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Te dynamic stability of slopes is the key to ensure the safety of a large open-pit mine during and after a strong earthquake. Tis
study was mainly focused on the identifcation of optimal intensity measures (IMs) for the probabilistic seismic stability as-
sessment of large open-pit mine slopes within the framework of performance-based earthquake engineering (PBEE). To this end,
four open-pit slopes with diferent mining depths were constructed as the reference cases for the numerical investigation. Te
randomness of input ground motions and the uncertainty of material properties of the slopes were also considered. A total of
96 ground-motion records and 29 common IMs were selected for testing. By a series of nonlinear time-history analyses, the
probabilistic seismic demandmodels (PSDMs) between the minimum factor of safety (FOS) of slopes and all considered IMs were
developed. Te optimal IMs with respect to FOS were identifed based on the evaluation of fve criteria: correlation, efciency,
practicality, profciency, and sufciency. Te impacts on seismic fragility and FOS response hazard of the slopes were discussed
when using diferent IMs. Te results reveal that sustained maximum velocity (SMV) and velocity spectrum intensity (VSI) are
recognized as the optimal IM for a mining depth of 50m and 100m, respectively. However, Housner intensity (HI) is observed to
have the best predictability for both the mining depths of 200m and 300m. Moreover, for the three most commonly used IMs,
peak ground velocity (PGV) is superior to peak ground acceleration (PGA) and spectral acceleration at frst mode period (Sa (T1))
for diferent mining depths. Finally, based on the evaluations of seismic fragility and FOS response hazard, the uncertainty of
seismic stability prediction of open-pit slopes can be greatly reduced when using a more appropriate or optimal IM.

1. Introduction

Slope engineering is an important safety project in large
open-pit mine. Te slope stability is a key technical issue for
the production safety of mine and has always been one of the
research focuses in geotechnical and earthquake engineer-
ing. With the increase of mining depth and slope height, the
stability and safety of slope is reduced in the mining process
of deep concave open-pit mine. It would unleash a host of
geological disasters such as landslide and collapse. Tere are
many factors afecting the slope stability such as geology and
geomorphology, hydrological condition, climate condition,
stratigraphic lithology, and tectonic activity [1]. Strong
earthquakes caused by tectonic activities could greatly in-
crease the slope instability and have been recognized as

a major cause of landslides. Because the slope disasters
triggered by strong earthquakes have the characteristics of
strong abruptness, wide spread, great destruction, and dif-
fcult defense, it is easy to cause serious damage of engi-
neering structures near the slope or even directly be buried,
which seriously threatens the lives and property of miners.
Many cases for severe damage of slopes and even collapse
have been reported in many literatures.Te 1994 Northridge
earthquake (Mw � 6.7) induced more than 11,000 landslides
over an area of about 10,000 km2 and led to as much as 30
billion in losses [2]. During the 1995 Great Hanshin
earthquake (Mw � 6.9), about 60 landslides occurred around
Awaji Island and the northern mountains of Kobe City [3].
Te area of the slope disasters caused by the 1999 Chichi
earthquake (Mw � 7.6) accounted for 3% of the area of
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Taiwan [4]. Te 2008 Wenchuan earthquake (Mw � 7.9)
caused more than 15,000 landslides, collapses, and other
slope disasters [5]. Terefore, it is of paramount importance
to accurately predict the seismic responses and evaluate the
seismic risk of large open-pit mine slopes when subjected to
a strong earthquake. Tese evaluations would help to im-
prove the seismic design of open-pit slopes and ensure their
stability and safety in future earthquakes.

Tere are many uncertainties involved in evaluating the
dynamic stability and seismic risk of open-pit slopes, in-
cluding spatial variability of soil-rock properties and un-
predictable characteristics of bedrock ground motions [6].
Most of the traditional methods for seismic dynamic stability
of slopes are usually adopted deterministic analyses based on
a few earthquake records [7, 8]. Te deterministic analyses
cannot fully consider the efect of these uncertainties,
resulting in the inability to accurately predict the seismic
failure behavior of slopes. Te performance-based earth-
quake engineering (PBEE) developed by the Pacifc Earth-
quake Engineering Research (PEER) Center is an advanced
probabilistic seismic risk assessment methodology and can
provide more rational, credible, and practical way to
quantify the inherent uncertainties of all performance
variables of slopes. Te PBEE framework has been currently
applied to the seismic risk assessment of various civil en-
gineering structures such as buildings [9], bridges [10], dams
[11], and towers [12]. However, limited numbers of litera-
ture are available on probabilistic seismic stability assess-
ment of slopes based on the advanced PBEE methodology
[13], especially to open-pit mine slopes.

Probabilistic seismic demand model (PSDM) is one of
the crucial components of the seismic risk assessment of
slopes when using the PBEE framework [14]. PSDM de-
scribes the probabilistic relationship between engineering
demand parameter (EDP) of slopes and input ground-
motion intensity measure (IM). It can be formulated by
performing the probabilistic seismic demand analysis
(PSDA) of slopes. Subsequently, seismic fragility curves can
be developed based on the constructed PSDM of slopes [15].
Seismic fragility curves refect the conditional probability of
a slope reaching or exceeding the predefned damage limit
states for a given IM level. In addition, fragility curves can
provide richer and comprehensive expression for seismic
damages of slopes than only failure probability obtained by
traditional reliability methods because they are described in
the form of certain functions rather than points [16–18]. Te
selection of an appropriate or optimal IM is one of the key
prerequisites to reduce the uncertainty of the PSDM and
obtain reliable fragility curves of slopes [19]. An appropriate
IM would be able to represent certain key characteristics of
amplitude, frequency content, duration, and energy of
ground motions, accurately predict the seismic responses,
and reduce the variance of dynamic damage assessment of
slopes [20]. In engineering practice, peak ground acceler-
ation (PGA), peak ground velocity (PGV), and spectral
acceleration at frst mode period (Sa (T1)) are often selected
as the most commonly used IMs based on experiences to
construct the PSDM and fragility curves of slopes. However,
several studies have reported PGA, PGV, and Sa (T1) are not

always the best IMs to predict the seismic responses of slopes
[21]. Meanwhile, the best IM for seismic demand analyses
may vary greatly depending on the slope type, local soil and
rock conditions, or even the EDPs used in the analysis.
Terefore, there is no clear consensus on which IM is
recommend as the optimal IM for slopes.

Several evaluation criteria have been proposed to de-
termine the best IM for seismic risk assessment of various
structures, including correlation, efciency, practicality,
profciency, sufciency, relative sufciency, and hazard
computability. To date, these criteria and extensive studies
are mainly focused on buildings [22, 23], bridges [24], dams
[25], storage tanks [26], tunnels [27, 28], ofshore platform
[29, 30], and nuclear power plant [31, 32]. Due to the space
constraints, an elaboration of the work about optimal IM for
above-given structures is not shown herein. Signifcantly,
there are a few previous studies investigated the correlation
between a small amount of IMs and seismic permanent
displacement of slopes using Newmark sliding block model
(NSBM) [33, 34]. Tey found the best IM for seismic dis-
placements of slopes is spectral acceleration at 1.5 times frst
mode period (Sa (1.5T1)) because the nonlinearity of soil and
rock mass leads to the elongation of slope period during
strong earthquakes. However, NSBM is a simple equivalent-
linear sliding method and is limited to provide a simple
index for seismic dynamic performance of slopes [35].
Terefore, it is required to identify optimal IM for seismic
stability and risk assessment of slopes using a more accurate
numerical model for diferent slopes. To the best of the
authors’ knowledge, there exists no relevant work for the
optimal IM selection of open-pit mine slopes by using
nonlinear numerical model and multiple evaluation criteria.

Te current study sets out to identify the optimal IM for
probabilistic seismic stability assessment of open-pit mine
slopes under diferent mining depths. To this end, actual
open-pit slopes with diferent mining depths are constructed
as the reference cases for the numerical investigation. Te
randomness of input bedrock ground motions and the
uncertainty of material properties of the slopes are also
considered in this study. A total of 96 ground-motion re-
cords and 29 common IMs are selected for testing. Trough
a series of nonlinear dynamic time-history analyses, the
PSDM between IM and the minimum factor of safety (FOS)
are constructed. Optimal IMs of the open-pit mine slopes
with diferent mining depths are identifed based on the
evaluation of fve criteria: correlation, efciency, practicality,
profciency, and sufciency. Finality, the fragility curves and
FOS response hazards of the open-pit mine slopes are
generated and discussed by using diferent IMs. Figure 1
shows the fowchart to identify optimal IMs for probabilistic
seismic stability assessment of the open-pit slopes.

2. PSDM and Criteria of Optimal
IM Identification

2.1. PSDMFormulation. A PSDM based on PSDA describes
the conditional probability of engineering demand param-
eter (EDP) (e.g., minimum factor of safety (FOS), maximum
displacement response, maximum acceleration response,
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and maximum shear stain) of an open-pit mine slope
reaching or exceeding a certain edp level for a given seismic
IM level. A log-normal distribution is often used to quantify
such conditional probability P(EDP ≥ edp|IM) [36, 37], as
expressed in the following equation:

P(EDP ≥ edp|IM) � 1 −Φ
In(edp) − In μEDP|IM􏼐 􏼑

βEDP|IM

⎛⎝ ⎞⎠,

(1)

where Φ(·) denotes the standard normal cumulative dis-
tribution function, μEDP|IM is the median seismic demand of
the open-pit slope for a given IM level, and βEDP|IM is the
logarithmic standard deviation of the seismic demand
conditioned on the given IM level.

Te median seismic demand μEDP|IM of the open-pit
slope is usually assumed to follow a power-law function
against the IM, as shown in the following equation:

μEDP|IM � a · IM
b
, (2)

where a and b are the regression coefcients from nonlinear
time-history analyses of the open-pit slope.

For simplicity, the power-law function can be rearranged
to natural logarithmic space which describes a linear ex-
pression of In(μEDP|IM) with regard to In (IM), as follows:

In μEDP|IM􏼐 􏼑 � In(a) + b × In(IM), (3)

where In(a) and b are the vertical intercept and the slope
factor, respectively.

It is worth noting that the power-law function of
equation (2) are not the only possible models for predicting
the seismic demand of slopes conditioned on a given IM
value. Other models, such as quadratic function [38] and
artifcial neural networks [39, 40], can also be used to
provide the relation between EDP and IM.

Te uncertainty of seismic demand βEDP|IM is assumed
constant with respect to IM and can be approximately es-
timated by calculating the dispersion of the seismic demands
of the slope around the predicted one using the following
equation:

βEDP|IM �

�������������������������

􏽐
N
i�1 In edpi( 􏼁 − In μEDP|IM􏼐 􏼑􏽨 􏽩

2

N − 2

􏽳

, (4)

where edpi is the ith calculated seismic demand of the open-
pit slope subjected to the ith ground-motion record, andN is
the total number of nonlinear time-history analyses for
a suite of selected ground-motion records.

From the above-given functions, the frst priority for
developing a PSDM of the open-pit slope is to determine an
optimal seismic IM for the specifed EDP (such as FOS). An
optimal IM can efectively improve the ability of constructed
PSDM to estimate the seismic responses of the open-pit
slope. However, the identifcation of an optimal IM still is
a challenging for open-pit mine slopes. In the current study,
the optimal IMs for open-pit slopes are identifed based on
the fve criteria in the below section.

2.2. Criteria of Optimal IM Identifcation. Five testing cri-
teria, which have been typically utilized in other literature
for diferent engineering structures [41], are adopted to
identify optimal IMs in this study. Tey are correlation [42],
efciency [42], practicality [43], profciency [44], and suf-
fciency [45]. Each of these testing measures would be briefy
explained below.

2.2.1. Correlation. Te correlation criterion refects the
goodness of ft of the empirical regression model of equation
(3) to predict the seismic responses of the open-pit slope.
Te correlation of an IM can be measured by the adjusted
coefcient of determination R2, which is a popular statistical
indicator for correlation between variables. Te value is less
than or equal to 1. A larger R2 value can strongly implies
a better correction between the specifed EDP and the
given IM.

2.2.2. Efciency. Efciency of an IM determines the level of
variability or dispersion of the calculated seismic responses
around the regression model for a given IM. For this study,
the conditional standard deviation βEDP|IM obtained from
the logarithmic linear regression is used to quantify the
efciency of a candidate IM, as shown in equation (4). Due to
being inversely proportional to the efciency, a more ef-
cient IMwould lead to a lower value of βEDP|IM and indicates
a less dispersion around the predicted values from equation
(3). In general, a PSDM with dispersion βEDP|IM less than
0.30 can be regarded as satisfactory [30].

Select input motions

Select common IMs

Build numerical models
of the open-pit slopes

Preparation stage

Correlation R2

Efficiency β
Practicality |b|
Proficiency ζ

Sufficiency εM, εR

Identify optimal IMs
based on 5 testing criteria

Analysis stage

Compare seismic
fragility curves

Compare FOS hazard
curves

Evaluation stage

Figure 1: Flowchart of the analytical framework to identify the optimal IMs for the open-pit slopes.

Shock and Vibration 3



2.2.3. Practicality. Practicality represents the dependency of
the EDP of the open-pit slope against an IM. For the
conventional linear regression, practicality can be quantifed
by the absolute value of slope factor |b| of regression model
in equation (3). Te regression model for an IM having
higher |b| value demonstrates that the IM is signifcantly
dependent on the specifed EDP. Such an IM is more
practical. Conversely, the contribution of an IM for the
prediction of the specifed EDP is negligible if the absolute
value of slope factor |b| closes to zero. Tat is, a lower ab-
solute value of slope factor shows a less practical IM.

2.2.4. Profciency. Profciency is a composite indicator that
can measure the simultaneous efect of both efciency and
practicality. Te profciency index is also referred as mod-
ifed dispersion ζ, which can simplify the optimal IM
identifcation in terms of the highest practicality and lowest
dispersion. In general, a lower ζ value indicates a more
profcient IM. Te profciency index can be calculated from
the following equation:

ζ �
βEDP|IM

|b|
, (5)

where βEDP|IM is the standard deviation of regression model
and |b| is the absolute value of slope factor.

2.2.5. Sufciency. Sufciency suggests the statistical de-
pendency between a candidate IM of ground motions and
some seismological parameters such as magnitude (M) and
source-to-site distance (R). For a sufcient IM, the probability
distribution of the seismic demands of the open-pit slope
should be conditionally independent of such seismological
parameters [46], as shown in the following equation:

P[EDP≥ edp|IM] � P[EDP≥ edp|IM, M, R]. (6)

Te sufciency criterion can be quantifed by p value
[47, 48], which indicates the probability of rejecting the null
hypothesis (the slope factor b of linear regression model
between the calculated EDP residuals and seismological
parameters equals zero) in variance analysis. A higher p

value denotes the candidate IM is sufcient. Signifcance
levels of 5% (p � 0.05), which is frequently used in previous
researches and practices, is adopted as the threshold for
distinguishing the sufciency of an IM herein. In other
words, a candidate IM which leads to p< 0.05 would be
considered as an insufcient IM. Numerically, the p value
can be obtained from one-parameter linear regression
analysis of residuals εEDP|IM between the calculated seismic
demand and the predicted value of a slope from equation (3)
with respect to M or R, as shown in the following equation:

εEDP|IM � aM + bM ×(M),

εEDP|IM � aR + bR ×(R).
(7)

A brief illustration of efciency, practicality, and suf-
ciency of an IM against FOS is depicted in Figure 2. It is
observed that the FOS response of the slope decreased with

the increase of IM levels. IM1, which has lower β and higher |
b| value, is more efcient and practical; whereas, IM2 is the
opposite. To the FOS residuals with respect to a seismo-
logical parameter, the bias is obvious and has a p value less
than the signifcance level 0.05 when IM2 is used. Conse-
quently, IM2 is regarded as insufcient. Terefore, in order
to identify optimal IMs, the abovementioned parameters
such as coefcient of determination R2, dispersion β, ab-
solute value of slope factor |b|, and p-values need to be
calculated and compared in regression analysis.

3. Slope Description and Numerical Modeling

3.1. Open-Pit Slope Description. Te case-study slope is
a typical open-pit mine slope that is located at the Kyi-
sintaung (K) mine in the south of Sagaing Province,
Myanmar. Te K mine is a porphyry copper mine with
a length of 750∼980m and a width of 550∼700m. It came on
stream in 2015. Based on the location, lithology, and design
height, the K mine is divided into four engineering geo-
logical areas, namely, A, B, C, and D, which represent the
east, south, west, and north areas, respectively. Maximum
slope design height in open boundary of A, B, C, and D area
are 420m, 460m, 400m, and 290m, respectively. Te
schematic diagram of the open-pit mine is presented in
Figure 3. Te mining design parameters are specifed as
follows: step height is set to 10m except for the one of fnal
parallel section, which is 20m.Widths of safety platform and
cleaning platform are 8m and 16m, respectively. Width of
haulage road is 16m for one lane, and 21m for two lanes.
Minimum design radius and maximum gradient of haulage
road are 20m and 8%, respectively. Control angles of fnal
slopes are area A≤ 40°, area B≤ 41°, and area C≤ 40°. More
details about the K mine can be available in the related
literature [49, 50].

3.2. Numerical Modeling. To identify the optimal IMs for
PSDM of the open-pit slopes under diferent mining depths,
the A1 engineering geological profle in area A is taken as the
case-study slope (see Figure 3(c)). Te maximum design
height and angle of the A1 slope profle are 310m and 39.4°,
respectively.

Based on the geological parameters of theA1 profle, four
two-dimensional numerical models with diferent mining
depths are constructed by the fnite element software
ABAQUS. Te slope angles are kept constant at 39.4°, and
the mining depths of the slope are set as 50m, 100m, 200m,
and 300m, respectively. Te range of the rock mass in the
horizontal front of slope foot is taken as 1.5 times of the slope
height (H) and the rock mass range behind the horizontal
edge of slope top is 2.5H. Te bottom boundary of a slope
along vertical direction is 2.0H. Te slope models are dis-
cretized using 4-node reduced integration elements
(CPE4R) for the rock masses. To ensure the accuracy of the
computation, the fnite element size of the rock masses is set
to 0.5m.When performing the static analysis for gravity, the
fxed constraints are imposed on the bottom and side
boundaries of the models. Considering the radiation
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damping efect of seismic waves, the viscous boundary is
applied at the bottom, while the parasitic boundary has been
adopted for the left and right sides when the dynamic
seismic analyses are performed. Te rock physical and
mechanical properties of the open-pit slope along A1 profle
are listed in Table 1. Te nonlinear dynamic behavior of the
rock materials is simulated using the Martin–Davidenkov
model proposed by Martin and Seed [51] that can be cal-
culated using the following equation:

τ(c) � G · c � Gmax · c[1 − H(c)],

H(c) �
c/c0( 􏼁

2b

1 + c/c0( 􏼁
2b

⎧⎨

⎩

⎫⎬

⎭

a

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where the τ(c) denotes the shear stress; G and Gmax are the
shear modulus and the maximum shear modulus, re-
spectively; and c is the shear strain. a, b, and c0 are the ftting
parameters.

Te schematic diagram of numerical modeling of the
open-pit mine slope case along the A1 profle is depicted in
Figure 4. According to the eigenvalue analyses using Lanczos
iteration method, the frst mode periods of the four slopes
are 0.25 s, 0.68 s, 1.42 s, and 1.94 s, respectively. Based on the
wave propagation theory [28], the input motion at the base
boundary is roughly equal to half of the surface motion at
bedrock outcrop. Terefore, the amplitude of the selected
records in Section 4.1 are frst scaled by 0.5 and then used as
the input base motions for the numerical analyses. Due to
large span of the slopes, the spatial variation of input mo-
tions at the bedrock boundary should be considered. Spatial
variations of input bedrock motions mainly include wave
passage and wave scattering. In contrast, the wave-passage

efect has more infuence on the slope responses. It is as-
sumed that the waveform of input motions at diferent
locations of the bedrock boundary is same. Te propagation
delay time along the horizontal direction from the middle of
the bedrock boundary to other input points are calculated by
the following equation:

∆t �
d

v
, (9)

where d is the distance between each input point and the
middle of the bedrock boundary and ] is the velocity of
seismic wave, which is set to 1000m/s.

3.3. Uncertainty Modeling. In the derivation of PSDM and
fragility function, a probabilistic approach is used owing to
the uncertainties in seismic response and seismic capacity of
the open-pit slopes. Te uncertainties are often classifed
into two groups: aleatoric uncertainty (inherent random-
ness) and epistemic uncertainty (lack of knowledge). In
addition to the randomness of the ground motion consid-
ered in Section 4.1, the variation of modeling parameters of
slopes should also be included, which is often neglected due
to the lack of knowledge regarding material properties.
Many uncertain modeling parameters of slopes are adopted
in previously studies. In this study, three uncertain modeling
parameters of the slopes are adopted including rock elastic
modulus (E), internal friction angle (φ), and cohesive (c).
Te correlations between these modeling parameters are
ignored because of the lack of relevant studies. Based on the
results of previous studies [21, 52–54], Table 2 presents the
probability distribution types of three modeling parameters
and coefcients of variation (COV). Normal distribution is
specifed for the three modeling parameters in the dynamic

In
 (F

O
S)

In (IM)

IM1: More efficient and practical
IM2: Less efficient and practical

βFOS|IM1 < βEDP|IM2

|b|FOS|IM1 > |b|FOS|IM2

(a)

FO
S 

re
sid

ua
ls

0

Seismological parameter

IM1: Sufficient (p-value > 0.05)
IM2: Insufficient (p-value < 0.05)

(b)

Figure 2: Illustration of (a) IM efciency and practical and (b) IM sufciency.
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response analyses of slopes. It is worth noting that the three
material parameters for the slope modeling are frst ran-
domly generated according to the probability distribution of
Table 2 before the dynamic response analyses of slopes are
implemented under earthquake records.

3.4. Defnition of Damage States. It is essential to defne a set
of various damage states, corresponding seismic perfor-
mance levels, and damage indices for subsequent fragility
analyses of the open-pit slopes in Section 5.7. Te minimum
factor of safety (FOS), which has been widely adopted in
most seismic design codes to evaluate seismic performance

and dynamic stability of slopes, is used as the representative
EDP of slopes in this study. Signifcantly, the requirements
for FOS of slopes are diferent in various codes. For example,
the required FOS varies from 1.0 to 1.4 for diferent safety
levels of slopes in Eurocode 8 [55]. To the code for building
slope engineering of China [56], the acceptable FOS of slope
stability for three importance grades are 1.05, 1.10, and 1.15,
respectively. Tis study adopted fve damage states proposed
by Lagaros for seismic fragility analyses of open-pit slopes
[21]. Five damage states includes: optimal (DS1), sufcient
(DS2), moderate (DS3), minor (DS4), and unacceptable
(DS5). Te corresponding relative safety margins and the
range of FOS damage indices are presented in Table 3.

(a)

D1

D2
C3

C2

C1

B3

D3

A1

A2

B2
A3

B1

(b)

Strongly weathered

Moderately weathered

Slightly
weathered

Design slope
boundary

Fault

Pyroclastic rock

Andesite porphyry

Initial ground surface

Z=800

Z=700

Z=600

Z=500

Z=400

Z=300

Z=200

Z=100

Biotite
hornblende
mountain
porphyry

Andesite porphyry

Strongly weathered

Moderately weathered

Slightly
weathered

Andesite
porphyry

(c)

Figure 3: Illustration of the Kopen-pit mine in Myanmar. (a) Location. (b) Engineering geological division. (c) A1 engineering geological profle.
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4. Records and Intensity Measures Selection

4.1. Ground-Motion Record Selection. Given the uncertainty
of input bedrock seismic motions, a suite of actual records
from diferent signifcant earthquake events are required for
nonlinear seismic response analyses of the open-pit slopes.
Diferent studies may adopt diferent criteria to select input
bedrock motions. Site-specifc matching criteria allow for
ground-motion selection based on spectral compatibility with
a target probability of exceedance level. However, this method
is only suitable for estimating the slope responses with
a certain probability of exceedance level. Terefore, the input
motions selected in this study are not limited to a certain
probability of exceedance level and takes into account the
contributions of various signifcant earthquakes for the slope
sites [57]. For this study, 4 bins, each containing 12 pairs of
horizontal ground-motion records, are collected from the
NGA-West2 database developed by the Pacifc Earthquake
Engineering Research Center [58]. Te database provides
a large number of strong motion records in worldwide active
tectonic regimes, as well as source parameters, distance
measures, site conditions, etc. Te critical point between
large-magnitude (LM) and the small-magnitude (SM) is set as
Mw � 6.5. Records with R> 30 km are grouped into large-
distance (LR) bin, and those with R≤ 30 km are grouped into
small-distance (SR) bin. Te details of the selection criteria of
actual records are presented as follows:

(i) Earthquake magnitude (M) and source-to-site dis-
tance (R) of the selected records should

approximately match the M and R of the potential
seismic sources around the open-pit slope site.

(ii) To eliminate structural efects, the observation in-
struments are located on the free-feld or at the
lowest level of low-rise structures.

(iii) VS30 (average shear-wave velocity in the uppermost
30m) of the observation station is larger than
500m/s, roughly corresponding to rock site or very
dense soils on the NEHRP soil-typeC or B.

(iv) Velocity pulse-like records due to near-fault rupture
directivity or fing-step efects are excluded. Ve-
locity pulse-like records often exhibit larger am-
plitudes and shorter durations compared with the
general ground motions. However, this issue is
beyond the scope of this study.

(v) Aftershock records are excluded.

Two horizontal components at the same station are
assumed to be independent, resulting in a total of 96 hor-
izontal motions are adopted as the input bedrock motions
for nonlinear time-history analyses of the open-pit slopes.
Te detailed characteristics of selected records are listed in
Table 4. Te distribution of selected motions covers a wide
range of magnitudes between 5.99 and 7.62, the rupture
distance (Rrup) up to above 66 km, and the peak ground
acceleration (PGA) of the 96 records range from 0.05 and
1.43 g, as illustrated in Figures 5(a) and 5(b). In addition, the
individual and median spectral accelerations of the selected
96 motions are shown in Figure 5(c).

2.5 H

Observation
point

1.5 H

H

2 H4-node reduced
integration elements

(CPE4R)

Figure 4: Schematic diagram of numerical modeling of the open-pit mine slope case along the A1 profle.

Table 2: Distribution characteristics of slope modeling parameters.

No. Modeling parameters Probability distribution Coefcients of variation
(COV)

1 Rock elastic modulus Normal 0.15
2 Internal friction angle Normal 0.10
3 Cohesive Normal 0.10

Table 3: Adopted damage states for open-pit mine slopes in terms of FOS.

Damage states DS1 (optimal) DS2 (sufcient) DS3 (moderate) DS4 (minor) DS5 (unacceptable)
Relative safety margins Very high High Moderate Low None
Range of FOS >2.0 1.4∼2.0 1.25∼1.4 1.0∼1.25 <1.0

8 Shock and Vibration



4.2. Candidate IMs Selection. An seismic IM can refect and
quantify one or more key characteristics of a nonstationary
seismic motion in a simple and measurable form. Tese
characteristics include amplitude, frequency content, du-
ration, and energy distribution of a seismic motion, which
are signifcantly correlated with structural responses. In
general, a perfect IM has the ability to obtain all key features
of a seismic motion and can accurately predict the seismic
response and dynamic stability of the open-pit slope.
However, due to the inherent nonstationary of a seismic
motion in time and frequency domain, it is very difcult to
defne a perfect IM that can quantify all signifcant seismic
features [59]. Terefore, it is necessary to investigate the
common IMs to determine the optimal IM for the devel-
opment of PSDM of the open-pit slope. For this study, 29
common IMs are chosen as the candidate IMs, as listed in
Table 5. According to their defnitions, the 29 IMs can be
categorized roughly into four groups: (1) IMs that are related
to acceleration time history (e.g., PGA and CAV); (2) IMs
that are related to velocity time history (e.g., PGV and VSI);
(3) IMs that are related to displacement time history (e.g.,
PGD and DRMS); and (4) IMs that are related to the duration
(e.g., D5–95). One also may fnd more detailed explanations
on these candidate IMs in related references [33, 34].

4.3. FOSTime-HistoryResponses. Tere are many defnitions
of the factor of safety FOS for slopes. Considering the output
results of the FEM analysis and physical implications, FOS is
defned as the ratio of the antislide force and the slide force
on a certain slip surface. It can be calculated from the
following equation:

FOS �
􏽐 ci + σi tanϕi( 􏼁li

􏽐 τili
, (10)

where li, σi, and τi are the geometric length, normal stress, and
shear stress of segment i on a slip surface, respectively. ci, and ϕi

are the corresponding cohesive and internal friction angle.
Te calculation steps of the dynamic FOS time history of

a slope when subjected a seismic record are as follows [60]:
(1) the stress feld at each time step is calculated through
performing the FEM dynamic response analyses of a slope.
(2) A number of potential slip surfaces are generated for
a time step. (3) Te FOS are calculated by equation (10) for
each potential slip surface at this time step and the minimum
FOS are defned as the instantaneous FOS at this time step.
(4) Repeat steps (2) and (3) for each time step and the whole
dynamic FOS response time history of a slope case can be
captured. Nonlinear time-history analyses of the open-pit
slopes with diferent mining depths are performed under 96
input ground motions. Figure 6 presents the FOS time-
history responses of the four slopes under the 2007 Chuetsu-
oki earthquake record in Iizuna Imokawa station. It can be
seen that the FOS responses of the slopes under diferent
mining depths are obviously diferent. Te slope with
a mining depth of 100m has the worst stability than others,
and its minimum FOS is 1.777. Tis may partly be due to the
fact that the natural period of this slope is closest to the
predominant period (0.71 s) of this seismic record. In

contrast, the natural period of the slope with a mining depth
of 300m, which has the minimum FOS of 2.716, is far from
the predominant period of the seismic record and is most
stability among the four slopes.

5. Results and Discussion

To evaluate the optimality of the candidate IMs with respect
to FOS, the PSDMs between all candidate IMs and FOS are
constructed based on the regression results of time-history
analyses of the slope cases. Te optimal IMs are identifed by
correlation, efciency, practicality, profciency, and suf-
ciency. Subsequently, seismic fragility curves and FOS re-
sponse hazard curves of the open-pit slopes are compared
using diferent IMs. Before that, the PSDMs of FOS against
PGA are presented to illustrate the infuence of ground-
motion characteristics on the FOS responses of the slopes.
Figure 7 plots the PSDMs of the four slopes with respect to
PGA on the logarithmic scale. It is noted that the correlation
between PGA and FOS responses of the four slopes is low,
and the highest correlation coefcient is only 0.648. Te
dispersion of PSDM for the slope with a mining depth of
300m is the highest, reaching 0.424. It shows that PGA is less
efective to predict the FOS of this slope. It is also observed
that there is little diference for the absolute value of slope
factor |b| in all slope cases. Tese results suggest that PGA is
not an appropriate IM for accurately predicting the seismic
FOS of open-pit slopes. Terefore, the selection of the op-
timal IM from lots of common IMs is of great signifcance
for the development of PSDM of open-pit slope.

5.1. Correlation Comparison. Te correlation criterion can
refect the goodness of ft of PSDM to predict the seismic FOS of
a slope using a candidate IM. Figure 8 compares the calculated
correlation coefcients (R2) between FOS and 29 candidate IMs
for the open-pit slopes under diferent mining depths.

It is clear that the most correlated IMs vary with diferent
mining depths. SMV exhibits the most strongest correlation
with the FOS for the slope with a mining depth of 50m,
followed by PGV and HI. Te corresponding values of R2 are
0.887, 0.866, and 0.853, respectively. Meanwhile, the weakest
correlated IM is FR2, followed byD5_95, and FR1.Teir values
of R2 are 0.006, 0.060, and 0.266, respectively. For the slope
with amining depth of 100m, Sv (1.5T1) is themost correlated
IM, followed by VSI and HI. Te correlation coefcients for
the three most correlated IMs are 0.869, 0.848, and 0.805,
respectively. Interestingly, FR2 and D5_95 are once again the
two least correlated IMs. Tis fnding is well in line with the
results of the slope case with a mining depth of 50m. In the
case of the slope with a mining depth of 200m, three most
correlated IMs are VSI, SMV, and HI, and their values of R2
are 0.864, 0.805, and 0.790, respectively. Whereas the lowest
correlated IM for FOS is FR2, followed by D5_95. Teir
corresponding correlation coefcients are 0.009 and 0.012,
respectively. Furthermore, VSI is once again the most cor-
related IM for the slope with a mining depth of 300m. HI and
SMV are other two following highly correlated IMs. Te
correlation coefcients for three IMs are 0.810, 0.809, and
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0.807, respectively. FR2 and D5_95 are two weakest correlated
IM against FOS with smaller values of R2. Compared with
PGA and Sa (T1), PGV is more correlated with FOS responses
of the slopes among three most commonly used IMs.

5.2. Efciency Comparison. Te efciency criterion refects
the level of variability of the calculated FOS around the
regression model. Te results of the efciency between FOS
and 29 candidate IMs for the open-pit slopes under diferent
mining depths are summarized in Figure 9.

For the slope with a mining depth of 50m, SMV, PGV,
and VSI are three most efcient IMs because of less dis-
persion for FOS. Te β values for them are 0.061, 0.118, and
0.169, respectively. Te maximum dispersion is FR2, i.e.,
0.892, indicating the lowest efciency. It is followed by D5_95
and PGD. Teir corresponding dispersion are 0.880, and

0.685, respectively, which are slightly lower than the value of
FR2. In the case of the slope with a mining depth of 100m,
VSI is the most efcient IM with the lowest dispersion of
0.145 and are followed by HI and Sa (T1), and their β values
are 0.177 and 0.190, respectively, which are slightly higher
than that of VSI. In contrast, HI, Sv (1.5T1), and PGV are
three most efcient IMs for the slope with a mining depth of
200m, and the corresponding β values are 0.134, 0.237, and
0.249, respectively. Furthermore, for the slope with a mining
depth of 300m, HI is also proved to be the most efcient IM
with the smallest standard deviation of 0.150, followed by Sv
(1.5T1) and VSI. Te β values for the latter IMs are 0.223 and
0.226, respectively. It is noted that FR2, D5_95, and PGD
exhibit the worst efciency when using all slope cases.
Moreover, the efciency of velocity-related IMs is higher
than that of acceleration-related IMs and displacement-
related IMs.

LMSR LMLR
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Figure 5: Characteristics of selected ground-motion records: (a) M-R distribution, (b) PGA-R distribution, and (c) spectral acceleration
with 5% damping ratio.
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5.3. Practicality Comparison. Practicality refers to the de-
pendence of the FOS of slopes against the IM and can be
represented by the absolute value of regression coefcient |b|
in equation (3). A more practical IM shows a larger value of |
b|, and vice versa. Figure 10 shows the calculated |b| values of
each IM-FOS pair for the slopes under four diferent mining
depths.

Figure 10 suggests that FR1, having the maximum |b|
values, is the most practical IM for all slope cases with
diferent mining depths, except for the slope of 50m. ASI,
FR1, and CAV are proved to be the three most practical IMs
for the slope with a mining depth of 50m, with the cor-
responding |b| values equal to 0.425, 0.420, and 0.418, re-
spectively. Meanwhile, FR2 is the least practical IM, which
exhibits the minimum |b| value of 0.113 for this slope. SED
and D5_95 are the following two least practical IMs, with
slightly higher |b| value, i.e., 0.157 and 0.184, respectively.
For the slope with a mining depth of 100m, ASI and SMA
prove to be the two most practical IMs following FR1, and
their corresponding |b| value are 0.441 and 0.448, re-
spectively. D5_95 and FR2 are once again two least practical
IM, with the |b| values of 0.106 and 0.148, respectively. Tese
similar fndings for the least practical IMs are also found for
the slopes with higher depths. In contrast, ARMS and ASI are
identifed as the two most practical IM following FR1 for the
slope with a mining depth of 200m and 300m, and FR2 and
D5_95 exhibit the lowest practical.

5.4. Profciency Comparison. Profciency ζ describes the
composite efect of efciency and practicality, as shown in
equation (5). Te results of profciency analyses of all
candidate IMs for the slopes under four diferent mining
depths are compared in Figure 11. For the slope with
a mining depth of 50m, SMV is the most profcient IM due
to the corresponding smallest ζ of 0.171, followed by PGV
and HI, which have ζ values of 0.394 and 0.574, respectively.
FR2 is the less profcient IM, which has the maximum ζ, i.e.,
7.879. Te next two least profcient IMs are D5_95 and PGD,
and the ζ values are 4.790 and 3.177, respectively, which are
considerably lower than the value for FR2. In case of the
slope with a mining depth of 100m, VSI turns out to be the
most profcient IM, followed by PGV and HI. Te corre-
sponding ζ values of them are equal to 0.442, 0.513, and
0.540, respectively. On the contrary, D5_95 is found to be the
less profcient IM having the highest ζ of 9.522. FR2 and
PGD are found to be the next three least profcient IMs with
slightly lower ζ of 6.896 and 4.137, respectively. In-
terestingly, these results are also found for the slope of 50m.
For the slope with a mining depth of 200m, HI is the most
profcient IM indicated by the smallest ζ of 0.441 compared
to other candidate IMs. PGV and Sv (1.5T1) are next two
most profcient IMs with the ζ values of 0.624 and 0.650,
respectively. D5_95 is the least profcient IM, followed by FR2
and PGD with corresponding ζ values of 10.099, 7.357, and
3.696, respectively. Furthermore, HI, Sv (1.5T1), and VSI are
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Figure 6: FOS time-history response of the open-pit slopes with diferent mining depths under the 2007 Chuetsu-oki earthquake record in
Iizuna Imokawa station. (a) 50m. (b) 100m. (c) 200m. (d) 300m.
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Figure 7: PSDM of FOS with respect to PGA for the open-pit slopes with diferent mining depths. (a) 50m. (b) 100m. (c) 200m. (d) 300m.
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Figure 9: Efciency comparison of 29 candidate IMs against FOS for the slopes with diferent mining depths.
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Figure 10: Practicality comparison of 29 candidate IMs against FOS for the slopes with diferent mining depths.
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Figure 11: Profciency comparison of 29 candidate IMs against FOS for the slopes with diferent mining depths.
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three most profcient IMs for the slope with a mining depth
of 300m, and the ζ values are 0.377, 0.617, and 0.632. On the
contrary, D5_95 and FR2 once again indicate the least pro-
fciency with the corresponding ζ values of 8.126 and 6.631,
respectively.

5.5. Sufciency Comparison. To investigate the sufciency of
29 candidate IMs, linear regression analysis between the
residuals (denoted as εEDP|IM) of PSDMs and seismological
parameters (i.e., magnitudeM and source-to-site distance R)
is performed. Here, moment magnitude Mw and rupture
distance Rrup are chosen as the indicators of magnitude and
source-to-site distance, respectively. Te p value obtained
from the regression results with respect toM and R is used to
quantify the sufciency of an IM. Te p value ranges from
0 and 1. A more sufcient IM, which has a higher p value, is
independent of seismological parameters. A signifcant level
of 0.05 is considered in this study as the threshold for
a sufcient IM.Tat is, an IM with p value less than or equal
to 0.05 are assumed to be insufcient. Figure 12 depicts the
linear regression results of top 1 sufcient IM associated with
the M and R for the slope with a mining depth of 50m. Te
slope factors of the regression lines are close to zero; whereas
the p values are considerably higher. Terefore, it can be
concluded that a best sufcient IM with respect to a seis-
mological parameter has a higher p value and lower slope
factor of the regression line.

Te sufciency of 29 candidate IMs with respect to M
and R using p value is summarized in Figures 13 and 14. A p

value level of 0.05 is plotted with a pink dash line. For all the
slope cases with diferent mining depths, PGV, Sv (1.5T1),
SMV, and VSI are the most sufcient IM with respect to M,
and HI, ASI, and PGV indicate the best sufciency with
respect to R. On the contrary, CAV, Ia, and D5_95 are the
most insufcient with respect toM and R. It is also noted that
PGA is insufcient with respect to M for the cases of 50m
and 100m and slightly sufcient with respect to R, except for
the case of 300m.

According to the above-given analyses, Figure 15
presents top 3 correlated, efcient, practical, profcient, and
sufciency IMs for the open-pit slopes with diferent mining
depths. It can be observed that optimal seismic IM varies
with diferent criteria and mining depths. Te optimal IMs
based on correlation are consistent with the ones of ef-
ciency. Terefore, profciency, which combines of efciency
and practicality, is taken as the most critical criterion in this
study, and sufciency is considered as a supplementary
requirement. By weighing various factors comprehensively,
HI, VSI, and SMV can be selected as the appropriate IMs for
the development of PSDM and fragility function of open-pit
slopes with diferent mining depths in engineering practice.
Among the three commonly used IM, PGV is superior to
PGA and Sa (T1).

5.6. Impact on Fragility Evaluation. In the following section,
the seismic fragility curves using diferent IMs are further
compared. Seismic fragility of a slope for a certain damage
state is defned as the conditional probability of exceeding

the specifed damage level for a given seismic IM level.
Fragility curves can be expressed by cumulative distribution
function as follows:

FDS|IM � P[DS≥ds|IM] � Φ
In(IM) − In μIM( 􏼁

βIM

􏼠 􏼡,

(11)

where FDS|IM is the conditional probability at a given IM
for a specifed damage state ds. μIM is the median IM of
a slope for a given damage state, and βIM is the logarithmic
standard deviation of IM conditioned on the given
damage state.

Figure 16 shows the unacceptable fragility curves using
top 1 IM and three commonly used IMs, i.e., PGV, PGA, and
Sa (T1), for the open-pit slopes with diferent mining depths.
Te values of unacceptable IMs are normalized to their
corresponding median unacceptable IM value. Hence, the
logarithmic standard deviations βIM of the fragility curves
using diferent IMs can be adopted as a quantitative com-
parison of the impact of IMs on fragility curves. It can be
observed that for the open-pit slopes, the fragility curve
using top 1 IM is steeper than the ones using three common
IMs, and the βIM value obtained is smaller than the other
ones. Tis suggests optimal IM is more accurate and allows
for less uncertainty in seismic fragility evaluation. It can also
be found that the same results obtained for almost all other
candidate IMs. In the three common IMs, PGV provides
smaller βIM values and less uncertainty than PGA and
Sa (T1).

5.7. Impact on FOSHazard Evaluation. In PBEE framework,
seismic response hazard integrates the seismic hazard
analysis and seismic demand analysis. It provides the mean
annual frequency (MAF) of exceeding certain seismic de-
mand value given the seismic hazard at the designated site of
a slope [61]. It can be calculated using the following
equation:

λ(EDP> edp) � 􏽚
∞

0
P[EDP> edp|IM

� im]|dλ(IM > im)|,

(12)

where |dλ(IM> im)| is the absolute value of the derivative of
seismic hazard curve. P[EDP> edp|IM � im] is the con-
ditional probability of EDP exceeding edp given IM � im

and its full distributions constitute the fragility curves of
more detailed damage states. If the EDP of interest is FOS, λ
(FOS> fos) can be termed “FOS hazard.” Assuming that
seismic hazard function can be approximately expressed as
the power form of equation (13) and the seismic demand
values are log-normally distributed,

λ(IM> im) � k0 · IM
k
, (13)

where k0 and k are two parameters representing the shape of
the hazard curve.

Using the results of slope fragility curves as well as the
seismic hazard curves of the site of interest, the FOS hazard
curves can be calculated using equation (12). Based on the
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Figure 13: Sufciency comparison of 29 candidate IMs against M for the slopes with diferent mining depths.
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Figure 14: Sufciency comparison of 29 candidate IMs against R for the slopes with diferent mining depths.
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Figure 16: Unacceptable fragility curves using diferent IMs for the slopes with diferent mining depths. (a) 50m. (b) 100m. (c) 200m. (d)
300m.
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above results, PGV is a relatively better IM among three
commonly used IMs, especially for the slope cases with
depths of 50m and 100m. Due to the lack of ground-
motion prediction equations (GMPEs) for SMV, VSI, and
HI in the region of interest [62, 63]. FOS hazard curves
using PGV, PGA, and Sa (T1) are obtained after all required
parameters were determined, as shown in Figure 17. It
indicates that the FOS hazard (i.e., the mean exceedance
rate of FOS) using PGV is higher than the ones of PGA and
Sa (T1). For instance, the hazard response with FOS = 1.0
using PGV is 1.75 and 1.98 times the ones using Sa (T1) and

PGA for the slope with a mining depth of 50m, re-
spectively. However, the optimality of PGV decreases with
the increase of mining depth, resulting in a gradual de-
crease in the gap of the FOS hazard curves using three
common IMs. Tey illustrate that seismic IM has great
infuence on the FOS response hazard of the open-pit
slopes. Te gap may be even more pronounced when
a better IM is used. Terefore, selecting the appropriate
IMs, which is the main focus of this study, is essential to
accurately evaluate the probabilistic seismic performance
and dynamic stability of the open-pit slopes.
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Figure 17: FOS response hazard curves using diferent IMs for the open-pit slopes with diferent mining depths. (a) 50m. (b) 100m. (c)
200m. (d) 300m.
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6. Conclusions

Tis study was mainly focused on the identifcation of
optimal intensity measures (IMs) for probabilistic seismic
stability and risk assessment of large open-pit mine slope
within the framework of performance-based earthquake
engineering (PBEE) methodology. Four two-dimensional
numerical models of the open-pit slope cases with difer-
ent mining depths were established by using the FEM
software ABAQUS. Te randomness of input bedrock
groundmotions and the uncertainty of rock properties of the
slopes were also considered. Nonlinear time-history analyses
of the open-pit slopes were performed under a total of 96
nonpulse earthquake records to capture the dynamic re-
sponses in terms of the minimum factor of safety (FOS). 29
candidate IMs against FOS were evaluated by fve criteria
including correlation, efciency, practicality, profciency,
and sufciency based on linear regression results of natural
logarithmic space. Furthermore, the fve damage states were
defned based on the ranges of FOS of slopes. Seismic fra-
gility curves and FOS hazard curves of the slope cases using
diferent IMs were compared and discussed. Based on the
investigated results, the mining depth of slopes has signif-
icant impacts on the identifcation of optimal IMs. More
specifcally, the following conclusions can be extracted:

Velocity-related IMs are better than the other three types
of IMs for the open-pit slopes with diferent mining depths,
and duration-related IMs and displacement-related IMs are
the worst IMs. Furthermore, the optimality of most
acceleration-related IMs decreases gradually with the in-
crease of slope mining depth.

HI, VSI, and SMV can be taken as the best IMs for the
development of PSDM and fragility function of open-pit
slopes with diferent mining depth. On the contrary, FR2
and D5_95 are the most inappropriate IMs. PGV is superior
to PGA and Sa (T1) among the three commonly used IM.

Te seismic fragility curves using optimal IMs are steeper
than those of other IMs under a specifed damage state, and
the FOS response hazards using the more appropriate IM are
higher than the other ones because the selection of an ap-
propriate IM can greatly reduce the uncertainty of seismic
fragility and seismic hazard of the open-pit slopes.

Note that, the investigated results presented in this study
are for the factor of safety (FOS) of open-pit mine slopes
using nonpulse ground motions. Future studies are neces-
sary to reveal the impact of diferent EDPs (e.g., slope
displacement) on the identifcation of optimal IM and the
efect of near-feldpulse-type ground motions.
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