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The dynamic stability of slopes is the key to ensure the safety of a large open-pit mine during and after a strong earthquake. This
study was mainly focused on the identification of optimal intensity measures (IMs) for the probabilistic seismic stability as-
sessment of large open-pit mine slopes within the framework of performance-based earthquake engineering (PBEE). To this end,
four open-pit slopes with different mining depths were constructed as the reference cases for the numerical investigation. The
randomness of input ground motions and the uncertainty of material properties of the slopes were also considered. A total of
96 ground-motion records and 29 common IMs were selected for testing. By a series of nonlinear time-history analyses, the
probabilistic seismic demand models (PSDMs) between the minimum factor of safety (FOS) of slopes and all considered IMs were
developed. The optimal IMs with respect to FOS were identified based on the evaluation of five criteria: correlation, efficiency,
practicality, proficiency, and sufficiency. The impacts on seismic fragility and FOS response hazard of the slopes were discussed
when using different IMs. The results reveal that sustained maximum velocity (SMV) and velocity spectrum intensity (VSI) are
recognized as the optimal IM for a mining depth of 50 m and 100 m, respectively. However, Housner intensity (HI) is observed to
have the best predictability for both the mining depths of 200 m and 300 m. Moreover, for the three most commonly used IMs,
peak ground velocity (PGV) is superior to peak ground acceleration (PGA) and spectral acceleration at first mode period (Sa (T;))
for different mining depths. Finally, based on the evaluations of seismic fragility and FOS response hazard, the uncertainty of
seismic stability prediction of open-pit slopes can be greatly reduced when using a more appropriate or optimal IM.

1. Introduction

Slope engineering is an important safety project in large
open-pit mine. The slope stability is a key technical issue for
the production safety of mine and has always been one of the
research focuses in geotechnical and earthquake engineer-
ing. With the increase of mining depth and slope height, the
stability and safety of slope is reduced in the mining process
of deep concave open-pit mine. It would unleash a host of
geological disasters such as landslide and collapse. There are
many factors affecting the slope stability such as geology and
geomorphology, hydrological condition, climate condition,
stratigraphic lithology, and tectonic activity [1]. Strong
earthquakes caused by tectonic activities could greatly in-
crease the slope instability and have been recognized as

a major cause of landslides. Because the slope disasters
triggered by strong earthquakes have the characteristics of
strong abruptness, wide spread, great destruction, and dif-
ficult defense, it is easy to cause serious damage of engi-
neering structures near the slope or even directly be buried,
which seriously threatens the lives and property of miners.
Many cases for severe damage of slopes and even collapse
have been reported in many literatures. The 1994 Northridge
earthquake (M, =6.7) induced more than 11,000 landslides
over an area of about 10,000 km* and led to as much as 30
billion in losses [2]. During the 1995 Great Hanshin
earthquake (M, =6.9), about 60 landslides occurred around
Awaji Island and the northern mountains of Kobe City [3].
The area of the slope disasters caused by the 1999 Chichi
earthquake (M, =7.6) accounted for 3% of the area of
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Taiwan [4]. The 2008 Wenchuan earthquake (M, =7.9)
caused more than 15,000 landslides, collapses, and other
slope disasters [5]. Therefore, it is of paramount importance
to accurately predict the seismic responses and evaluate the
seismic risk of large open-pit mine slopes when subjected to
a strong earthquake. These evaluations would help to im-
prove the seismic design of open-pit slopes and ensure their
stability and safety in future earthquakes.

There are many uncertainties involved in evaluating the
dynamic stability and seismic risk of open-pit slopes, in-
cluding spatial variability of soil-rock properties and un-
predictable characteristics of bedrock ground motions [6].
Most of the traditional methods for seismic dynamic stability
of slopes are usually adopted deterministic analyses based on
a few earthquake records [7, 8]. The deterministic analyses
cannot fully consider the effect of these uncertainties,
resulting in the inability to accurately predict the seismic
failure behavior of slopes. The performance-based earth-
quake engineering (PBEE) developed by the Pacific Earth-
quake Engineering Research (PEER) Center is an advanced
probabilistic seismic risk assessment methodology and can
provide more rational, credible, and practical way to
quantify the inherent uncertainties of all performance
variables of slopes. The PBEE framework has been currently
applied to the seismic risk assessment of various civil en-
gineering structures such as buildings [9], bridges [10], dams
[11], and towers [12]. However, limited numbers of litera-
ture are available on probabilistic seismic stability assess-
ment of slopes based on the advanced PBEE methodology
[13], especially to open-pit mine slopes.

Probabilistic seismic demand model (PSDM) is one of
the crucial components of the seismic risk assessment of
slopes when using the PBEE framework [14]. PSDM de-
scribes the probabilistic relationship between engineering
demand parameter (EDP) of slopes and input ground-
motion intensity measure (IM). It can be formulated by
performing the probabilistic seismic demand analysis
(PSDA) of slopes. Subsequently, seismic fragility curves can
be developed based on the constructed PSDM of slopes [15].
Seismic fragility curves reflect the conditional probability of
a slope reaching or exceeding the predefined damage limit
states for a given IM level. In addition, fragility curves can
provide richer and comprehensive expression for seismic
damages of slopes than only failure probability obtained by
traditional reliability methods because they are described in
the form of certain functions rather than points [16-18]. The
selection of an appropriate or optimal IM is one of the key
prerequisites to reduce the uncertainty of the PSDM and
obtain reliable fragility curves of slopes [19]. An appropriate
IM would be able to represent certain key characteristics of
amplitude, frequency content, duration, and energy of
ground motions, accurately predict the seismic responses,
and reduce the variance of dynamic damage assessment of
slopes [20]. In engineering practice, peak ground acceler-
ation (PGA), peak ground velocity (PGV), and spectral
acceleration at first mode period (Sa (T;)) are often selected
as the most commonly used IMs based on experiences to
construct the PSDM and fragility curves of slopes. However,
several studies have reported PGA, PGV, and Sa (T}) are not
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always the best IMs to predict the seismic responses of slopes
[21]. Meanwhile, the best IM for seismic demand analyses
may vary greatly depending on the slope type, local soil and
rock conditions, or even the EDPs used in the analysis.
Therefore, there is no clear consensus on which IM is
recommend as the optimal IM for slopes.

Several evaluation criteria have been proposed to de-
termine the best IM for seismic risk assessment of various
structures, including correlation, efliciency, practicality,
proficiency, sufficiency, relative sufficiency, and hazard
computability. To date, these criteria and extensive studies
are mainly focused on buildings [22, 23], bridges [24], dams
[25], storage tanks [26], tunnels [27, 28], offshore platform
[29, 30], and nuclear power plant [31, 32]. Due to the space
constraints, an elaboration of the work about optimal IM for
above-given structures is not shown herein. Significantly,
there are a few previous studies investigated the correlation
between a small amount of IMs and seismic permanent
displacement of slopes using Newmark sliding block model
(NSBM) [33, 34]. They found the best IM for seismic dis-
placements of slopes is spectral acceleration at 1.5 times first
mode period (Sa (1.5T))) because the nonlinearity of soil and
rock mass leads to the elongation of slope period during
strong earthquakes. However, NSBM is a simple equivalent-
linear sliding method and is limited to provide a simple
index for seismic dynamic performance of slopes [35].
Therefore, it is required to identify optimal IM for seismic
stability and risk assessment of slopes using a more accurate
numerical model for different slopes. To the best of the
authors’ knowledge, there exists no relevant work for the
optimal IM selection of open-pit mine slopes by using
nonlinear numerical model and multiple evaluation criteria.

The current study sets out to identify the optimal IM for
probabilistic seismic stability assessment of open-pit mine
slopes under different mining depths. To this end, actual
open-pit slopes with different mining depths are constructed
as the reference cases for the numerical investigation. The
randomness of input bedrock ground motions and the
uncertainty of material properties of the slopes are also
considered in this study. A total of 96 ground-motion re-
cords and 29 common IMs are selected for testing. Through
a series of nonlinear dynamic time-history analyses, the
PSDM between IM and the minimum factor of safety (FOS)
are constructed. Optimal IMs of the open-pit mine slopes
with different mining depths are identified based on the
evaluation of five criteria: correlation, efficiency, practicality,
proficiency, and sufficiency. Finality, the fragility curves and
FOS response hazards of the open-pit mine slopes are
generated and discussed by using different IMs. Figure 1
shows the flowchart to identify optimal IMs for probabilistic
seismic stability assessment of the open-pit slopes.

2. PSDM and Criteria of Optimal
IM Identification

2.1. PSDM Formulation. A PSDM based on PSDA describes
the conditional probability of engineering demand param-
eter (EDP) (e.g., minimum factor of safety (FOS), maximum
displacement response, maximum acceleration response,
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FiGURe 1: Flowchart of the analytical framework to identify the optimal IMs for the open-pit slopes.

and maximum shear stain) of an open-pit mine slope
reaching or exceeding a certain edp level for a given seismic
IM level. A log-normal distribution is often used to quantify
such conditional probability P(EDP > edp|IM) [36, 37], as
expressed in the following equation:

In(edp) - In(.”EDPlIM))

/")EDPIIM

P(EDP >edp|IM) =1 - <1><

1

where @ (-) denotes the standard normal cumulative dis-
tribution function, pgpp(1y, is the median seismic demand of
the open-pit slope for a given IM level, and Bgppyy, is the
logarithmic standard deviation of the seismic demand
conditioned on the given IM level.

The median seismic demand pgppjy, of the open-pit
slope is usually assumed to follow a power-law function
against the IM, as shown in the following equation:

b
Yeppim = a - IM°, (2)

where a and b are the regression coefficients from nonlinear
time-history analyses of the open-pit slope.

For simplicity, the power-law function can be rearranged
to natural logarithmic space which describes a linear ex-
pression of In(ugppjry) with regard to In (IM), as follows:

In(ppppya) = In(a) + b x In(IM), (3)

where In(a) and b are the vertical intercept and the slope
factor, respectively.

It is worth noting that the power-law function of
equation (2) are not the only possible models for predicting
the seismic demand of slopes conditioned on a given IM
value. Other models, such as quadratic function [38] and
artificial neural networks [39, 40], can also be used to
provide the relation between EDP and IM.

The uncertainty of seismic demand Bgpp|;, is assumed
constant with respect to IM and can be approximately es-
timated by calculating the dispersion of the seismic demands
of the slope around the predicted one using the following
equation:

- IZfil [In(edpi) - In(‘”EDP”M)]Z (4
/3EDP|IM = \J N-2

where edp; is the ith calculated seismic demand of the open-
pit slope subjected to the ith ground-motion record, and N is
the total number of nonlinear time-history analyses for
a suite of selected ground-motion records.

From the above-given functions, the first priority for
developing a PSDM of the open-pit slope is to determine an
optimal seismic IM for the specified EDP (such as FOS). An
optimal IM can effectively improve the ability of constructed
PSDM to estimate the seismic responses of the open-pit
slope. However, the identification of an optimal IM still is
a challenging for open-pit mine slopes. In the current study,
the optimal IMs for open-pit slopes are identified based on
the five criteria in the below section.

2.2. Criteria of Optimal IM Identification. Five testing cri-
teria, which have been typically utilized in other literature
for different engineering structures [41], are adopted to
identify optimal IMs in this study. They are correlation [42],
efficiency [42], practicality [43], proficiency [44], and suf-
ficiency [45]. Each of these testing measures would be briefly
explained below.

2.2.1. Correlation. The correlation criterion reflects the
goodness of fit of the empirical regression model of equation
(3) to predict the seismic responses of the open-pit slope.
The correlation of an IM can be measured by the adjusted
coefficient of determination R?, which is a popular statistical
indicator for correlation between variables. The value is less
than or equal to 1. A larger R* value can strongly implies
a better correction between the specified EDP and the
given IM.

2.2.2. Efficiency. Efficiency of an IM determines the level of
variability or dispersion of the calculated seismic responses
around the regression model for a given IM. For this study,
the conditional standard deviation Bgppjr), obtained from
the logarithmic linear regression is used to quantify the
efficiency of a candidate IM, as shown in equation (4). Due to
being inversely proportional to the efficiency, a more effi-
cient IM would lead to a lower value of Bz p 15, and indicates
a less dispersion around the predicted values from equation
(3). In general, a PSDM with dispersion Brpp(;y less than
0.30 can be regarded as satisfactory [30].



2.2.3. Practicality. Practicality represents the dependency of
the EDP of the open-pit slope against an IM. For the
conventional linear regression, practicality can be quantified
by the absolute value of slope factor |b| of regression model
in equation (3). The regression model for an IM having
higher |b| value demonstrates that the IM is significantly
dependent on the specified EDP. Such an IM is more
practical. Conversely, the contribution of an IM for the
prediction of the specified EDP is negligible if the absolute
value of slope factor |b| closes to zero. That is, a lower ab-
solute value of slope factor shows a less practical IM.

2.2.4. Proficiency. Proficiency is a composite indicator that
can measure the simultaneous effect of both efficiency and
practicality. The proficiency index is also referred as mod-
ified dispersion {, which can simplify the optimal IM
identification in terms of the highest practicality and lowest
dispersion. In general, a lower { value indicates a more
proficient IM. The proficiency index can be calculated from
the following equation:

_ ﬁEDPIIM 5
(_ |b| > ( )

where Brppi1 s the standard deviation of regression model
and |b| is the absolute value of slope factor.

2.2.5. Sufficiency. Sufficiency suggests the statistical de-
pendency between a candidate IM of ground motions and
some seismological parameters such as magnitude (M) and
source-to-site distance (R). For a sufficient IM, the probability
distribution of the seismic demands of the open-pit slope
should be conditionally independent of such seismological
parameters [46], as shown in the following equation:

P[EDP >edp|IM] = P[EDP >edp|IM, M,R].  (6)

The sufficiency criterion can be quantified by p value
[47, 48], which indicates the probability of rejecting the null
hypothesis (the slope factor b of linear regression model
between the calculated EDP residuals and seismological
parameters equals zero) in variance analysis. A higher p
value denotes the candidate IM is sufficient. Significance
levels of 5% (p = 0.05), which is frequently used in previous
researches and practices, is adopted as the threshold for
distinguishing the sufficiency of an IM herein. In other
words, a candidate IM which leads to p <0.05 would be
considered as an insufficient IM. Numerically, the p value
can be obtained from one-parameter linear regression
analysis of residuals ezpp;); between the calculated seismic
demand and the predicted value of a slope from equation (3)

with respect to M or R, as shown in the following equation:
epppirm = Gy + by X (M),
€gppiim = g + br X (R).

(7)

A brief illustration of efficiency, practicality, and suffi-
ciency of an IM against FOS is depicted in Figure 2. It is
observed that the FOS response of the slope decreased with
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the increase of IM levels. IM;, which has lower $ and higher |
b| value, is more efficient and practical; whereas, IM, is the
opposite. To the FOS residuals with respect to a seismo-
logical parameter, the bias is obvious and has a p value less
than the significance level 0.05 when IM, is used. Conse-
quently, IM, is regarded as insufficient. Therefore, in order
to identify optimal IMs, the abovementioned parameters
such as coefficient of determination R dispersion §, ab-
solute value of slope factor |b|, and p-values need to be
calculated and compared in regression analysis.

3. Slope Description and Numerical Modeling

3.1. Open-Pit Slope Description. The case-study slope is
a typical open-pit mine slope that is located at the Kyi-
sintaung (K) mine in the south of Sagaing Province,
Myanmar. The K mine is a porphyry copper mine with
a length of 750~980 m and a width of 550~700 m. It came on
stream in 2015. Based on the location, lithology, and design
height, the K mine is divided into four engineering geo-
logical areas, namely, A, B, C, and D, which represent the
east, south, west, and north areas, respectively. Maximum
slope design height in open boundary of A, B, C, and D area
are 420m, 460m, 400m, and 290m, respectively. The
schematic diagram of the open-pit mine is presented in
Figure 3. The mining design parameters are specified as
follows: step height is set to 10 m except for the one of final
parallel section, which is 20 m. Widths of safety platform and
cleaning platform are 8 m and 16 m, respectively. Width of
haulage road is 16 m for one lane, and 21 m for two lanes.
Minimum design radius and maximum gradient of haulage
road are 20 m and 8%, respectively. Control angles of final
slopes are area A <40°, area B<41°, and area C<40". More
details about the K mine can be available in the related
literature [49, 50].

3.2. Numerical Modeling. To identify the optimal IMs for
PSDM of the open-pit slopes under different mining depths,
the A1 engineering geological profile in area A is taken as the
case-study slope (see Figure 3(c)). The maximum design
height and angle of the A1 slope profile are 310 m and 39.4°,
respectively.

Based on the geological parameters of the A1 profile, four
two-dimensional numerical models with different mining
depths are constructed by the finite element software
ABAQUS. The slope angles are kept constant at 39.4°, and
the mining depths of the slope are set as 50 m, 100 m, 200 m,
and 300 m, respectively. The range of the rock mass in the
horizontal front of slope foot is taken as 1.5 times of the slope
height (H) and the rock mass range behind the horizontal
edge of slope top is 2.5H. The bottom boundary of a slope
along vertical direction is 2.0H. The slope models are dis-
cretized using 4-node reduced integration elements
(CPEA4R) for the rock masses. To ensure the accuracy of the
computation, the finite element size of the rock masses is set
to 0.5 m. When performing the static analysis for gravity, the
fixed constraints are imposed on the bottom and side
boundaries of the models. Considering the radiation
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damping effect of seismic waves, the viscous boundary is
applied at the bottom, while the parasitic boundary has been
adopted for the left and right sides when the dynamic
seismic analyses are performed. The rock physical and
mechanical properties of the open-pit slope along A1 profile
are listed in Table 1. The nonlinear dynamic behavior of the
rock materials is simulated using the Martin-Davidenkov
model proposed by Martin and Seed [51] that can be cal-
culated using the following equation:

T(Y) =Gy =G Y1 -H@),

W @ (8)
H(Y) — { (Y/VO) = } ,
1+ (y/yo)

where the 7(y) denotes the shear stress; G and G,,,,, are the
shear modulus and the maximum shear modulus, re-
spectively; and y is the shear strain. a, b, and y, are the fitting
parameters.

The schematic diagram of numerical modeling of the
open-pit mine slope case along the Al profile is depicted in
Figure 4. According to the eigenvalue analyses using Lanczos
iteration method, the first mode periods of the four slopes
are 0.255s, 0.68s, 1.42 s, and 1.94 s, respectively. Based on the
wave propagation theory [28], the input motion at the base
boundary is roughly equal to half of the surface motion at
bedrock outcrop. Therefore, the amplitude of the selected
records in Section 4.1 are first scaled by 0.5 and then used as
the input base motions for the numerical analyses. Due to
large span of the slopes, the spatial variation of input mo-
tions at the bedrock boundary should be considered. Spatial
variations of input bedrock motions mainly include wave
passage and wave scattering. In contrast, the wave-passage

effect has more influence on the slope responses. It is as-
sumed that the waveform of input motions at different
locations of the bedrock boundary is same. The propagation
delay time along the horizontal direction from the middle of
the bedrock boundary to other input points are calculated by
the following equation:

ae=, 9)
v

where d is the distance between each input point and the
middle of the bedrock boundary and v is the velocity of
seismic wave, which is set to 1000 m/s.

3.3. Uncertainty Modeling. In the derivation of PSDM and
fragility function, a probabilistic approach is used owing to
the uncertainties in seismic response and seismic capacity of
the open-pit slopes. The uncertainties are often classified
into two groups: aleatoric uncertainty (inherent random-
ness) and epistemic uncertainty (lack of knowledge). In
addition to the randomness of the ground motion consid-
ered in Section 4.1, the variation of modeling parameters of
slopes should also be included, which is often neglected due
to the lack of knowledge regarding material properties.
Many uncertain modeling parameters of slopes are adopted
in previously studies. In this study, three uncertain modeling
parameters of the slopes are adopted including rock elastic
modulus (E), internal friction angle (¢), and cohesive (c).
The correlations between these modeling parameters are
ignored because of the lack of relevant studies. Based on the
results of previous studies [21, 52-54], Table 2 presents the
probability distribution types of three modeling parameters
and coefficients of variation (COV). Normal distribution is
specified for the three modeling parameters in the dynamic
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response analyses of slopes. It is worth noting that the three
material parameters for the slope modeling are first ran-
domly generated according to the probability distribution of
Table 2 before the dynamic response analyses of slopes are
implemented under earthquake records.

3.4. Definition of Damage States. It is essential to define a set
of various damage states, corresponding seismic perfor-
mance levels, and damage indices for subsequent fragility
analyses of the open-pit slopes in Section 5.7. The minimum
factor of safety (FOS), which has been widely adopted in
most seismic design codes to evaluate seismic performance

and dynamic stability of slopes, is used as the representative
EDP of slopes in this study. Significantly, the requirements
for FOS of slopes are different in various codes. For example,
the required FOS varies from 1.0 to 1.4 for different safety
levels of slopes in Eurocode 8 [55]. To the code for building
slope engineering of China [56], the acceptable FOS of slope
stability for three importance grades are 1.05, 1.10, and 1.15,
respectively. This study adopted five damage states proposed
by Lagaros for seismic fragility analyses of open-pit slopes
[21]. Five damage states includes: optimal (DS;), sufficient
(DS,), moderate (DS;), minor (DS,), and unacceptable
(DSs). The corresponding relative safety margins and the
range of FOS damage indices are presented in Table 3.
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TaBLE 2: Distribution characteristics of slope modeling parameters.
. e g fficients of variation
No. Modeling parameters Probability distribution Coeflicients of variatio
(COV)
1 Rock elastic modulus Normal 0.15
Internal friction angle Normal 0.10
3 Cohesive Normal 0.10

TaBLE 3: Adopted damage states for open-pit mine slopes in terms of FOS.

Damage states DS, (optimal) DS, (sufficient)

DS; (moderate) DS, (minor) DS5 (unacceptable)

Very high
>2.0

High
1.4~2.0

Relative safety margins
Range of FOS

None
<1.0

Low
1.0~1.25

Moderate
1.25~1.4

4. Records and Intensity Measures Selection

4.1. Ground-Motion Record Selection. Given the uncertainty
of input bedrock seismic motions, a suite of actual records
from different significant earthquake events are required for
nonlinear seismic response analyses of the open-pit slopes.
Different studies may adopt different criteria to select input
bedrock motions. Site-specific matching criteria allow for
ground-motion selection based on spectral compatibility with
a target probability of exceedance level. However, this method
is only suitable for estimating the slope responses with
a certain probability of exceedance level. Therefore, the input
motions selected in this study are not limited to a certain
probability of exceedance level and takes into account the
contributions of various significant earthquakes for the slope
sites [57]. For this study, 4 bins, each containing 12 pairs of
horizontal ground-motion records, are collected from the
NGA-West2 database developed by the Pacific Earthquake
Engineering Research Center [58]. The database provides
a large number of strong motion records in worldwide active
tectonic regimes, as well as source parameters, distance
measures, site conditions, etc. The critical point between
large-magnitude (LM) and the small-magnitude (SM) is set as
Muw=6.5. Records with R>30km are grouped into large-
distance (LR) bin, and those with R < 30 km are grouped into
small-distance (SR) bin. The details of the selection criteria of
actual records are presented as follows:

(i) Earthquake magnitude (M) and source-to-site dis-
tance (R) of the selected records should

approximately match the M and R of the potential
seismic sources around the open-pit slope site.

(ii) To eliminate structural effects, the observation in-
struments are located on the free-field or at the
lowest level of low-rise structures.

(iil) Vg5, (average shear-wave velocity in the uppermost
30m) of the observation station is larger than
500 m/s, roughly corresponding to rock site or very
dense soils on the NEHRP soil-typeC or B.

(iv) Velocity pulse-like records due to near-fault rupture
directivity or fling-step effects are excluded. Ve-
locity pulse-like records often exhibit larger am-
plitudes and shorter durations compared with the
general ground motions. However, this issue is
beyond the scope of this study.

(v) Aftershock records are excluded.

Two horizontal components at the same station are
assumed to be independent, resulting in a total of 96 hor-
izontal motions are adopted as the input bedrock motions
for nonlinear time-history analyses of the open-pit slopes.
The detailed characteristics of selected records are listed in
Table 4. The distribution of selected motions covers a wide
range of magnitudes between 5.99 and 7.62, the rupture
distance (R,,) up to above 66km, and the peak ground
acceleration (PGA) of the 96 records range from 0.05 and
1.43 g, as illustrated in Figures 5(a) and 5(b). In addition, the
individual and median spectral accelerations of the selected
96 motions are shown in Figure 5(c).
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4.2. Candidate IMs Selection. An seismic IM can reflect and
quantify one or more key characteristics of a nonstationary
seismic motion in a simple and measurable form. These
characteristics include amplitude, frequency content, du-
ration, and energy distribution of a seismic motion, which
are significantly correlated with structural responses. In
general, a perfect IM has the ability to obtain all key features
of a seismic motion and can accurately predict the seismic
response and dynamic stability of the open-pit slope.
However, due to the inherent nonstationary of a seismic
motion in time and frequency domain, it is very difficult to
define a perfect IM that can quantify all significant seismic
features [59]. Therefore, it is necessary to investigate the
common IMs to determine the optimal IM for the devel-
opment of PSDM of the open-pit slope. For this study, 29
common IMs are chosen as the candidate IMs, as listed in
Table 5. According to their definitions, the 29 IMs can be
categorized roughly into four groups: (1) IMs that are related
to acceleration time history (e.g., PGA and CAV); (2) IMs
that are related to velocity time history (e.g., PGV and VSI);
(3) IMs that are related to displacement time history (e.g.,
PGD and Dgys); and (4) IMs that are related to the duration
(e.g.» Ds_g5). One also may find more detailed explanations
on these candidate IMs in related references [33, 34].

4.3. FOS Time-History Responses. There are many definitions
of the factor of safety FOS for slopes. Considering the output
results of the FEM analysis and physical implications, FOS is
defined as the ratio of the antislide force and the slide force
on a certain slip surface. It can be calculated from the
following equation:

Y(c; +o;tan¢;)l;
2Tl ’

where I;, 0;, and 1, are the geometric length, normal stress, and
shear stress of segment i on a slip surface, respectively. c;, and ¢;
are the corresponding cohesive and internal friction angle.
The calculation steps of the dynamic FOS time history of
a slope when subjected a seismic record are as follows [60]:
(1) the stress field at each time step is calculated through
performing the FEM dynamic response analyses of a slope.
(2) A number of potential slip surfaces are generated for
a time step. (3) The FOS are calculated by equation (10) for
each potential slip surface at this time step and the minimum
FOS are defined as the instantaneous FOS at this time step.
(4) Repeat steps (2) and (3) for each time step and the whole
dynamic FOS response time history of a slope case can be
captured. Nonlinear time-history analyses of the open-pit
slopes with different mining depths are performed under 96
input ground motions. Figure 6 presents the FOS time-
history responses of the four slopes under the 2007 Chuetsu-
oki earthquake record in lizuna Imokawa station. It can be
seen that the FOS responses of the slopes under different
mining depths are obviously different. The slope with
a mining depth of 100 m has the worst stability than others,
and its minimum FOS is 1.777. This may partly be due to the
fact that the natural period of this slope is closest to the
predominant period (0.71s) of this seismic record. In

FOS = (10)

contrast, the natural period of the slope with a mining depth
of 300 m, which has the minimum FOS of 2.716, is far from
the predominant period of the seismic record and is most
stability among the four slopes.

5. Results and Discussion

To evaluate the optimality of the candidate IMs with respect
to FOS, the PSDMs between all candidate IMs and FOS are
constructed based on the regression results of time-history
analyses of the slope cases. The optimal IMs are identified by
correlation, efliciency, practicality, proficiency, and suffi-
ciency. Subsequently, seismic fragility curves and FOS re-
sponse hazard curves of the open-pit slopes are compared
using different IMs. Before that, the PSDMs of FOS against
PGA are presented to illustrate the influence of ground-
motion characteristics on the FOS responses of the slopes.
Figure 7 plots the PSDMs of the four slopes with respect to
PGA on the logarithmic scale. It is noted that the correlation
between PGA and FOS responses of the four slopes is low,
and the highest correlation coefficient is only 0.648. The
dispersion of PSDM for the slope with a mining depth of
300 m is the highest, reaching 0.424. It shows that PGA is less
effective to predict the FOS of this slope. It is also observed
that there is little difference for the absolute value of slope
factor || in all slope cases. These results suggest that PGA is
not an appropriate IM for accurately predicting the seismic
FOS of open-pit slopes. Therefore, the selection of the op-
timal IM from lots of common IMs is of great significance
for the development of PSDM of open-pit slope.

5.1. Correlation Comparison. The correlation criterion can
reflect the goodness of fit of PSDM to predict the seismic FOS of
a slope using a candidate IM. Figure 8 compares the calculated
correlation coefficients (R?) between FOS and 29 candidate IMs
for the open-pit slopes under different mining depths.

It is clear that the most correlated IMs vary with different
mining depths. SMV exhibits the most strongest correlation
with the FOS for the slope with a mining depth of 50m,
followed by PGV and HI. The corresponding values of R” are
0.887, 0.866, and 0.853, respectively. Meanwhile, the weakest
correlated IM is FR2, followed by D5 o5, and FR1. Their values
of R? are 0.006, 0.060, and 0.266, respectively. For the slope
with a mining depth of 100 m, Sv (1.5T) is the most correlated
IM, followed by VSI and HI. The correlation coefficients for
the three most correlated IMs are 0.869, 0.848, and 0.805,
respectively. Interestingly, FR2 and Ds o5 are once again the
two least correlated IMs. This finding is well in line with the
results of the slope case with a mining depth of 50 m. In the
case of the slope with a mining depth of 200 m, three most
correlated IMs are VSI, SMV, and HI, and their values of R
are 0.864, 0.805, and 0.790, respectively. Whereas the lowest
correlated IM for FOS is FR2, followed by Ds os. Their
corresponding correlation coefficients are 0.009 and 0.012,
respectively. Furthermore, VSI is once again the most cor-
related IM for the slope with a mining depth of 300 m. HI and
SMV are other two following highly correlated IMs. The
correlation coefficients for three IMs are 0.810, 0.809, and
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FiGure 5: Characteristics of selected ground-motion records: (a) M-R distribution, (b) PGA-R distribution, and (c) spectral acceleration

with 5% damping ratio.

0.807, respectively. FR2 and Ds o5 are two weakest correlated
IM against FOS with smaller values of R>. Compared with
PGA and Sa (T}), PGV is more correlated with FOS responses
of the slopes among three most commonly used IMs.

5.2. Efficiency Comparison. The efficiency criterion reflects
the level of variability of the calculated FOS around the
regression model. The results of the efficiency between FOS
and 29 candidate IMs for the open-pit slopes under different
mining depths are summarized in Figure 9.

For the slope with a mining depth of 50 m, SMV, PGV,
and VSI are three most efficient IMs because of less dis-
persion for FOS. The f3 values for them are 0.061, 0.118, and
0.169, respectively. The maximum dispersion is FR2, i.e.,
0.892, indicating the lowest efficiency. It is followed by Ds o5
and PGD. Their corresponding dispersion are 0.880, and

0.685, respectively, which are slightly lower than the value of
FR2. In the case of the slope with a mining depth of 100 m,
VSI is the most efficient IM with the lowest dispersion of
0.145 and are followed by HI and Sa (T}), and their 8 values
are 0.177 and 0.190, respectively, which are slightly higher
than that of VSI. In contrast, HI, Sv (1.5T;), and PGV are
three most efficient IMs for the slope with a mining depth of
200 m, and the corresponding f values are 0.134, 0.237, and
0.249, respectively. Furthermore, for the slope with a mining
depth of 300 m, HI is also proved to be the most efficient IM
with the smallest standard deviation of 0.150, followed by Sv
(1.5T7) and VSI. The 3 values for the latter IMs are 0.223 and
0.226, respectively. It is noted that FR2, Ds o5, and PGD
exhibit the worst efficiency when using all slope cases.
Moreover, the efficiency of velocity-related IMs is higher
than that of acceleration-related IMs and displacement-
related IMs.
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FIGURE 6: FOS time-history response of the open-pit slopes with different mining depths under the 2007 Chuetsu-oki earthquake record in

lizuna Imokawa station. (a) 50 m. (b) 100 m. (c) 200 m. (d) 300 m.

5.3. Practicality Comparison. Practicality refers to the de-
pendence of the FOS of slopes against the IM and can be
represented by the absolute value of regression coefficient |b|
in equation (3). A more practical IM shows a larger value of |
b|, and vice versa. Figure 10 shows the calculated |b| values of
each IM-FOS pair for the slopes under four different mining
depths.

Figure 10 suggests that FR1, having the maximum |b|
values, is the most practical IM for all slope cases with
different mining depths, except for the slope of 50 m. ASI,
FR1, and CAYV are proved to be the three most practical IMs
for the slope with a mining depth of 50m, with the cor-
responding |b| values equal to 0.425, 0.420, and 0.418, re-
spectively. Meanwhile, FR2 is the least practical IM, which
exhibits the minimum |b| value of 0.113 for this slope. SED
and Ds o5 are the following two least practical IMs, with
slightly higher |b| value, i.e., 0.157 and 0.184, respectively.
For the slope with a mining depth of 100 m, ASI and SMA
prove to be the two most practical IMs following FR1, and
their corresponding |b| value are 0.441 and 0.448, re-
spectively. Ds o5 and FR2 are once again two least practical
IM, with the |b| values of 0.106 and 0.148, respectively. These
similar findings for the least practical IMs are also found for
the slopes with higher depths. In contrast, Agys and ASI are
identified as the two most practical IM following FR1 for the
slope with a mining depth of 200 m and 300 m, and FR2 and
Ds o5 exhibit the lowest practical.

5.4. Proficiency Comparison. Proficiency ( describes the
composite effect of efficiency and practicality, as shown in
equation (5). The results of proficiency analyses of all
candidate IMs for the slopes under four different mining
depths are compared in Figure 11. For the slope with
a mining depth of 50 m, SMV is the most proficient IM due
to the corresponding smallest { of 0.171, followed by PGV
and HI, which have { values of 0.394 and 0.574, respectively.
FR2 is the less proficient IM, which has the maximum (, i.e.,
7.879. The next two least proficient IMs are D5 o5 and PGD,
and the { values are 4.790 and 3.177, respectively, which are
considerably lower than the value for FR2. In case of the
slope with a mining depth of 100 m, VSI turns out to be the
most proficient IM, followed by PGV and HI. The corre-
sponding ¢ values of them are equal to 0.442, 0.513, and
0.540, respectively. On the contrary, Ds_g5 is found to be the
less proficient IM having the highest { of 9.522. FR2 and
PGD are found to be the next three least proficient IMs with
slightly lower { of 6.896 and 4.137, respectively. In-
terestingly, these results are also found for the slope of 50 m.
For the slope with a mining depth of 200 m, HI is the most
proficient IM indicated by the smallest { of 0.441 compared
to other candidate IMs. PGV and Sv (1.5T)) are next two
most proficient IMs with the { values of 0.624 and 0.650,
respectively. D5 o5 is the least proficient IM, followed by FR2
and PGD with corresponding { values of 10.099, 7.357, and
3.696, respectively. Furthermore, HI, Sv (1.5T}), and VSI are
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three most proficient IMs for the slope with a mining depth
of 300 m, and the { values are 0.377, 0.617, and 0.632. On the
contrary, D5 95 and FR2 once again indicate the least pro-
ficiency with the corresponding  values of 8.126 and 6.631,
respectively.

5.5. Sufficiency Comparison. To investigate the sufficiency of
29 candidate IMs, linear regression analysis between the
residuals (denoted as exppj) of PSDMs and seismological
parameters (i.e., magnitude M and source-to-site distance R)
is performed. Here, moment magnitude M, and rupture
distance Ry, are chosen as the indicators of magnitude and
source-to-site distance, respectively. The p value obtained
from the regression results with respect to M and R is used to
quantify the sufficiency of an IM. The p value ranges from
0 and 1. A more sufficient IM, which has a higher p value, is
independent of seismological parameters. A significant level
of 0.05 is considered in this study as the threshold for
a sufficient IM. That is, an IM with p value less than or equal
to 0.05 are assumed to be insufficient. Figure 12 depicts the
linear regression results of top 1 sufficient IM associated with
the M and R for the slope with a mining depth of 50 m. The
slope factors of the regression lines are close to zero; whereas
the p values are considerably higher. Therefore, it can be
concluded that a best sufficient IM with respect to a seis-
mological parameter has a higher p value and lower slope
factor of the regression line.

The sufficiency of 29 candidate IMs with respect to M
and R using p value is summarized in Figures 13 and 14. A p
value level of 0.05 is plotted with a pink dash line. For all the
slope cases with different mining depths, PGV, Sv (1.5T)),
SMV, and VSI are the most sufficient IM with respect to M,
and HI, ASI, and PGV indicate the best sufficiency with
respect to R. On the contrary, CAV, Ia, and D5 o5 are the
most insufficient with respect to M and R. It is also noted that
PGA is insufficient with respect to M for the cases of 50 m
and 100 m and slightly sufficient with respect to R, except for
the case of 300 m.

According to the above-given analyses, Figure 15
presents top 3 correlated, efficient, practical, proficient, and
sufficiency IMs for the open-pit slopes with different mining
depths. It can be observed that optimal seismic IM varies
with different criteria and mining depths. The optimal IMs
based on correlation are consistent with the ones of effi-
ciency. Therefore, proficiency, which combines of efficiency
and practicality, is taken as the most critical criterion in this
study, and sufficiency is considered as a supplementary
requirement. By weighing various factors comprehensively,
HI, VSI, and SMV can be selected as the appropriate IMs for
the development of PSDM and fragility function of open-pit
slopes with different mining depths in engineering practice.
Among the three commonly used IM, PGV is superior to
PGA and Sa (T)).

5.6. Impact on Fragility Evaluation. In the following section,
the seismic fragility curves using different IMs are further
compared. Seismic fragility of a slope for a certain damage
state is defined as the conditional probability of exceeding
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the specified damage level for a given seismic IM level.
Fragility curves can be expressed by cumulative distribution
function as follows:

Fpgmv = PIDS2ds|IM] = d)(In(IM) —In (FIM)>,

Brm
(11)

where FDS|IM is the conditional probability at a given IM
for a specified damage state ds. y;,, is the median IM of
a slope for a given damage state, and f3;,, is the logarithmic
standard deviation of IM conditioned on the given
damage state.

Figure 16 shows the unacceptable fragility curves using
top 1 IM and three commonly used IMs, i.e., PGV, PGA, and
Sa (T3), for the open-pit slopes with different mining depths.
The values of unacceptable IMs are normalized to their
corresponding median unacceptable IM value. Hence, the
logarithmic standard deviations f3;,, of the fragility curves
using different IMs can be adopted as a quantitative com-
parison of the impact of IMs on fragility curves. It can be
observed that for the open-pit slopes, the fragility curve
using top 1 IM is steeper than the ones using three common
IMs, and the f;,, value obtained is smaller than the other
ones. This suggests optimal IM is more accurate and allows
for less uncertainty in seismic fragility evaluation. It can also
be found that the same results obtained for almost all other
candidate IMs. In the three common IMs, PGV provides
smaller f3;,, values and less uncertainty than PGA and
Sa (Tl)

5.7. Impact on FOS Hazard Evaluation. In PBEE framework,
seismic response hazard integrates the seismic hazard
analysis and seismic demand analysis. It provides the mean
annual frequency (MAF) of exceeding certain seismic de-
mand value given the seismic hazard at the designated site of
a slope [61]. It can be calculated using the following
equation:

A(EDP > edp) = ro P[EDP > edp|IM
0 (12)

= im]|dA (IM > im)|,

where |dA (IM > im)] is the absolute value of the derivative of
seismic hazard curve. P[EDP >edp|IM = im] is the con-
ditional probability of EDP exceeding edp given IM = im
and its full distributions constitute the fragility curves of
more detailed damage states. If the EDP of interest is FOS, A
(FOS > fos) can be termed “FOS hazard.” Assuming that
seismic hazard function can be approximately expressed as
the power form of equation (13) and the seismic demand
values are log-normally distributed,

A(IM >im) = k, - IM¥, (13)

where ky and k are two parameters representing the shape of
the hazard curve.

Using the results of slope fragility curves as well as the
seismic hazard curves of the site of interest, the FOS hazard
curves can be calculated using equation (12). Based on the



18

FOS residuals of PGV

o
n

(=}

-0.5

o &£=-0.5897+0.0817xM
p-value = 0.7536
o
o
L o R " i i
- o
09 o o o B g
Q o °
3 (o] o o o 8 8
o —8
_.?-._ '8—'—; _________ '.D_._S_§._. _____ il
o o o 8 8 o
%o o
% o ¥
6 62 64 66 68 7 72 74 76
Magnitude (M)

(a)

FOS residuals of HI

Shock and Vibration

£ =0.0390+0.0002xR
B p-value = 0.8554
a
0.5 J
A, s, .
AA & 2 a a
A =& a Lan o
a D, ba N & &)
0 "§"‘A‘g"‘"a"A""""“"‘L"A'E""A' ............
a a & A a
fn as a8 s a
a a o
Z T & s
a a "
-0.5 n i n oAb L n
1] 10 20 30 40 50 60 70

Distance, R (km)
(b)

FiGure 12: lllustration of IM sufficiency against M and R using p value for the slope with 50 m mining depth. (a) PGV with respect to M.
(b) HI with respect to R.

-value_ M

p

-value_R

p

o
=N

N
S

o
o

S
'S

T T T
Acceleration_related | Velocity_related | Displacement_related | E(;
1 1 1
- | | T
1 1 (=
1 1 1 9
- | | L
1 1 I =
1 1 [ e
1 1 1
— 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
[~ 1 1 1
1 1 1
1 1 1
i | i (0| o vl | 0 el | I T
< < S > ‘g 2L 8 22 5 < = = g Az S =2 B > E A 29 202 3 8
o m & | st z ~ N
g 2 3 < B<EERE<HBEzsB8=E2EK>H o =25 A
[ R > = o= (=)
w ~ w ~ w ~
S & 3
Bl 50m e 150 m
Il 100 m e 300 m
FiGgure 13: Sufficiency comparison of 29 candidate IMs against M for the slopes with different mining depths.
i i ]
Acceleration_related | Velocity_related i Displacement_related | <
B | | 2
1 1 1
f=]
: : i
u ! ! |
=
| | =
1 1 1
— 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
[~ 1 1 1
1 1 1
1 1 1
I 10 1| A T | | e | 7 1 i .
< < =2 > 2L LRSS N AR EA YR
o =4 T ~ =
$ 2 S5< E2ELZELESBEEEZRTOLSEERE D
& 2 & = 3 2 A
3 & 3
Hl 50m mm 150 m
B 100m 0 300 m

FiGUre 14: Sufficiency comparison of 29 candidate IMs against R for the slopes with different mining depths.



Shock and Vibration

50 m 100 m

Correlation
Efficiency
Practicality
Proficiency -
Sufficiency (M)

Sufficiency (R)

T
g
=

2nd

W
B
a

2nd

—_
2
4
—_
2
4
w
=
(=%

SMV

SMV

.—<.

M

FiGure 15: Top 3 correlated, efficient, practicable, proficient, and sufficient IMs for the slopes with different mining depths.

1.0 1.0
50 m
9 0.8 + % 0.8
0 <
=z =
2, 5
Q Q
3 06 g 06
5 2
% 4
£ o4l Z 04
£ £
£ 2
= [=}
02t 0.2
0 ur";' 1 O
0 0.5 1.0 15 2.0
Normalized IM
— SMV Sa(T))
-- PGV --- PGA
()
1.0 : : : 1.0
200 m
o 081 L, 08
K E
153 5y
g 06t g 06
5 5
S S
=} o
Eoal £ 04
§ <
c E
~ 02t 02
0 . 0
0 1.0 2.0
Normalized IM
— HI Sa(T)
- PGV -—- PGA
(c)

100 m

— VSI
- - PGV
(b)
300 m ' I
o5 1

1.0 1.5

Normalized IM
Sa (T))
--- PGA
(d)

2.0

19

FIGURE 16: Unacceptable fragility curves using different IMs for the slopes with different mining depths. (a) 50 m. (b) 100 m. (c) 200 m. (d)

300 m.
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above results, PGV is a relatively better IM among three
commonly used IMs, especially for the slope cases with
depths of 50m and 100 m. Due to the lack of ground-
motion prediction equations (GMPEs) for SMV, VSI, and
HI in the region of interest [62, 63]. FOS hazard curves
using PGV, PGA, and Sa (T}) are obtained after all required
parameters were determined, as shown in Figure 17. It
indicates that the FOS hazard (i.e., the mean exceedance
rate of FOS) using PGV is higher than the ones of PGA and
Sa (T)). For instance, the hazard response with FOS=1.0
using PGV is 1.75 and 1.98 times the ones using Sa (T;) and

PGA for the slope with a mining depth of 50m, re-
spectively. However, the optimality of PGV decreases with
the increase of mining depth, resulting in a gradual de-
crease in the gap of the FOS hazard curves using three
common IMs. They illustrate that seismic IM has great
influence on the FOS response hazard of the open-pit
slopes. The gap may be even more pronounced when
a better IM is used. Therefore, selecting the appropriate
IMs, which is the main focus of this study, is essential to
accurately evaluate the probabilistic seismic performance
and dynamic stability of the open-pit slopes.
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6. Conclusions

This study was mainly focused on the identification of
optimal intensity measures (IMs) for probabilistic seismic
stability and risk assessment of large open-pit mine slope
within the framework of performance-based earthquake
engineering (PBEE) methodology. Four two-dimensional
numerical models of the open-pit slope cases with differ-
ent mining depths were established by using the FEM
software ABAQUS. The randomness of input bedrock
ground motions and the uncertainty of rock properties of the
slopes were also considered. Nonlinear time-history analyses
of the open-pit slopes were performed under a total of 96
nonpulse earthquake records to capture the dynamic re-
sponses in terms of the minimum factor of safety (FOS). 29
candidate IMs against FOS were evaluated by five criteria
including correlation, efficiency, practicality, proficiency,
and sufficiency based on linear regression results of natural
logarithmic space. Furthermore, the five damage states were
defined based on the ranges of FOS of slopes. Seismic fra-
gility curves and FOS hazard curves of the slope cases using
different IMs were compared and discussed. Based on the
investigated results, the mining depth of slopes has signif-
icant impacts on the identification of optimal IMs. More
specifically, the following conclusions can be extracted:

Velocity-related IMs are better than the other three types
of IMs for the open-pit slopes with different mining depths,
and duration-related IMs and displacement-related IMs are
the worst IMs. Furthermore, the optimality of most
acceleration-related IMs decreases gradually with the in-
crease of slope mining depth.

HI, VSI, and SMV can be taken as the best IMs for the
development of PSDM and fragility function of open-pit
slopes with different mining depth. On the contrary, FR2
and Ds_ o5 are the most inappropriate IMs. PGV is superior
to PGA and Sa (T}) among the three commonly used IM.

The seismic fragility curves using optimal IMs are steeper
than those of other IMs under a specified damage state, and
the FOS response hazards using the more appropriate IM are
higher than the other ones because the selection of an ap-
propriate IM can greatly reduce the uncertainty of seismic
fragility and seismic hazard of the open-pit slopes.

Note that, the investigated results presented in this study
are for the factor of safety (FOS) of open-pit mine slopes
using nonpulse ground motions. Future studies are neces-
sary to reveal the impact of different EDPs (e.g., slope
displacement) on the identification of optimal IM and the
effect of near-fieldpulse-type ground motions.
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