , where its corresponding projection on Γ(b)
C is

defned through the projection X⃖(b). Tis also includes Ja-
cobian |iJ(a)| which is evaluated only on Γ(a)

C , similar to
equations (36) and (37). Tis greatly simplifes the fnite
element discretization of the integrals which may otherwise
require the domain decomposition approach to satisfy the
integrals exactly, where this as a consequence can have an
efect on accuracy which is discussed in §. With the
abovementioned defnitions, the matrices K(a−b)

C and K(a−b)
F

for the system take the form.

K(a−b)
C �

K(a)
C K(a,b)

C

K(b,a)
C K(b)

C

⎡⎢⎢⎣ ⎤⎥⎥⎦,

K(a−b)
F �

K(a)
F K(a,b)

F

K(b,a)
F K(b)

F

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(40)

Since the quadrature rule or collocation is defned with
respect to only one surface, it is commonly termed as half-
pass. Te role of Γ(a)

C and Γ(b)
C can be switched, and the

average over the two half-pass can be taken into account to
defne the so called full-pass [31]. A variation of the full-pass
approach is also given in [32] based on surface potentials.

Considering equation (30) given in the general form, the
submatrices of the formK(.)

C andK(.)
F , in contrast to the form

K(.,.)
C and K(.,.)

F , of the system matrices K(a−b)
C and K(a−b)

F ,
respectively, correspond to the case k � l. With the relation
􏽐

n×m×l
j�1 (iϕ(k)

j .􏽢vq)Tiϕ(l�k)
i 􏽢v.

r � ϕ(l�k)
i 􏽢v.

r(􏽢vx
q + 􏽢vy

q + 􏽢vz
q) inferred

from (34),K(.)
C andK(.)

F can be lumped. Hence, with equation
(30) for l � k, lumping can be achieved by defning ϕ(k)

j ≡ δi,j

,δi,j being the Kronecker delta product, where the inner
product ϕ(k)

j , ϕ(l�k)
i􏽄 􏽅 is expressed with the property.

ϕ(k)
j ϕ(l�k)

i 􏽢v.
r􏽢v

.
q �

ϕ(l�k)
i 􏽢v.

r􏽢v
.
q, if j � i,

0, if j≠ i,

⎧⎨

⎩ (41)

l≠ k defnes the matrices of the form K(.,.)
C and K(.,.)

F , where
the relation 􏽐

n×m×l
j�1 (iϕ(k)

j .􏽢vq)Ti
ϕ(l≠k)

i 􏽢v.
r � ϕ(k)

i 􏽢v.
r(􏽢vx

q + 􏽢vy
q + 􏽢vz

q)

inferred from (34) holds. Tis preserves the conservation of
momentum at the interface.

Collocation can be achieved with the weak form con-
sidering iw � 1, |iJ| � 1, and i ∈ I being a suitable set of
collocation points for equations (36)–(39). It should be
noted that for collocation schemes based on the variational

form, the efect of the area for a collocation point can be
taken into account through iw and |iJ| to improve the ac-
curacy [30]. It should be noted that as with the classical
collocation method, collocation with the strong form can
also be considered, where the strong form of contact and
friction boundary conditions are considered, as in equation
(9), which is shown to provide more accuracy for the basis
functions with higher-order continuity. For the isogeometric
approach, Greville and Botella points are of interest which
exploit the properties of NURBS. Also, for a given NURBS
parameterization, the number of Greville and Botella points
is fxed which is in contrast to the Gauss quadrature scheme
which can be defned independent of the NURBS param-
eterization. Nevertheless, the main interest with the collo-
cation scheme is the reduction of computational cost
associated with the reduced number of evaluations, where
the number of Greville or Botella points is typically very low
in comparison to the number of quadrature points for a
reasonable accuracy. We only consider Greville points in the
following section. Greville abscissae in a direction are the
average of the knots in the knot vector for the direction.
Further, the Greville points lie on the surface which makes it
useful to defne the projectionX⃖, and the number of Greville
points is the same as the number of control points.

3. Results and Discussion

Te variational formulation satisfed through collocation
with Greville points is simply termed as the collocation
method, unless otherwise specifed. For the following dis-
cussions, we use the term variational formulation to specify
the use of quadrature scheme in an approximate sense as
discussed in the preceding section, as it preserves the integral
sense of the variational formulation. Te results are shown
with only half-pass formulation. It should be noted that the
results implied with half-pass for a given formulation cannot
be extended to full-pass. Since even if the patch test could be
passed, it does not guarantee conditions for LBB stable [33]
or the implications in CEA. Hence, for a given formulation,
the full pass must be tested to imply its stability in CEA
which is not considered. Dx and Cy are considered to be the
same for all the domains in a given analysis. For the vari-
ational formulation, we defne the number of Gauss ab-
scissae between the knot spans in a direction to be the same
as the order of the NURBS in that direction, unless otherwise
specifed. Te results are mainly focused on the accuracy of
the formulations inferred through a contact patch test, and
the inferences are related to the sensitivity of CEA for a given
formulation. Even though we only focus on the accuracy of
σn through the considered contact patch test, it should be
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noted that σt for steady-sliding equilibrium is given by the
relation |σt| � μ|σn|. Hence, the accuracy of σn will have a
subsequent efect on σt, though the sensitivity of σn and σt on
steady-sliding equilibrium is not considered in this study.
Further, all the results of CEA are obtained with μ � 0.7. To
proceed with the following discussions, we introduce the
global contact stifness P at the interface ΓC as
P � 􏽒ΓC

p(X) dΓC. Hence, a given P is constant at the
interface, and the local contact stifness p(X) varies
depending on the accuracy of the formulations.

For the contact patch test, we consider p(X) to be
constant on ΓC, and hence, an ideal discretization should
yield p(X) � P/Area(ΓC). But for a given P, the local contact
stifness p(X) can vary depending on the approximation in
obtaining a formulation. Te discretization of p(X) has
direct infuence on contact normal stress σn through which
the accuracy of a discretization scheme can be inferred to
some extent since for some formulations, the accuracy
depends on the condition number of the matrices where
higher accuracy can be attained with a large value of P. For
this reason, we focus on considerably low values of P in the
interest of the normal compliance approach. Te setting for
the contact patch test is shown in Figure 2, where we
consider two cuboid domains in contact with two diferent
meshes visible through the knot vectors of the NURBS
parameterization. Te bottom face of Ω(b) is fxed, while the
top face of Ω(a) is applied a uniform pressure of 1000N/m2

and constrained to move normal to Γ(b)
C . Te material pa-

rameters E � 105 and ] � 0 are defned to be the same for
both the domains. Analytically, one can infer that |σn| �

1000N/m2 on ΓC, which provides good benchmark to
compare σn calculated with diferent formulations. Te
contact patch test can be defned by considering equation
(15) for μ � 0 and 􏽢vk � 0. With further simplifcation of cn �

p(X) and mn � 1, the matrix form of the problem can be
solved for K

(a− b)U(a− b)
− F(a−b)

C (U
(a− b)

) � F. Given Γ(a)
C and

Γ(b)
C known a priori, for mn � 1, F(a−b)

C (U(a− b)
) can be

expressed as K(a−b)
C U(a− b).

To begin with, we show the comparison of variational
formulation with lumping and without lumping in Figure 3.
Surprisingly, the approach with lumping has reduced os-
cillation of σn for a given P, where for the higher value of
P � 1014, the approach even passes the contact patch test to
machine precision. For CEA 19, we consider a simple disc-
pad system which can give rise to dynamic instability in-
duced by friction. Similar to the contact patch test, p(X) is
defned explicitly to be constant on ΓC, as discussed in §.Tis
is because p(X) determined through steady-sliding equi-
librium can vary depending on the discretization scheme to
defne an unbiased comparison of CEA results. Even though
the lumped approach is observed to be superior in the patch
test, it proves to be numerically unstable for CEA, shown in
Figures 4 and 5. We defne the following notations u(d) and
u(p) to express the displacement feld of the disc and the pad,
respectively. Even though the scale of the displacement feld
has no sense for the computed eigenvectors, comparison can
be made relatively with the displacement feld for a given
eigenvector. It should be noted that we deal with complex

eigenvectors where the imaginary part of an eigenvector
characterizes phase diference of the displacement feld,
which will not be considered here. Te mode shapes in
Figure 4 considered for comparison are chosen to be close in
frequency and has the same characteristics in relation to the
mode shape of the disc. For the lumped approach, it can be
observed that the relative displacement at the contact in-
terface of the disc is much lower in relation to the dis-
placement feld elsewhere. Te arrow on which u(d).v(d)

n is
plotted also traverses the boundary of the contact interface
zΓ(d)

C (Boundary of the contact interface can be defned as
zΓC for the contact interface ΓC) where strong solution
gradient for u(d).v(d)

n can be observed. Tis is in contrast to
the approach without lumping where u(d).v(d)

n is smooth
across zΓ(d)

C . In this case, the dynamic response of the ap-
proach with lumping and without lumping is observed to be
diferent as shown with the results in Figure 6 where the
natural frequencies I(λ) and its corresponding instabilities
R(λ) largely do not coincide. Empirically, the behaviour
observed at the contact interface for the lumped approach
seems unrealistic since Γ(d)

C and Γ(p)

C are observed to be
locked with each other relative to the rest of the domains in
contact.Tis could also be a consequence of the properties of
NURBS basis functions and hence can be verifed with
classical fnite element basis functions, which is not con-
sidered here. It should be noted that the role of mesh re-
fnement at zΓ(d)

C plays an important role in capturing the
solution gradient since the higher-order continuity of the
spline basis functions will have strong propensity to defne a
smooth solution across zΓ(d)

C . In our case, multipatch pa-
rameterization of disc is considered where one of the patches
consist of Γ(d)

C . Hence, across zΓ(d)
C , h− refnement was achieved

in the patch that contains Γ(d)
C such that the knots can trace

along side zΓ(p)

C and on zΓ(p)

C . But for more complicated shape
of zΓ(p)

C , strategies based on RBQ [34], or in the scope of local
refnement T-splines [35] or THB splines [36] have to be
considered. For the lack of understanding of the numerical
implication with lumping, we only focus on the approach
without lumping for the following discussions. Nevertheless, the
above discussions reveal that the contact patch test cannot be
purely accounted for the accuracy in CEA.

As it can be inferred from the contact patch test in
Figure 3, the accuracy of σn can be improved with increase in
P. For the contact problems defned by static analysis, when
the contact constraint is satisfed with the penalty approach,
it is necessary that p is large where in an ideal case p⟶∞.
But for dynamical systems, contact stifness models the
interface properties which have infuence on the resulting
dynamical response. It has been observed that the value of
contact stifness in this case is not typically higher than the
penalty value typically used in satisfying the contact con-
straint [37]. In this case, the variational formulation with
higher-order continuity and increased number of Gauss
quadrature points can yield better results. Te necessary
accuracy indeed depends on the sensitivity of the approx-
imation in estimating the steady-sliding equilibrium, the
efect it has on linearization for CEA, and the evaluation of
R(λ) and I(λ) with CEA. In the interest of computational
cost, as the order of continuity Cx− 1 is increased (k
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Figure 2: Description of the contact patch test.
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Figure 3: Results from the contact patch test. NURBS parameterization:D2C1; quadrature points: 25 × 25 in a knot span ∈R2; solid line: σ(b)
n

and dashed line: σ(a)
n .
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refnement) with increase in degree Dx (p refnement), the
increase in the number of control points is of very low order.
Even though the increase in the degrees of freedom of the
fnite element matrices is small for simultaneous p and k

refnement, this can reduce the sparsity of the matrices and
hence can increase the computational cost in terms of both
memory and time. Hence,Cx− 1 can be considered only up to
a reasonable value of Dx depending on the required
accuracy.

With the following results, we analyze the signifcance of
the higher-order continuity of the spline basis functions and
number of Gauss quadrature points on the accuracy of σn.

Te infuence of the higher-order continuity is shown in
Figure 7 for variousDx andCy consideringP � 106. It can be
observed that the oscillation in σn decreases with increase in
continuity.Tis can be clearly seen with comparing the cases
of D2C0 and D2C1 defned with equal number of Gauss
points between the knot spans ∈ R2 (span ∈ R2: [ξi, ξi+1] ×

[ηj, ηj+1], considering that ΓC is defned on the surface
parameterized by knot vectors ξ and η), where D2C1 shows
reduced oscillation of σn. While for D2C0, the solution is
observed to be only c0 continuous at the knots.Te results of
D2C0 andD2C1 are shown in comparison toD4C3 for which
the oscillation of σn is negligible. Te accuracy of σn can be

‖u‖
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Figure 4: Mode shapes from CEA. u.􏽢vn is measured along the arrow, shown in Figure 5. P � 106; NURBS parameterization: D2C1.
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Figure 5: Displacement plot inferred along the arrow for the mode shapes in Figure 4. Solid line: u(d).v(d)
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improved with increasing the number of Gauss quadrature
points, which is shown in Figure 8. For the case of D4C3 in
Figure 9, the number of Gauss points is also increased with
the degree by default as specifed before, and hence, the
addition of Gauss points also contributed to increase in
accuracy along with the contribution from higher-order
continuity. Nevertheless, even D4C3 does not satisfy the
contact patch test at P � 106, shown in Figure 9. It can be
inferred that even though the accuracy of σn increases
profoundly with initial refnement of continuity and in-
creasing the number of Gauss quadrature points, after a
certain order of continuity and number of Gauss points, the
accuracy can only get up to a certain digit. Hence, from the
asymptotic convergence of σn for increase in continuity and
number of Gauss points, it can be inferred that the contact
patch test cannot be passed to machine precision.

It can also be observed that the oscillation of σ(b)
n is

greater than σ(a)
n for DxCy. Tis can be hypothesized as

resulting from the quadrature scheme defned only over

Γ(a)
C , i.e., the quadrature points, Jacobian, and the

quadrature weights are evaluated only on Γ(a)
C , while only

their corresponding projection is defned over Γ(b)
C . Fi-

nally, we provide some intuition for possibly why the
accuracy improves with increase in continuity and
number of quadrature points for the variational for-
mulation. As discussed in the preceding section, the
approximation of the integrals defned over ΓC is sim-
plifed with considering the quadrature scheme on only
one of the domains in contact, while its projection is
defned on the other. Tis is not very intuitive since the
quadrature quantities such as quadrature weights iw and
the determinant of Jacobian |iJ| of the quadrature points
i ∈ I are evaluated in relation to only one of the contact
domains, in this case Γ(a)

C . Nevertheless, the projection on
to Γ(b)

C will preserve conservation of momentum at the
interface. When the domain to be projected on Γ(b)

C is C0,
iw and |iJ| evaluated over Γ(a)

C and projected on to a knot
span ∈ R2 parameterizing Γ(b)

C are confned within the
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Figure 7: Results from the contact patch test. P � 106; solid line: σ(b)
n and dashed line: σ(a)
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Figure 6: Comparison of results from CEA. P � 109; NURBS parameterization: D2C1.
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knot span ∈ R2 as a result of C0, where for dissimilar
meshes between Γ(a)

C and Γ(b)
C , the projection can lead to

unrealistic defnition of quadrature quantities on Γ(b)
C . But

for higher-order continuity, iw and |iJ| projected on a
knot span ∈ R2 are higher-order continuous across the
knots and hence are distributed on the knot spans ∈R2 of
the patch rather than to be confned within a knot span ∈
R2 when the continuity is C0 on the patch. Hence, the
accuracy can be inferred to increase with increase in
continuity. Te accuracy associated with increase in the
number of quadrature points can be explained as follows.
As the number of quadrature points increase, the
quadrature weight associated with a quadrature point
decreases. Hence, for dissimilar meshes on Γ(a)

C and Γ(b)
C ,

lower the quadrature weights means lower the error in
distribution of quadrature quantities across the knots in a
given direction.

Te efect of P on the accuracy of σn for the collocation
method and the variational formulation is shown in
Figure 10, considering D2C1 parameterization. In addition
with Greville points, the collocation scheme is also con-
sidered with equally spaced grid points in the parametric
space over the patch. Te total number of grid points is
defned to be 81, and the total number of Greville points is 25
resulting from the NURBS parameterization. Meanwhile,
the variational formulation was considered with 12 × 12
number of Gauss points in a knot span ∈R2. It is evident that
the variational formulation yields less oscillation of σn for
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Figure 8: Results from the contact patch test. P � 106; NURBS parameterization: D2C1; solid line: σ(b)
n and dashed line: σ(a)
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Figure 9: Results from the contact patch test. P � 106; NURBS parameterization:D4C3; quadrature points: 25 × 25 in a knot span ∈R2; solid
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both the extremes of P, where for P � 106 and P � 1014, the
diferences in oscillation are ≈ 34N/m2 and ≈ 0.01N/m2,
respectively. While for the collocation method with the grid
points, the diference in oscillation for P � 106 is
≈ 1700N/m2 which reduced drastically for P � 1014 to be
≈ 0.06N/m2. Collocation with the Greville points has the

worst oscillation for both the extremes of P, where for P �

106 and P � 1014, the diferences in oscillation are
≈ 3200N/m2 and ≈ 1800N/m2, respectively. Tis is likely
since the accuracy of the collocation scheme with Greville
points is known to be highly biased depending on the choice
of surface considered for collocation [21]. To illustrate this,
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Figure 10: NURBS parameterization: D2C1; quadrature points: 15 × 15 in a knot span ∈R2; grid points: 9 × 9 equally spaced points on Γ(p)
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Figure 11: Contact patch test-2. Everything is the same as detailed in Figure 2 except for the NURBS parametrization shown here.
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we consider a new parameterization as shown in Figure 11
for contact patch test 2. Te results are shown in Figure 12
for the collocation method with Greville points and the
variational formulation with the same setting as the pre-
ceding analysis. Considerable improvement for P � 1014 can
be observed with collocation of the Greville points, where
the diference in oscillation is ≈ 0.16N/m2 in comparison to
≈ 0.05N/m2 for the variational formulation. Nevertheless,
still for P � 106, the diference in oscillation is ≈ 2300N/m2

in comparison to ≈ 0.055N/m2 with the variational for-
mulation. For the case of a static analysis with contact, for
which the contact constraint is satisfed with the penalty
approach, given the proper choice of surface considered for
collocation, collocation scheme with Greville points could be
a good choice and more computationally efcient. But for
accuracy at low values ofP from the view point of the normal
compliance approach, the variational formulation is more
robust and the accuracy of σn is less sensitive to P and the
choice of surface. Te bias in the choice of surface for
collocation could be overcome by the two-pass formulation
though its numerical properties mainly in the context of
CEA are not considered in this study. Te oscillation of σn

can indeed have an efect on steady-sliding equilibrium and
the estimation of p(X) and ΓC for linearization around the
equilibrium, for which the variational formulation could be
highly efcient in comparison with the collocation method.

With various formulations in approximating the inte-
grals defned over ΓC, the only diference is the relative
variation of p(X) on ΓC for a given P. Te relative variation
of p(X) infers the variation of σn owing to the inaccuracies in
the approximation of the integrals defned over ΓC, as ob-
served with the contact patch test. Hence, the sensitivity of
CEA for oscillations in σn can be inferred through com-
paring the collocation method and the variational formu-
lation, which show diferent characteristics of oscillation for
σn depending on P. Figure 13 shows comparison of CEA
results for various values of P with the collocation method
achieved through Greville points and the variational for-
mulation. For collocation with Greville points, proper choice
of contact surface is considered as inferred from the pre-
ceding discussion. It can be observed that for P � 109, the
natural frequencies I(λ) and their corresponding insta-
bilitiesR(λ) do not coincide between the formulations. Te
collocation method relatively seems to overestimate the
instabilities R(λ) for I(λ)< 10KHz. For P � 1012, I(λ)

andR(λ) are identical. Surprisingly, for P � 1014, the results
are largely identical but still not as identical as P � 1012. We
hypothesize this to be as a result of the increasing condition
number of the matrices which shows the extremum of P

considered. Tis indeed resembles the static case of the
contact patch test in Figure 12 where for a large value of P,
the accuracy of σn is nearly identical for the collocation
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Figure 13: Comparison of CEA results. NURBS parameterization: D2C1.
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method and the variational formulation. One can hypoth-
esize from the patch test that the approximation error which
is profound at lower values of P is implied through the
oscillation of σn and consequently also has an efect on CEA.
In contrast, at high values of P, CEA is less sensitive to the
approximation error similar to the patch test, even with the
collocation method which only models concentrated points
of force. Tis means that for low values of p, the dynamics of
the system are much sensitive to the relative variation of
p(X) on ΓC, which implies that characterizing the contact
interface with global contact stifness P may not be realistic
with smaller values of local contact stifness p(X).

Despite the lack of the numerical benchmark to compare
the results of CEA, the variational formulation can
be considered to be the most accurate notably at low values
of P, inferring from the results of the contact patch test. For
the static analysis of the contact patch test, considerable
improvement in the accuracy of σn was achieved with in-
creasing the continuity and the number of Gauss quadrature
points. Tis property could be useful if CEA is highly
sensitive to the error in the discretization of p(X). Tis is
verifed in Figure 14 where no considerable variation could
be observed except for small shift in frequencies at high
frequencies, I(λ)> 13KHz, which could be as a result

of convergence. Hence, it can be inferred that at low values of
P, CEA is not sensitive to the scale of improvement in the
accuracy of approximation provided by increasing the
continuity or the number of Gauss quadrature points for the
variational formulation, but it is certainly sensitive to the
scale of improvement in the accuracy of approximation
between the collocation and the variational formulation. To
further show the sensitivity of collocation, we compare the
collocation method between nearly identical number of grid
points and Greville points. Te number of equally spaced
grid points in the parametric space was defned to be 100 for
the 104 Greville points inferred from the NURBS parame-
terization. In this case, the only diference is the positions in
which the collocation is defned.Te comparison is shown in
Figure 15, where the results are observed to be diferent.

4. Conclusion

Numerically, the results imply that for low values of contact
stifness, the dynamical response is sensitive to the relative
variation of contact stifness at the interface. Tis factor
proves to be sensitive with approximations in defning a
contact formulation. We show that the defned collocation
method is inaccurate at low contact stifness and hence can
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be largely deemed to be inefcient with the normal com-
pliance approach. Even though the collocation formulation
was defned from the variational formulation, the analogy of
modelling concentrated points of force can be in general
extended to other collocation-type formulations and hence
also the inaccuracy associated with it. Tis is also true in
classical fnite element analysis with methods such as node-
to-node and node-to-surface formulations. While for large
values of contact stifness, the dynamics is less sensitive to
the relative variation of contact stifness and converges with
increase in contact stifness. Hence, to satisfy Signorini
conditions with the penalty approach where the penalty
value can be interpreted as high contact stifness, the col-
location method can be accurate with the right choice of
collocation points and a collocation surface for the half-pass
formulation. For computational efciency while preserving
good accuracy, collocation points based on NURBS pa-
rameterization such as points defned with Greville abscissae
which in general implies few number of collocation points
can be even efcient.

For the normal compliance approach, notably at low
contact stifness, preserving the integral nature of the var-
iational formulation, even approximately without domain
decomposition proves to be efcient and robust. We show
that CEA could be analyzed robustly and accurately with the
accuracy of such formulations. Te inference from the re-
sults realized with the isogeometric approach can also be
extended to classical fnite element methods, except for the
higher-continuity of the spline basis functions can be more
accurate than with the classical fnite element c0 basis
functions. Such comparisons have been largely discussed in
the literature. We also showed that the contact patch test
cannot be relied to imply accuracy for CEA, where we re-
ferred to a lumped approach which is superior in the patch
test, proving to be numerically unstable for CEA.
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