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Roadheader is important large equipment in coal mining. Te roadheader has a higher failure rate due to its harsh working
environment and high working intensity. In this paper, we proposed a fault diagnosis method based on reference manifold (RM)
learning by using the vibration signals of roadheader in the actual production process. First, health and fault vibration signals were
extracted from a large number of feld data.Te abovementioned signals were analyzed by time domain and wavelet packet energy
analysis and got the characteristic parameters of the signal which can form the characteristic parameter sets. RM method can
reduce the dimension of the characteristic parameters, and the projection of diferent characteristic parameters was obtained.
Finally, the health parameters and fault parameters of diferent characteristic parameters were segmented by linear discriminant
analysis (LDA). It could get the diferent segment area range of characteristic parameters for health signals and fault signals. Tis
method provides a set of fault analysis ideas and methods for equipment working under complex working conditions and
improves the theoretical basis for fault type analysis.

1. Introduction

As a prerequisite of coal mining, the efciency and quality of
coal mine tunneling seriously afect the production progress
and capacity of the mine [1]. Terefore, the reliability and
continuous workability of roadheader have become the
inevitable trend of roadheader research. In the past 20 years
of mining of China, the development of roadheader has
experienced the introduction of foreign technology, the self-
development of small roadheader, the manufacture of high-
power and high-load roadheader, and the successful de-
velopment of today’s multiauxiliary roadheader [2, 3]. Te
manufacture and use of the whole roadheader has reached
a certain height, but due to the diferent physical charac-
teristics of coal seams, the diferent characteristics of roof,
the diferent operation habits of operators, and the di-
versifcation of geological conditions of rock roadway in
diferent regions of China, there are still a variety of diferent
problems in the use of roadheader: blockage and heating of

hydraulic system; failure of electrical equipment; and
damage of transmission parts and hydraulic pumps and
motors. Tese problems seriously afect the working ef-
ciency and progress of the roadheader. With the urgent
requirements of the in-depth application and development
of fully mechanized mining technology in the coal mines,
efcient roadway driving is gradually regarded as one of the
common and key technologies to realize efcient intensive
production in coal mine. Terefore, the driving equipment
with high automation, high reliability, and long life is an
important prerequisite to ensure the safe and efcient
forming of the roadway.

Vibration signal analysis is a common method of fault
diagnosis [4]. At present, there had been some research on
the vibration signal analysis of roadheader at home and
abroad. Comakli studied the infuence of physical and
mechanical properties of tuf on the running state of
roadheader [5]; Acaroglu and Erdogan compared and an-
alyzed the vibration characteristics and stability of the
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cutting head of the roadheader under diferent cutting
modes [6]; Sun et al. solved the mode of the gearbox of the
cutting part of the roadheader through ANSYS and fnally
obtained the vibration modal characteristics of the box of the
reducer [7]; Wang build an excitation test system composed
of vibration excitation equipment, vibration picking
equipment, and data acquisition and analysis equipment and
obtained the natural frequency distribution area of the whole
roadheader and the vibration characteristics of the rocker
arm and electric control box [8]. Te abovementioned
analysis of vibration signals of tunneling equipment is
carried out based on theoretical analysis and simulation
tests. Although it provided some theoretical support for the
fault analysis of roadheader, it lacked actual downhole
operation data as support. Based on those, Hu et al. analyzed
the vibration signal of the roadheader collected by the vi-
bration recorder and obtained the vibration intensity dis-
tribution of the roadheader, and the vibration of the cutting
part was the strongest [9]; Yang and others used the fault
data of roadheader turntable to propose a roadheader
anomaly detection method based on VSAP-SO-BP under
single-class learning, and the detection accuracy is 91.7%
[10]. Qu et al. used a double complex wavelet (DTCWT) to
analyze the measured vibration data of roadheader turn-
table, obtained the natural frequency of roadheader turn-
table under actual working conditions, and verifes the
feasibility of applying modal identifcation theory to road-
header vibration signal processing under complex working
conditions [11].

Wang proposed a new noise-assisted method, called
EMD manifold (EMDM), for enhanced fault diagnosis of
rotating machines [4]. Ding developed an improved fast
TFM (FTFM) method to efectively and efciently extract
the transient characteristics of rotating machinery fault
diagnosis [12]. Most of the research of manifold learning
about mechanical fault diagnosis is on rotating machinery,
such as bearings, gears, and so on. Tere are few studies of
large machinery.

In the traditional vibration feature analysis process, the
sensitive feature parameters were generally extracted based on
the traditional time domain, frequency domain, wavelet
analysis methods, and the characteristic parameters were
compared to get the diference of diferent signals. Preliminary
diagnosis of equipment faults can be completed through the
abovementioned analysis [13–15]. Based on the previous re-
search, combined with the traditional analysis method, this
paper uses the characteristic parameters of the vibration signal
as the data analysis feature set (to create the time domain and
frequency domain characteristic parameter set of the vibration
signal), then through manifold learning, the parameter set is
reduced to extract more accurate sensitive parameters, and the
data are divided into regions by linear recognition to achieve
the purpose of identifying the fault state.

2. Fault Analysis Scheme Based on
Feature Reference

Te technical route of the vibration data analysis method is
shown in Figure 1. First, the reference health data and
analysis data are extracted from the vibration data collected
on the cutting part of the roadheader as the initial data set
of the analysis. Second, the characteristics of the data are
obtained by time-frequency and wavelet analysis [15, 16],
and the characteristic set of reference samples is con-
structed with reference to the eigenvalue set of health data
and analysis data. Ten, the LLE nonlinear popular
learning is used to get the popular clustering space, and the
low-dimensional feature space graph is used to describe
and analyze the fault analysis results. Finally, linear dis-
criminant analysis (LDA) is used to analyze the interclass
divergence and intraclass divergence of low-dimensional
feature space, and a thick linear discriminant clustering
space is obtained, which can efectively segment fault
signals from health data.

3. Vibration Signal Acquisition

3.1. On-the-Spot Situation. Te experimental site was the
Xingdong Coal Mine of Jizhong Energy.Te coal of the mine
is mainly gas and fat coal with high calorifc value, and the
coal seam is deep between 580 and 1200m underground.
Te roadway excavated by the roadheader is the material
transport roadway in the southern mining area of Xingdong
Coal Mine 1100, and the roadway section is the trapezoid
shown in Figure 2, which is the same as the coal seam
section. Te driving length is 200m; there are no geological
changes such as faults and gangue in the process of driving,
and the trend of the roadway is shown in Figure 3.

Te roadheader is an EBZ160 cantilever roadheader. Te
maximum cutting section of the roadheader is
5300× 4850mm. Te cutting part of the roadheader is
mainly composed of a gun head, a telescopic part, a cutting
motor, a reducer, a telescopic hydraulic cylinder, and a shell
[17], as shown in Figure 4. Te transmission box is a two-
stage planetary gear reducer, which drives the cutting head
to rotate through the output shaft to realize the cutting
function, and its transmission ratio is 31.03.

3.2. Vibration Measuring Point Arrangement. According to
the working environment and load conditions of the
roadheader, a total of 5 measuring points are arranged near
the cutting part of the roadheader, each measuring point has
2 vibration sensors in diferent directions, a total of 10
sensors. Te specifc location of the sensor is shown in
Figure 5 and Table 1. Te sampling frequency of vibration
data is 10 kHz and the sampling time was 32 days.
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Acquisition of actual vibration data of 
multiple measuring points of roadheader

Obtaining vibration data samples

Health data were extracted as 
reference samples

Health data and fault data are 
extracted as analysis samples

The time-frequency characteristic parameters of multiple 
measurement points are obtained by analyzing the sample data

The reference samples and the characteristic parameters of the 
analysis are constructed into the comparison sample set

Compare the sample set LLE
(d=2; K=6) analysis

The results of LLE analysis were analyzed by enhanced linear 
cluster analysis (ILDA)

According to the analysis results, the difference between the 
fault model and the health signal is judged

Figure 1: Analysis method fow.

31
00

39
00

35
00

4500

Figure 2: Schematic of section.
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4. Construction of Feature Parameter
Comparison Sample Set

According to the working records of the working site of the
roadheader, it is known that a mechanical failure occurred in
the cutting arm of the roadheader in the course of working
for 32 consecutive days, and the gear of the reducer of the
cutting arm of the roadheader was worn and broken due to
overload. Te marking A point in Figure 4 is the fault
location.

In the traditional vibration data analysis, some sensitive
characteristic signals are extracted from the vibration signals
based on some data processing methods and statistical
methods for comparison and experience summary. In this
paper, the features extracted by traditional analysis (kurtosis,
wavelet entropy, band energy, and time-frequency features)
are used as the original features for reference manifold
spatial clustering analysis [18–21]. Te roadheader health

signal and fault signal are efectively separated to achieve the
purpose of fault diagnosis. 160 sets of vibration data are
extracted from 8 healthy running periods and 8 groups of
fault running periods of 10 sensors at 5 measuring points.

Te 160 groups of data were analyzed in the time do-
main, frequency domain, and wavelet packet, respectively.
Te time-frequency characteristic parameters of each group
of data are extracted: peak-to-peak value, efective value,
absolute mean value, mean square deviation, kurtosis value,
margin factor, peak factor, waveform factor, and 8 groups of
energy ratios of 4-level wavelet analysis, as shown in Table 2:

According to the analysis of the parameters of the vi-
bration sensor signal, the characteristic parameter sets of
diferent periods are constructed, respectively. Taking the
peak and peak values as an example, the peak and peak
values of 10 sensors in the same period are extracted to
construct an array: xi � (pk1, pk2, ....pk10)T. Among them,
i� (1, 2, ....., 16) represents 16 diferent periods. Ten, the

3~
4°

Figure 3: Te roadway shape.

Figure 4: Roadheader.

Measuring point 4 (sensor 7, 8)

Measuring point 1 (sensor 1, 2) Measuring point 2 (sensor 3, 4) Measuring point 3 (sensor 5, 6)

Measuring point 5 (sensor 9, 10)
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Figure 5: Arrangement drawings of roadheader’s measuring point.
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peak-to-peak eigenvalues will be formed: PK � x1,􏼈

x2, ....x16}.
Te comparison sample set of other characteristic pa-

rameters is also established. Te analysis results of 8 sets of
health data and 8 sets of fault data of sensor 1 are shown in
Table 3.

5. Reference Epidemic Cluster Analysis

Manifold learning is a unique machine learning method.
Popular feature learning methods are divided into linear
learning and nonlinear learning [22]. Its essence is that the
sample points in the high-dimensional space are expanded
into a manifold by a few main independent variables acting
on the measurement space at the same time, and manifold
learning is to pick up the low-dimensional manifolds em-
bedded in the high-dimensional observation space. Te
essential characteristics of the data are found from the
observation space to establish a new mapping relationship.
Diferent from other feature extraction methods, manifold
learning will maximize the local structure of high-
dimensional raw data when obtaining the most similar
low-dimensional embedded feature data of the original data.
It realizes the learning and enhancement of data features and
essential information, which also leads to the great advan-
tage of manifold learning in mining and enhancing the
essential information of data [23].

Te comparison sample feature set N analyzed in this
paper (N represents 16 feature sets composed of 16 feature
parameters, such as PK, etc.) is an analysis model that in-
tegrates health samples with fault samples. Terefore, in this
paper, when comparing the cluster analysis of the sample set,
we need to combine the health samples for possession
analysis. Terefore, to better fnd out the clustering distri-
bution law of the reference sample feature set based on
maintaining the local relation mechanism of the original
parameter sample feature set, this paper uses a locally linear
embedding LLE manifold learning method to construct the
mapping relationship between the reference sample feature
set and the clustering results. Tus, through the analysis of
clustering results, the distinguishing relationship between
health number and fault data in diferent eigenvalues is
obtained.

LLE manifold learning uses the diferent weight in-
formation of the local neighborhood and adjacent points of
each point, describes the local geometric features of the data

through the local linear projection information, and fnally
realizes the expression and reconstruction of the local in-
formation of the sample globally [24–27].

LLE manifold learning computing process: On the same
device, the data collected in the same location or in the same
period have certain weight information between each other.
LLE manifold learning methods use this weight information
to construct the weight information subspace of the data
group by establishing the neighborhood of each group of
data. Ten, through the dimensionality reduction analysis of
the data set, the information of the multidimensional data
set can be expressed and reconstructed in the low-
dimensional space.

For high-dimensional feature sets N � n1, n2, n3,􏼈

..., ni}ni ∈ RD×m, the sensitive features of feature set N will be
expressed in a low-dimensional d-dimensional space. Te
purpose of LLE algorithm is to obtain this low-dimensional
embedded subspace Y � y1, y2, y3, ..., yi􏼈 􏼉yi ∈ Rd×m. Te
manifold learning steps for LLE are divided into three steps
as shown in the following fgure.

(1) Construct the nearest neighbor space
Te k nearest neighbors of each sample point are
found according to the high-dimensional features
and the Euclidean distance between each sample
point ni in N:

Ni � knn ni, k( 􏼁, Ni � n1i, · · · nik􏼂 􏼃. (1)

(2) Calculate local weight
By calculating the nonlinear relationship between
each sample and its nearest neighbor subspace, the
local error function ε(W) is minimized. Te con-
struction of the local weight matrix W is completed.

ε(W) � 􏽘
m

i�1
ni − 􏽘

k

j�1
wijnj

����������

����������

2

� 􏽘
m

i�1
􏽘

k

j�1
ni − nji􏼐 􏼑wji

����������

����������

2

� 􏽘
m

i�1
N − Ni( 􏼁wi

����
����
2

� 􏽘

m

i�1
w

T
i N − Ni( 􏼁

T
N − Ni( 􏼁wi.

(2)

Table 2: Characteristic parameters.

Time domain features Mark symbol Wavelet analysis feature Mark symbol
Peak and peak value pk Energy ratio1 E1
Efective value st Energy ratio2 E2
Absolute mean me Energy ratio3 E3
Pulse factor va Energy ratio4 E4
Kurtosis value Kr Energy ratio5 E5
Margin factor L Energy ratio6 E6
Peak factor C Energy ratio7 E7
Waveform factor S Energy ratio8 E8
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Among them,N is a high-dimensional feature set.Ni

is the k nearest neighbors of ni, Ni is the nearest
neighbor space in formula (1). wij is the weight
between the sample ni and the sample nj. If this two
are not nearest neighbors, then wij � 0. Also, the
weights of the nearest neighbor subspace of ni satisfy
the following equation:

􏽘

n

i�1
wij � 􏽘

k

j�1
wi � 1. (3)

According to the expression of formula (2), settings
are as follows:

Si � N − Ni( 􏼁
T

N − Ni( 􏼁. (4)

So,

ε(W) � w
T
i Siwi. (5)

In order to obtain the optimal weight matrix,
combined with the population dimensionality re-
duction analysis method, the Lagrangian multiplier
method is adopted in this paper.

L wi( 􏼁 � 􏽘
n

i�1
w

T
i Siwi + λ w

T
i 1k − 1􏼐 􏼑. (6)

Te derivation of equation (6) is as follows:

zL wi( 􏼁

zwi

� 2Siwi + λ1k � 0. (7)

So,

wi �
S

−1
i 1k

1T
k S

−1
i 1k

. (8)

Here, 1k is a column vector of k × 1 with all 1.

(3) Embedded coordinate projection

Te embedded coordinate projection is to solve the
mapping of the low space. First, we defne a sparse matrix W

of n × n cycles to represent w.
Terefore,

W � wi � wi1, wi2, · · · win􏼂 􏼃􏼈 􏼉
T
. (9)

So,

􏽘

n

j�1
wjiyji � 􏽘

k

j�1
wjiyji � YWi. (10)

After the abovementioned calculation, it is concluded
that

ψ(Y) � 􏽘
n

i�0
Y Ii − Wi( 􏼁(

����
����
2
. (11)

According to the matrix calculation formula,

􏽘
i

ai( 􏼁
2

� 􏽘
i

ai
T
ai � tr AAT

􏼐 􏼑. (12)

According to the formula (12), the simplifed formula
(11) is obtained.

ψ(Y) � tr Y(I − W)(I − W)
T
Y

T
􏼐 􏼑

� tr YMYT
􏼐 􏼑.

(13)

Among them, M � (I − W)(I − W)T.
By using Lagrange multiplier method, formula (13) is

simplifed as follows:

L(Y) � tr YMYT
􏼐 􏼑 + λ YMYT

− nI􏼐 􏼑. (14)

Te following equation is derived:

zL

zY
� 2YM + 2λY � 0. (15)

Table 3: Time-frequency analysis results of vibration data of sensor 1.

Parameters Health data Fault data
pk 7.06 7.130 7.22 6.18 13.95 6.459 8.835 7.228 32.27 29.51 27.59 30.77 24.20 36.61 27.04 32.67
st 1.38 1.441 1.32 1.24 2.004 1.265 1.509 1.323 4.50 4.77 3.75 4.57 4.27 3.57 3.47 3.91
me 1.14 1.191 1.10 1.05 1.558 1.063 1.227 1.103 3.20 3.40 2.71 3.22 3.09 2.51 2.50 2.80
va 6.14 5.987 6.55 5.88 8.957 6.077 7.199 6.555 10.08 8.68 10.17 9.54 7.82 14.58 10.83 11.67
Kr 6.05 6.788 5.46 4.31 19.20 4.627 8.359 5.465 101.3 109.3 71.20 110.2 82.06 81.30 66.60 82.48
L 6.93 6.767 7.39 6.61 10.37 6.846 8.193 7.392 12.55 10.85 12.44 11.97 9.65 17.96 13.21 14.37
C 5.11 4.949 5.46 4.96 6.963 5.104 5.854 5.462 7.18 8.18 7.36 6.73 5.67 10.26 7.80 8.35
S 1.20 1.21 1.20 1.185 1.286 1.190 1.230 1.200 1.40 1.40 1.38 1.42 1.38 1.42 1.39 1.40
E1 8.38 7.66 8.82 10.3 9.882 11.26 6.709 8.820 10.00 10.24 10.79 5.89 10.17 10.11 11.88 6.66
E2 6.51 6.57 6.29 5.83 8.954 5.044 7.308 6.293 12.54 12.63 11.96 14.04 14.89 15.90 10.26 14.97
E3 2.12 1.77 1.83 2.52 3.002 3.254 1.658 1.837 6.21 7.36 6.15 6.32 8.09 5.21 5.04 4.87
E4 8.24 8.92 7.74 7.55 9.833 6.451 9.834 7.740 12.07 11.98 10.05 11.97 11.50 10.90 9.63 11.56
E5 12.6 13.26 12.2 9.25 11.40 9.183 14.43 12.21 17.79 16.71 15.94 17.55 14.24 14.55 12.16 19.54
E6 37.37 33.72 39.91 46.21 31.30 46.52 29.06 39.91 12.45 11.89 20.41 9.39 18.08 18.11 19.12 10.54
E7 23.01 26.62 21.56 15.87 22.89 15.97 29.73 21.56 22.83 23.24 20.80 29.91 15.95 24.29 27.09 28.08
E8 1.732 1.439 1.614 2.359 2.725 2.303 1.264 1.614 6.11 5.94 3.90 4.93 7.07 0.92 4.82 3.78
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Terefore,

M
T
Y

T
� −λY

T
. (16)

Because: MT � M.
So,

MY
T

� −λY
T
. (17)

Terefore, YT is a matrix composed of eigenvectors of
matrix M. In order to reduce the dimension of data to d-
dimension, we only need to obtain the smallest eigenvectors
corresponding to d nonzero eigenvalues of M. In the process
of LLE analysis, the smallest eigenvalue is generally dis-
carded because it is too close to 0. Terefore, the eigenvector
of the eigenvalue [2, ..d + 1] from small to large is selected.

Sixteen multidimensional matrices composed of 16 ei-
genvectors are analyzed by LLE and selected d � 2; k � 6.
Te fnal analysis result is shown in Figure 6.

Trough the analysis results obtained by LLE, we can see
that peak-to-peak, kurtosis, waveform factor, and wavelet
energy E2, E3, E6, and E8 can efectively separate the health
signal from the fault signal. Efective value, mean square
value, peak factor, and wavelet energy E1 can achieve data
separation to a certain extent.

6. Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is also known as Fisher
discriminant analysis and class-based KLT [8]. Tis method
selects the features that can best separate all kinds of data in
the sense of least mean square so that the samples are as far
away from each other in the feature space as possible and
within the class as compact as possible, so that the sample
has the best separability [28–30].

Te principle of LDA is to protect the data to the low-
dimensional space by projection, and the projected points
will form a cluster by category, and the points of the same
category will be projected to a closer space [31, 32]. A better
distinction is made between diferent categories of data. By
using this method, the interclass scatter matrix of the
projected sample is maximum, and at the same time, the
three-step matrix within the class is the smallest, so that
diferent categories of data have the best separability
in space.

Te calculation process of LAD is as follows: Assuming
that the projected vector is w, then for any sample xi, its
projection position is wTxi on the projection, and u1 and u2
for diferent kinds of central points. Te projection position
on the projection is wTu1 and wTu2. Te core of the LDA
algorithm is to maximize ‖wTu1 − wTu2‖, and the projection
of the same class of data needs to be tighter and denser; that
is, the data of the covariance of wT􏽐1w + wT􏽐2w projection
of the same class projection is as small as possible, so it is
necessary to maximize the following formula:

J �
w

T
u1 − w

T
u2

����
����
2

w
T

􏽐1w + w
T
􏽐2w

�
w

T
u1 − u2( 􏼁 u1 − u2( 􏼁

T
w

w
T

􏽐1 + 􏽐2( 􏼁w
.

(18)

So, the intraclass divergence is

Sw � 􏽘
1

+ 􏽘
2

􏽘
1

� 􏽘

X1

i�1
x1i − u1( 􏼁 x1i − u1( 􏼁

T

􏽘
2

� 􏽘

X2

i�1
x2i − u2( 􏼁 x2i − u2( 􏼁

T
.

(19)

Te divergence between classes is

SB � u1 − u2( 􏼁 u1 − u2( 􏼁
T
. (20)

So,

J �
w

T
SBw

w
T
SWw

. (21)

General order in calculation is as follows:

w
T
SWw � 1. (22)

Terefore, you need to maximize the value of wTSBw.
Trough the Lagrange multiplier method, it can be con-
cluded that

SBw � λSWw. (23)

At the same time, because the direction of SBw is the
same as the direction of u1 − u2; therefore,

w � SW
− 1

u1 − u2( 􏼁. (24)

In this way, we get the best projection direction w of the
original data.

After the abovementioned analysis, the analysis results of
Section 5 are calculated by LDA projection.Te fnal result is
shown in Figure 7.

After LDA analysis, the health signal and fault signal of
each eigenvalue is better segmented. Similar to the results of
LLE analysis, the performance of peak-to-peak, kurtosis,
waveform factor, and wavelet energy E2, E3, E6, and E8 in
data separation is more prominent. Te specifc reasons are
as follows: due to the damage of the gear, the impact of the
cutting head of the roadheader is more unsmooth, which
leads to a great change in the peak and peak value of the fault
signal; the response of the kurtosis to the vibration is par-
ticularly obvious, so the fault signal can be represented
efectively in the analysis. Te damage of the reduction gear
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in the cutting part of the roadheader leads to the vibration
caused by the fault in addition to the working vibration in
the working process of the roadheader, so its waveform

factor will also change greatly. In the process of analyzing the
wavelet energy parameters, the proportion of the low-
frequency signal space E2 and E3 generated by the fault
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Figure 6: LLE analysis result.
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Figure 7: LDA analysis result.
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increases, while the proportion of the high-frequency signal
E6 of the gear operation becomes smaller obviously. At the
same time, the frequency doubling signal generated by the
fault also increases obviously in the high-frequency space.

7. Conclusion

In order to monitor the health status of roadheader, we
proposed a vibration data analysis method based on LLE-
LDA. First of all, the characteristic parameters are obtained
by time-domain and wavelet analysis of the vibration sensor
data of roadheader multimeasuring points. We composed
the comparison samples set by using the characteristic pa-
rameters of diferent time points. Ten, the dimension re-
duction of the sample set is compared by LLE. Finally, the
LDA is carried out on the analyzed signal and the health
signal. Te diference between the analyzed signal and the
health signal is compared through the analysis results. We
can judge the health status of the roadheader. Trough the
vibration analysis, we can fnd that the health status and fault
status can be efectively separated through the multi-
measuring point and multiparameter analysis, even though
complex environments can cause dramatic changes in load
vibration. It not only provides technical support for the fault
diagnosis of roadheader but also provides a reference for the
analysis of fault types of large equipment. Compared with
other fault analysis methods, this fault diagnosis method is
more suitable for large equipment in complex working
environment.
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