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High accuracy and stability in mechanical transmission are crucial for various applications. In spite of the validity of mechanical
enhancements, control algorithms’ fulflment ofers a cost-efective and efcient approach to mitigating the efects of noise signals.
Tis study presents a hybrid algorithm that combines EMD with the least mean square (LMS) error to achieve online denoising.
Within the algorithm, consecutive mean square error (CMSE) and the l2-norm metric are employed to assess the similarity
between intrinsic mode functions (IMFs) and the original signal; therefore, IMFs are separated into three distinct components:
noise components, information components, and mixed components. Te denoised signal is obtained by partial reconstruction.
Subsequently, the denoised signal is employed as a reference signal in the LMS algorithm, which is utilized for practical processing.
Te performance evaluation of the developed algorithm employs simulation and experimental signals. Te obtained results
illustrate that the presented approach achieves sufcient accuracy and stability.

1. Introduction

Precision transmission mechanisms are the core part in
intelligent equipment, such as industrial robot and NC
machine tools, and its performance is one of the key factors
to determine the performance of equipment [1–3]. Tradi-
tional mechanical accuracy improvement is the main way to
enhance the performance of transmission mechanisms
[4, 5]. However, as there are the inherent defects of me-
chanical improvements, such as high manufacture costs and
limited universality, the usage of control algorithm has been
drawn attention by researchers.

As the difculties of mechanical improvement increase,
diferent improvement methods have appeared. Chen et al.
[6] found that the measurement error in angle encoders had
signifcant impact to the whole mechanical transmission
systems and developed an error model of the encoders, and
the error compensation function was applied into RV

reducer, in which operation precision was enhanced obvi-
ously. Signal acquisition is the precondition in control al-
gorithms, and axial vibration and rotation speed are the
main measuring signals in transmission mechanisms;
however, these two signals are measured separately, and the
synchronization of the two signals becomes a key point in
acquisition of transmission mechanism signals. Deng et al.
[7] developed a linear array scanning measuring system, and
the synchronization of two signals was improved efectively.
Torque is one of the key parameters of precision reducer. Yu
et al. [8] presented the no-load torque research with motor
current signature analysis (MCSA) of signal process ap-
proaches. Signals from sensors usually contain noise com-
ponents, and direct usages of them can bring extra errors
into whole systems; for the stability and accuracy, it is
necessary to carry out denoising procedure.

Since the empirical mode decomposition (EMD) algo-
rithm is proposed by Huang et al. [9, 10], it becomes
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a powerful processing tool for nonlinear and nonstationary
signals. Denoising is one of the main operations in the signal
process; EMD is able to separate one intact signal into
diferent parts and provide essential convenience to fulfll
the denoising process. Tere are two strategies used in the
EMD denoising, one is thresholding and the other is partial
reconstruction. Tresholding is a usual denoising strategy, it
has been applied in wavelet denoising, and it is reasonable to
be transferred to EMD [11, 12]. Te EMD partial re-
construction (EMD-PR) is another key tactic for denoising;
the indexes to distinguish noise components and in-
formation components are the focus of research works
[13–15]. Depending on the principle of reconstruction from
some stages of IMFs, Boudraa and Cexus [16] proposed the
index of consecutive mean square error (CMES), which does
not need any prior knowledge for measuring the squared
Euclidean distance between two consecutive reconstructions
of the signal; the criterion of determining the threshold of
CMSE was proposed as well.

Under EMD’s inspiration, several time domain de-
composition algorithms have been produced out, such as
ITD (intrinsic time-scale decomposition), LMD (local mean
decomposition), LCD (local characteristic-scale de-
composition), VMD (variational mode decomposition), and
EWT (empirical wavelet transform), and these algorithms
can fulfll similar strategy to EMD for signal process. Tere
are some excellent advantages in these algorithms; for ex-
ample, the authors of [17, 18] present that ITD has supe-
riorities in robustness and time consumption compared
with EMD.

Neither EMD nor other algorithms can process signal
online, that is, one of the critical limitations for these al-
gorithms, especially for the precision transmission. Training
and conduction are the core ideas of artifcial intelligence
(AI). Te essence of training is information extraction from
typical datasets and derivation mathematical models, and
the conduction is the application of the model to achieve
corresponding targets. Tese ideas are still suitable for
frames of signal processing. Inspiring from this train of
thought, the signal processing can be defned into the 2 steps:
the frst is information extraction and model construction,
and the second is conduction of signal process. Te frst step
can be thought as a training process and the second step
coincides with the conduction step of AI. Te advantages of
EMD and algorithms mentioned above are information
extraction; they are suitable for the frst step, and the next
problem is to search an appropriate model for conduction.

Least mean square (LMS) [19] is one of themost adaptive
flter algorithms; in the algorithm, the instantaneous error is
substituted by MSE (mean square error); the usages of in-
verse matrix and statistic information are avoided, to be
suitable for online processing [20, 21]. Reference signal is
indispensable in LMS processing; however, in operations of
mechanical equipment, it is difcult to acquire accurate
reference signals beforehand. Te combination of EMD and
LMS can perform their advantages, respectively.

Tis paper presents a hybrid technique with EMD and
LMS, which can denoise the sample signals with EMD al-
gorithm preliminarily and carry out flter process with LMS

algorithm instantaneously.Tere are three main steps for the
presented method: (1) EMD decomposition for sample
signals; (2) signals discrimination and reconstruction; and
(3) online processing with LMS. In the frst step, the sample
signals are decomposed into several stages of IMFs with
EMD algorithm. In the second step, the IMFs are separated
into the following three parts: noise components, in-
formation components, and mixed components. To fulfll
the separation, two indexes are used in the identifcation,
one is consecutive mean square error (CMSE) and the other
is similarity measurement of probability density function
(PDF) between IMF and the sample signal, which is
expressed as l2-norm. Furthermore, more specifc in-
structions for the two indexes are presented. Diferent
disposal tactics are applied in these three parts, and denoised
signals are reconstructed. In the last step, the reconstructed
signal is used as reference signal, and LMS algorithm is
applied online denoising for measured signal. Te simula-
tion signal and the practical RV reducer measuring signal
both utilized the presented algorithm.

Te remainder of this paper is organized as follows.
Section 2 is the brief theory of EMD and LMS. Section 3
introduces the framework of denoising methods developed
in this study, and specifc steps of the algorithm are illus-
trated with simulation signal in Section 4. Section 5 presents
the experiments for RV reducer transmission measurement
and the application of the algorithm. Te conclusion and
discussion are summarized in Section 6.

2. Basic Theory

2.1. EMD Algorithm. EMD is a kind of time-region signal
processing algorithm; it especially fts to analyze non-
stationary and nonlinear signal. EMD algorithm uses sifting
process for decomposing original signal into several stages of
IMF. EMD algorithm can be described as the steps shown in
Figure 1.

EMD can decompose a signal into IMFs (intrinsic mode
functions), and IMFs satisfy the following two requirements:
(1) the diference number between extrema points and zero
points is no more than one; (2) the mean of upper envelope
and lower envelope is always zero. Te decomposition
process can be called sifting process, and the properties of
EMD, such as completeness, adaptivity, and orthogonality,
contribute its advantages for analyzing nonstationary and
nonlinear signal.

By decomposing with EMD, the original signal is
decomposed into L-1 stages IMFs hi(t) and one residue r(t).
For the convenience of express, residue r(t) is considered as
one stage of IMF in this paper, and according to the
completeness, the relation between original signal and de-
composition results is as follows:

S(t) � 􏽘
L−1

i�1
hi(t) + r(t) � 􏽘

L

i�1
IMFi(t). (1)

End efect and mode mixing are major drawbacks in
signal processing with the EMD algorithm. In the sifting
process, the end points are treated as extrema, but in fact,
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these points are not extrema defnitely; therefore, the sifting
error will be accumulated and propagated, and eventually,
the end efect in sifting is occurred. Mirror extending [22]
and sequence prediction [23] are usually used to relieve the
end efect. Mode mixing refers to an IMF which contains
multiple modes or a mode scatter in diferent IMFs, and this
phenomenon relates with discontinuous change of signal.
Mode mixing leads to difculty for extracting accurate in-
formation. For resolving this problem, Wu and Huang [24]
introduced a noise-assisted data analysis (NADA) approach,
named ensemble EMD (EEMD). Te basic procedure of

EEMD is addition of white noise into the signal and then
ensemble step will ensure that the efect of addition of white
noise is reduced to mean zero statistically. EEMD has
achieved the satisfactory results in denoising [25, 26].

2.2. LMS Algorithm. Te LMS flter originates from the
linear diferential model as shown in the following equation:

y(n) � 􏽘
L−1

m�0
wm(n)x(n − m) � wT

(n)x(n), (2)

where x(n) is the signal of input, y(n) is the signal of output,
wm(n) is the weight of the flter, and L is tap-length. Also, the
error between reference signal and flter output is defned as
follows:

e(n) � d(n) − y(n) � d(n) − wT
(n)x(n), (3)

where d(n) is the reference signal and e(n) is the error
between reference signal and flter output y(n). Under the
condition of the least mean square error (MSE), the weight
matrix is as follows:

􏽢w � R− 1P, (4)

where R is the auto-correlation matrix of input signal x(n), P
is the cross-correlation vector between input signal x(n) and
reference signal d(n), and 􏽢w is the estimation of weight
vector. In the practice, R and P are difcult to be acquired,
and the optimization criterion of MSE is substituted by
instantaneous error square; so, the estimation for gradient
can be expressed as the following equation:

z e(n)
2

􏽨 􏽩

zw
� 2e(n)

z[e(n)]

zw
� −2e(n)x(n). (5)

Deriving from equation (5), the weight vector update
equation can be expressed as follows:

w(n + 1) � w(n) −
1
2
μ

z e
2
(n)􏽨 􏽩

zw
� w(n) + μe(n)x(n),

(6)

where μ is the step size, and for the convergence of the
algorithm, the step size μ should comply with rule as shown
in the following equation:

0< μ<
2

λmax
,

0< μ< 1,

(7)

where λmax is the max auto-correlation matrix eigenvalue.

3. Framework of EMD-LMS Denoising Method

In general, EMD algorithm is not able to process the signal
online; this is a major limitation in its application. Te LMS
algorithm is one of the adaptive flter algorithms, and it can
fulfll the real-time signal process; however, in the process of
this algorithm, the reference signal is the prerequisite, and in
most practice situations, difcult determination of accurate

Original signal
X0 (t), i=1

Sk-1 (t)=Xi-1 (t), k=1

Identifying all local
maximum and

minimum of Sk-1 (t)

Interpolating upper
envelope Uk-1 (t) and

lower envelope Lk-1 (t)

Calculating envelops
mean Mk-1 (t)

Calculating
hi (t)=Sk-1 (t)-Mk-1 (t)

Is hi (t) an IMF
No

S k (t
)=

h i (t
), 

k=
k+

1

Yes

Yes

Yes

No
Is Sk (t) a residue?

Residue:r (t)=Sk (t)

Decomposition is end

Si (t)=Xi-1 (t)-hi (t),
k=k+1, i=i+1

Figure 1: Flow chart of EMD algorithm.
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reference signal is the main obstacle for the LMS application.
Te mode of training and implementation of machine
learning is used as reference, and EMD provides powerful
processing capacity of training dataset, and LMS fulfls
advantages of instantaneous processing; as a result, the
combination of EMD and LMS can overcome the respective
defects and provide an efective approach for signal
denoising process.

Te EMD-LMS hybrid approach uses the signal pro-
cessed by EMD as the reference signal and processes the real-
time input signal with LMS. Te outline of approach can be
described as shown in Figure 2. Te specifc steps are as
follows:

(1) Carry out EMD decomposition with typical signal
and acquire the IMFs and residual r(t),

S(t) � 􏽘
L−1

i�1
hi(t) + r(t) � 􏽘

L

i�1
IMFi(t). (8)

(2) Separate IMFs into noise components, mixed
components, and information components. Te
noise components refer to the stages of IMF which is
dominated by noise, the mixed components refer to
the stages of IMF in which the proportions of noise
and information are close, and the information
components refer to the stages of IMF which is
dominated by authentic signal.
To separate IMFs into 3 parts, the works to measure
characteristic of IMFs are essential, and there are two
indexes for distinguishing IMFs. In this paper, CMSE
and l2-norm are used as key indexes to fulfll IMFs
measurement.

(3) Partial reconstruction is carried out regarding as the
IMFs distinguishing. Noise components are re-
moved directly, information components are used in
reconstruction directly, and the noise and in-
formationmixed components should be processed in
advance; then, they are used in the reconstruction,
and denoising process of reference signal is fnished.

(4) Te reconstruction result is used as reference signal,
and real operation signal inputs the LMS flter to
fulfll process. For the LMS algorithm, tap-length is
a key parameter; to obtain its optimum, calculate the
error of flter and determine the appropriate tap-
length.

(5) Te real operation signal inputs into the LMS flter
and the iteration calculation is carried out, and the
denoised signal of real signal is output.

4. Denoising for Simulation Signal

4.1. EMD Process. To present the approach in detail,
a simulation signal is introduced. In operation of trans-
mission mechanisms, the signal usually contains vibration
signal, fuctuation signal, periodic harmonic signal, and
noise signals from diferent sources. A synthetic signal is
given as follows:

S(t) � x1(t) + x2(t) + x3(t) + x4(t) + x5(t), (9)

where x1(t) is the modulated signal and can be written as
follows:

x1(t) � A1[a(t)]cos 2πfmt + φ1( 􏼁, (10)

where a(t) is the modulation function; it can be written as
follows:

a(t) � 􏽘
N

n�1
A0 cos 2πnfrt + αn( 􏼁. (11)

Te second component x2 is the diriclet signal, which
represents fuctuation in the process of mechanism rotation;
it can be written as follows:

x2(t) �
sinc[7π(t − 1)]

sinc[π(t − 1)]
. (12)

Te third and fourth components both are harmonic
signal; it can be written as follows:

Input typical signal for
process

Perform operation of EMD,
and acquire the IMFs

Separate IMFs into3 parts,
noise components, noise and

information mixed
component information

components

Partial reconstruction of
IMFs, results as reference

signal in LMS

Tap-length of LMS optimize

Implement online denoising
with LMS

Figure 2: Te outline of the proposed EMD-LMS hybrid fltering
algorithm.
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x3 ,4(t) � A3,4 sin 2πf3,4t􏼐 􏼑. (13)

Sensor noise is the main efect for control accuracy of
mechanical transmission, thermal noise, shot noise,
generation-recombination noise, and 1/f noise which are the
main noise sources in sensors [27]. Tese noise sources are
approximate Gaussian distribution except 1/f noise; hence,
simulation signals of sensors usually use AWGN (additive
white Gauss noise) to simulate noise component in practical
situations [28]. Te component x5 is white noise signal. Te
simulation signals are displayed in Figure 3.

Te signal S(t) is decomposed by EEMD, with noise
selected at a standard deviation of 0.5 and 200 ensemble
number. Te decomposition results are shown in Figure 4.

Te lower stage IMFs are at higher frequency, and they
include more noise components. Te higher stage IMFs are
at lower frequency, and they include more information
components. Tis characteristic provides a reliable way to
reveal the useful information from nonstationary and
nonlinear signals. How to distinguish which stages are
dominated by noise component and which stages are
dominated by information component are the key problems
for information extract and flter. For the selection of
credibility and certainty, some indexes should be introduced
into the analysis for EMD decomposition results.

4.2. CMSE for IMFDiscrimination. It can be assumed that as
the stage number increases from frst to residual, the os-
cillation frequency of IMF will decrease, and there are less
noise components and more information components in
IMFs. Based on this assumption, at initial stage, the IMF is
dominated by noise components; as the stage increases, the
energy of noise components decreases, and the energy of
information increases. Eventually, there is a certain stage
number of IMF, and the energy of information components
transcends the noise. Behind this certain stage, the IMFs are
dominated by information components. Boudraa and Cexus
[16] developed consecutive mean square error (CMSE); it is
derived from signal estimation index and mean square error
(MSE). In the MSE, the authentic signal should be acquired
in advance, but in the signal denoising and estimation, it is
difcult to obtain the authentic signal beforehand, and MSE
cannot be used in the process directly. CMSE presents an
efective approach to measure the squared Euclidean dis-
tance between the two signals. Te CMSE is defned as
follows:

CMSE 􏽥yk, 􏽥yk+1( 􏼁 �
1
N

􏽘

N

j�1
􏽥yk tj􏼐 􏼑 − 􏽥yk+1 tj􏼐 􏼑􏽨 􏽩

2

�
1
N

􏽘

N

j�1
IMFk tj􏼐 􏼑􏽨 􏽩

2
,

(14)

where the 􏽥yk is indicated as follows:

􏽥yk � 􏽘
L−1

i�k

hi(t) + r(t) � 􏽘
L

i�k

IMFi(t)􏼂 􏼃. (15)

According to the characteristic of the IMFs distribution,
the initial stage of IMFs is almost noise components, and as
the stage increases, the noise components will decrease, and
the CMSE will decrease. When the decrease of noise
components reaches a certain level, the CMSE will reach at
local minimum. After this local minimum, the information
components will increase. So, the variance of CMSE value
can indicate the variance of proportion between noise and
information components. According to the presentation in
[16], the criterion of cut-of point is defned as follows:

M1 � argmin
1≤k≤L−1

CMSE 􏽥yk, 􏽥yk+1( 􏼁􏼂 􏼃. (16)

Te developed approach in this paper separates IMFs
into 3 parts, the authors of [16] use equation (16) to separate
IMFs into 2 parts, and if equation (16) is used directly as the
criterion of cut-of point in the presented approach, it will
lead to contradiction. Usually, there are several local min-
imums of CMSE; equation (16) neglects fuctuation of
proportion between noise and information components.
Because noise components mainly exist in initial stages of
IMFs, the frst local minimum using as cut-point would be
more reasonable. Tis paper adjusts the criterion of CMSE
into the following expression:

M1 � arg first localmin
1≤k≤L−1

CMSE 􏽥yk, 􏽥yk+1( 􏼁􏼂 􏼃. (17)

Tis criterion brings the M1 forward and recognizes less
stages as noise signals; meanwhile, some IMFs mixed with
noise components and information components are
retained in remaining IMFs; it is necessary to deal with these
IMFs. Comparing with equation (16), the selected-out noise
IMFs decrease and the accuracy is improved consequently.

Te CMSE fuctuation of simulation signal is shown in
Figure 5. In the plot, the CMSE reaches the frst local
minimum at the 3rd stage, according to equation (16), the
IMFs of 1–3 stages are dominated by noise, and these three
stages of IMFs can be removed in the reconstruction.

4.3. l2-Norm for IMFDiscrimination. CMSE can select out
the IMFs dominated by noise components, there are still
some stages of IMFs mixed with noise components and
information components, and other stages of IMFs are
dominated by information components. At the end stages
of IMFs, they are dominated by information components;
so, they are more similar with original signal than initial
stages of IMF, and it is reasonable to consider the higher
stages of IMF which are dominated by information
components.

Te probability distribution function (PDF) represents
the data distribution shape of signal, PDF can provide more
robust and accurate metric for measuring similarity than
signal dataset of time domain. Geometric indexes are usually
used to measure quantity characterization of the similarity,
and l2-norm is suitable to express Euclidean distance be-
tween two datasets. P0 and P1 are assumed as PDFs of two
signals, respectively, and the l2-norm can be written as
follows:
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P0 − P1
����

����2 � 􏽚
+∞

−∞
P0(y) − P1(y)􏼂 􏼃

2dy􏼚 􏼛
1/2

. (18)
According to the l2-norm, the similarity between the

original signal and each stage of IMF can be calculated by the
following equation:

dist Ps, PIMFi( 􏼁 � norml2
(i) � Ps − PIMFi

����
����2 � 􏽚

+∞

−∞
Ps(y) − PIMFi(y)􏼂 􏼃

2dy􏼚 􏼛
1/2

, (19)

where Ps(y) is the PDF of original signal and PIMFi(y) is the
PDF of the IMF of No. i stage. Te stage number selected for
cut-of point usually is defned as follows:

M2 � argmax
1≤k≤L

dist Ps, PIMFi( 􏼁􏼂 􏼃 � argmax
1≤k≤L

􏽚
+∞

−∞
Ps(x) − PIMFi(x)􏼂 􏼃

2dy􏼚 􏼛
1/2

. (20)
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Figure 3: Te plot of simulation signal. (a) Te component x1(t), (b) the component x2(t), (c) the component x3(t), (d) the component
x4(t), (e) the component x5(t), and (f) the synthetic signal S(t).
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For some signals, their M2 index is too large, approxi-
mate or even equal to the last stage. In practice, the IMFs of
the last three stages are dominated by information com-
ponents; so, the M2 should not be more than L-3. Te se-
lection process is shown in Figure 6.

Te PDF comparison between simulation signal and
respective IMF is shown in Figure 7. Te l2-norm of
simulation signal is shown in Figure 8. In the diagram, there
are 3 local maximum points. Although the IMF of the last
stage is the global maximum, its stage does not conform to
the criterion of being less than L-3, and the last stage is
excluded according to the judge criterion. Te frst local
maximum of l2-norm is at the IMF of the 2nd stage, the
second local maximum at the IMF of the 6th stage, and the

third local maximum is at the IMF of the 9th stage.Te third
local maximum is the largest and it conforms the criterion of
being less than L-3; so, the parameter M2 can be determined
as 9.

IMFs from 1 to M1 stages are considered as noise
components and should be removed in the process of re-
construction. IMFs from M1 + 1 to M2 are considered as
components mixed with noise and information, and after
being denoised, these IMFs can be used in the reconstruction
process components. IMF stages from M2 to the last are
considered as information components and can be used in
the process of reconstruction directly.

4.4. Testifying Validity of IMF Selection Indexes. Above the
context, the selection approaches of M1 and M2 are pre-
sented. Tese indexes separate IMFs into the following three
parts: noise components, mixed components, and in-
formation components. For ensuring accuracy of denoising
results, it is necessary to testify the feasibility and validity of
M1 and M2 indexes. Te energy of signal is usually used in
reviewing the selection efectiveness of signal [29, 30].

Te IMF dominated by noise components are of dif-
ferent trend with IMFs dominated by information com-
ponents. As the stage increases, the distinction between
energy of IMFs and corresponding noise signal will expand.
Energy comparison between noise signal and the actual
IMFs can be used in testifying the validity of parameter
selection. In this analysis approach, how to calculate noise-
only signal is a tricky problem. According to characteristic of
EMD, the IMF of the frst stage can be assumed as noise-only
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Figure 4: EEMD decomposition results of the simulated signal S(t).
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signal. As Hurst exponent is 0.5, the noise signal will be the
Gauss white noise, and its mean is zero, the variance could
represent the energy of noise signal. Te energy of the frst
IMF can be calculated as follows:

E1 � 􏽢σ21, (21)

where 􏽢σ1 is the variance of the IMF of the frst stage. Mallat
[31] proposed an efective calculation approach as shown in
the following equation:

σ1 �
median IMF1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌: t � 1, 2, · · · , N􏼐 􏼑

0.6745
, (22)

where N is the length of signal.
Te energy of subsequent stage in noise-only signal can

be estimated by equation (23) proposed by Flandrin et al.
[32], which presents an efective approach to acquire the
energy of subsequent stages.

E
⌢

k � CHρH
− 2(1− H)k

, (23)

where CH can be defned as follows:

CH �
E1

β
. (24)

In the equation, H is the Hurst exponent, and its value is
0.5. Under this condition, the noise signal is Gauss white
noise, and the parameters β and ρ are 0.719 and 2.01, re-
spectively, according to [32].

Energy comparison between theoretical noise-only IMFs
and actual IMFs of the original signal is shown in Figure 9. In
the diagram, the IMFs energy of original signal IMF from 1
to 3 stages is very close to energy of the theoretical noise-
only, and it is reasonable to discard the IMF from 1 to 3
stages as noise signal in the denoise process. From 4 to the
end stage, the energy of IMF starts to diverge the noise-only
signal, but the deviation is fuctuant around the theoretical
line. It can be concluded that noise components in IMFs
after the 3rd stage reduce and information components
increase. At the last, in a few stages, the deviation is en-
larging, and it can be concluded that these stages are
dominated by information components. Comparing the

current results with M1 and M2, M1 coincides the current
result and M2 is not equal to the current results exactly but is
close. Considering the accuracy fuctuation of energy ap-
proach, the approach presented in this paper is close to the
actual situations, and the efectiveness is testifed.

According to the calculation results of M1 and M2, IMFs
from 1 to 3 are dominated by noise, they are wiped of
directly, IMFs from 4 to 9 stages are mixed with information
and noise, the further process is needed for denoising the
noise components, and the IMFs from 10 to the last can be
used in reconstruction directly.

4.5. Signal Part Reconstruction. Kalman flter (KF) is an
efective approach to estimate instantaneous state of a linear
dynamic system contaminated with noise signal, and it can
achieve the statistical optimum with respect to quadratic
function of estimator error.

As Kalman flter is used in denoising, actually the al-
gorithm estimates the current value under the involvement
of noise, the process mainly includes two steps, presented as
follows:

(1) Predicting the current state value and error co-
variance derived from the previous state value

(2) Correcting the current state value and error co-
variance derived from the predicting value and the
measurement value

Te KF is applied for denoising the IMFs stage from
stages 4 to 9, IMFs mixed with information, and noise
components; the results are shown in Figure 10. According
to the diagram, the KF can restrain the noise components
of IMFs.

Te IMFs from 1 to 3 stages are noise components, they
are wiped of directly in reconstruction, the IMFs from 4 to 9
stages are mixed components, KF fltering results can be
used in reconstruction, and the IMFs from 10 to 13 stages
can be used in reconstruction directly. Te result of
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reconstruction is shown in Figure 11, and Sf(t) is the signal
fltered through original simulation signal S(t). Te re-
construction signal restrains the noise components in
original signal efectively, the signal-noise-ratio (SNR) of
signal is enhanced from 1.60 to 6.49.

4.6. Simulation Signal Denoising with LMS. Te re-
construction signal can be regarded as the reference signal
and then online simulation signal can be denoised by the
LMS algorithm. Te tap-length is a key factor to afect the
calculation consumption and stability, and it is necessary to
determinate appropriate tap-length. In this paper, the MSE
is used as index to depict the optimality of tap-length.
Figure 12 displays the MSE variation with the tap-length.
When the tap-length is 2, the MSE of LMS output is 0.25, as
the tap-length is increasing, the MSE is decreasing. When
the tap-lengths have increased around 20, the MSE will
decrease slowly; consequently, tap-length can be evaluated
as 20.

In LMS processing, step size is a key parameter for the
stability and rate of convergence; therefore, variable step size
becomes an efective action to achieve better results. Nor-
malization is a useful processing to improve stability of the
algorithm [33], and in LMS, the step size normalization can
be defned as follows:

μ(n) �
μ

‖x(n)‖
2
2
, (25)

where μ is the initial step size of LMS and x(n) is the value of
input signal of LMS at nth time.

Sigmoid function is one of the most universal ap-
proaches for step size adaptive adjustment [34], and it can be
expressed in the following equation:

μ(n) � b
1

1 + e
− a|e(n)|

−
1
2

􏼠 􏼡, (26)

where a and b are positive constants and e(n) is the LMS
error at nth time.

To achieve a better efect, normalization and sigmoid
function are combined as follows:

μ(n) � b
1 − e

−a|e(n)e(n−1)|

r +‖x‖
2
2

􏼠 􏼡, (27)

where r is constant from 0 to 1. In this paper, equation (27) is
applied in LMS processing.

Te simulation signal S(t) is used as input signal, the
denoised signal Sf(t) is used as reference signal, and the tap-
length is 20.Te processed signal by LMS algorithm is shown
in Figure 13. Te SNR of LMS output is 5.72; the efect of
denoising is improved further.

4.7. Comparison with Related Algorithms. Wavelet thresh-
olding, EMD-IT (EMD interval thresholding) and
EMD-PR (EMD part reconstruction) are the main algo-
rithms for nonstationary signal denoising, and compar-
isons between them and presented in this paper are
carried out, and for the consistency, EEMD is applied in
EMD-IT and EMD-PR. Te denoising results of simula-
tion signals with wavelet thresholding, EEMD-IT, and
EEMD-PR are shown in Figure 14. Te accuracy of
denoised results comparison is shown in Table 1. Te
simulations are performed on the MATLAB (2020a) that
is installed on a computer with 1.8 GHz Intel Core i7-
8550, 16 GB RAM, and the comparisons of calculation
time cost are shown in Table 2.
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Figure 10: Te diagram of KF flter results of IMFs from 4 to 9 stages.
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Te algorithm presented in this paper has two stages,
EEMD-PR and LMS, respectively, EEMD-PR provides efects of
reference signal training, and LMS fulfls denoising process
online. In the comparisons, the EEMD-PR and LMSused in this
paper are compared with related algorithms, respectively.
According to Figure 14 and Table 1, the algorithm of this paper
has higher accuracy, and the trend of signal variation and details
can be retained in the results efectively. EEMD-ITand wavelet
thresholding can retain the trend of signal variation but useful
details are neglected. However, EEMD-PR cannot distinguish
useful details and noise, and efectiveness is depressed severely.

According to [35], nm IMFs are extracted from signal
with length n, where nm ≤ log

n
2, the space complexities of

EMD-PR (with pdf), EMD-IT (with pdf) are approximate
[(13 + nm)n+ 100nm + n] and [(13 + nm)n+ 100nm + 100nm],
respectively, due to EEMD is applied in this paper, and
ensemble number is 200, and in this condition, the
EEMD-PR (with pdf) and EEMD-IT (with pdf) are [200
(13 + nm)n+ 100nm + n] and [200 (13 + nm)n+ 100nm +
100nm]. EMD consumes considerable amount of storage
resources, although EEMD can improve accuracy, in-
cremental consumptions of storage are inevitable.
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Figure 12: Te diagram of MSE changing with tap-length.
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Figure 14: Denoising results with related algorithms. (a) Denoising results with EEMD-PR and sample entropy. (b) Denoising results with
EEMD-IT. (c) Denoising results with wavelet thresholding.
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Time consumptions of EEMD-PR in this paper,
EEMD-PR with sample entropy, EEMD-IT are comparable,
primarily due to the dominant time consumption of EEMD.
For the long processing time, these 3 algorithms are not
suitable for the online applications. Tis paper EEMD-PR is
used for acquisition of reference signal beforehand; storage
and time consumptions will not afect practical application.
LMS has quick enough response and less storage spaces;
therefore, the algorithm presented in this paper is able to
satisfy application requirements.

5. The Application in Precise
Mechanical Transmission

RV reducer is a widely used precise transmission mecha-
nism, which is combined with cycloid-pin reducer and
planetary reducer. In engineering application, the control
system depends on the measuring facilities to achieve the
control accuracy, even the reducer has good kinematic
quality, and the sufcient precise measuring data are still
a critical factor to fulfll the ideal performance for the whole
system.Te presented approach is applied in the RV reducer
motion parameters denoising to acquire the more accurate
data. Te experiments are conducted on a dedicated mea-
surement platform.

5.1. Te Experiment Facilities and Results. Usually, the
measurement results of transmission motion are used
directly for control and monitoring. In actual working
condition, however, measurement results include non-
negligible noise, the signal including noise will lead to the
extra error, unsmooth output; in extreme situation, it can
lead to system instability. Under the requirement of
precise transmission, it is necessary to process the output
motion parameter and acquire more precise and
smooth data.

For the purposes mentioned above, the measurement
facilities of precision reducer motion are developed, as
shown in Figure 15, and experiments are carried out. Te
model of reducer is RV-40E, and its transmission ratio is 121,
due to the large diference between input and output, the
Kistler 4502A and 4503A are used respectively to measure

the velocity and torque. Te test conditions are separated at
1000 r/min, 2000 r/min, and 3000 r/min, and the in-
stantaneous rotation speed and torque are collected; the
sample frequency is 1 kHz.

Te experiment data at diferent conditions are shown in
Figure 16; the coefcient of variation is all narrow in the
rotation speed of input and output; this indicates that the
rotation speed is stable in the reducer operation, and noise
components can be ignored.

However, in all three conditions, there are tremendous
changes of torque in the operation process, and the co-
efcient of variation of torque is much larger than the ro-
tation speed. It can be concluded that the noise components
cannot be ignored, and it is necessary to wipe of the noise
composition.

5.2. Te Denoising of Torque Signals. Te input torque and
the output at 3 items of condition are decomposed by EMD
and the results are shown in Figure 17.

Te CMSE calculation is shown in Figure 18, and the
PDF of IMF and original signals are shown in Figure 19; the
l2-norm of torque is shown in Figure 20. No matter which
rotation speed, the CMSE of the last stage IMF is obviously
larger than other CMSE of the initial stages of IMF, which
means the information components are dominant in the last
stage signal and coincides the situation in which operation

Table 1: Te accuracy comparisons of related algorithms.

EEMD-PR in
this paper

LMS in this
paper

EEMD-PR with
sample entropy EEMD-IT Wavelet

SNR 6.49 5.72 5.77 −5.22 4.61
RMSE 0.4454 0.4804 0.5166 0.5398 0.4571
MAE 0.3625 0.3912 0.4104 0.4367 0.3786

Table 2: Te time cost comparisons of related algorithms.

EEMD-PR in
this paper

LMS in this
paper

EEMD-PR with
sample entropy EEMD-IT Wavelet

Time cost(s) 35.1606 0.0815 32.7806 34.1204 0.7829

Figure 15: Picture of facilities for precision reducer motion. (1)
Motor, (2) motor plate, (3) input coupler I, (4) input sensor, (5)
input coupler II, (6) RV reducer, (7) reducer plate, (8) output
coupler I, (9) output sensor, (10) senor platform, (11) output
coupler II, (12) load mechanism, and (13) bottom plate.
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Figure 16: Continued.
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Figure 16: Te experiment data of motion parameter under diferent conditions. (a) Measuring motion parameters data at 1000 r/min. (b)
Measuring motion parameters data at 2000 r/min. (c) Measuring motion parameters data at 3000 r/min.

(a)
Figure 17: Continued.
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(b)

(c)
Figure 17: Continued.
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(d)

(e)
Figure 17: Continued.
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(f )

Figure 17: EMD results of torque at diferent rotation speeds. (a) Te EMD results of input torque at 1000 r/min. (b) Te EMD results of
output torque at 1000 r/min. (c)Te EMD results of input torque at 2000 r/min. (d)Te EMD results of output torque at 2000 r/min. (e)Te
EMD results of input torque at 3000 r/min. (f ) Te EMD results of output torque at 3000 r/min.
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Figure 18: Te diagram of CMSE index of torque. (a) CMSE of input torque IMF at 1000 r/min. (b) Part of CMSE of input torque IMF at
1000 r/min. (c) CMSE of output torque IMF at 1000 r/min. (d) Part of CMSE of output torque IMF at 1000 r/min. (e) CMSE of input torque
IMF at 2000 r/min. (f ) Part of CMSE of input torque IMF at 2000 r/min. (g) CMSE of output torque IMF at 2000 r/min. (h) Part of CMSE of
output torque IMF at 2000 r/min. (i) CMSE of input torque IMF at 3000 r/min. (j) Part of CMSE of input torque IMF at 3000 r/min. (k)
CMSE of output torque IMF at 3000 r/min. (l) Part of CMSE of output torque IMF at 3000 r/min.
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Figure 19:Te diagram of PDF of original torque signal and IMF. (a)Te PDF of original signal and IMF at 1000 r/min input torque. (b)Te
PDF of original signal and IMF at 1000 r/min output torque. (c)Te PDF of original signal and IMF at 2000 r/min input torque. (d)Te PDF
of original signal and IMF at 2000 r/min output torque. (e) Te PDF of original signal and IMF at 3000 r/min input torque. (f ) Te PDF of
original signal and IMF at 3000 r/min output torque.
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load is stable. Tere is one peak in the PDF of input torque,
there are multiple peaks in the PDF of output torque, and it
can infer that the reducer brings extra disturbance and will
afect the stability of operation.Te respective shapes of IMF
PDFs are concentrated; it indicates the EMD algorithm can
efectively extract monotonous component from the torque
signal. Te l2-norm of upper stages of IMFs is much larger
than the lower stages of IMFs that the upper stages are

dominated by information. For the torque denoising, the
information components mainly locate in specifc stage, and
the band of stage related with information components is
narrow.

According to the calculation results of CMSE and l2-
norm, IMFs of torque can be separated noise components,
mixed components, and information components, the
consequences are shown in Table 3.
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Figure 20: Te diagram of l2-norm of simulation signal. (a) l2-norm of input torque at 1000 r/min. (b) l2-norm of output torque at
1000 r/min. (c) l2-norm of input torque at 2000 r/min. (d) l2-norm of output torque at 2000 r/min. (e) l2-norm of input torque at
3000 r/min. (f ) l2-norm of output torque at 3000 r/min.

Table 3: Te stage numbers of 3 torque signal parts.

Input torque
at 1000 r/min

Output torque
at 1000 r/min

Input torque
at 2000 r/min

Output torque
at 2000 r/min

Input torque
at 3000 r/min

Output torque
at 3000 r/min

Noise components 1–5 1–5 1–3 1-2 1–6 1-2
Mixed components 6–9 6–8 4–9 3–9 7–10 3–5
Information components 10–14 9–14 10–14 10–14 11–14 6–14

Shock and Vibration 23



0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
time (s)

0.02

0

-0.02

0.01

0

-0.01

2

0

-2

5

0

-5

IM
F6

IM
F8

IM
F9

IM
F7

× 10-3

× 10-3

orignial signal
KF results

(a)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
time (s)

0.2

0.1

0

-0.1

0.1

0.05

0

-0.05

-0.1

0.1

0.05

0

-0.05

-0.1

IM
F6

IM
F7

IM
F8

orignial signal
KF results

(b)
Figure 21: Continued.

24 Shock and Vibration



0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
time (s)

0.1

0

-0.1

0.05

0

-0.05

0.02

0

-0.02

0.01

0

-0.01

5

0

-5

2

0

-2

IM
F4

IM
F5

IM
F6

IM
F7

IM
F8

IM
F9

× 10-3

× 10-3

orignial signal
KF results

(c)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
time (s)

0.5

0

-0.5

0.1

0

-0.1

0.2

0

-0.2

0.2

0

-0.2

0.2

0

-0.2

0.1
0

-0.2
-0.1

0.1
0

-0.2
-0.1

IM
F3

IM
F4

IM
F5

IM
F6

IM
F7

IM
F8

IM
F9

orignial signal
KF results

(d)
Figure 21: Continued.

Shock and Vibration 25



0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
time (s)

0.02

0

-0.02

0.01

0

-0.01

5

0

-5

2

0

-2

IM
F7

IM
F8

IM
F9

IM
F1

0

× 10-3

× 10-3

orignial signal
KF results

(e)

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9
time (s)

0.5

0

-0.5

0.2

0

0.1

-0.2

-0.1

0.2

0

0.1

-0.1

IM
F3

IM
F4

IM
F5

orignial signal
KF results

(f )

Figure 21: Kalman flter results for mixed components. (a) Kalman flter results for mixed components of input torque at 1000 r/min. (b)
Kalman flter results for mixed components of output torque at 1000 r/min. (c) Kalman flter results for mixed components of input torque
at 2000 r/min. (d) Kalman flter results for mixed components of output torque at 2000 r/min. (e) Kalman flter results for mixed
components of input torque at 3000 r/min. (f ) Kalman flter results for mixed components of output torque at 3000 r/min.
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Figure 22: Te diagram of denoised torque. (a) Te denoised input torque signal at 1000 r/min. (b) Te denoised output torque signal at
1000 r/min. (c)Te denoised input torque signal at 2000 r/min. (d)Te denoised output torque signal at 2000 r/min. (e) Te denoised input
torque signal at 3000 r/min. (f ) Te denoised output torque signal at 3000 r/min.

Table 4: SNR comparison between original and denoised signals.

Input torque
at 1000 r/min

Output torque
at 1000 r/min

Input torque
at 2000 r/min

Output torque
at 2000 r/min

Input torque
at 3000 r/min

Output torque
at 3000 r/min

Original signal SNR 15.68 25.80 −1.37 23.68 −0.48 19.69
Denoised signal SNR 29.64 31.44 25.18 40.32 27.30 28.90
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For the mixed components of torque, the Kalman flter
process is carried out to get rid of noise from the IMFs. Te
results processed by the Kalman flter are shown in

Figure 21. According to the CMSE and l2-norm calculating
results, the noise components of IMFs are removed directly
and the mixed components of IMFs are counted in; after
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Figure 23:Te diagrams of tap-length optimization. (a) LMS output MSE changing with tap-length for input torque at 1000 r/min. (b) LMS
output MSE changing with tap-length for output torque at 1000 r/min. (c) LMS output MSE changing with tap-length for input torque at
2000 r/min. (d) LMS output MSE changing with tap-length for output torque at 2000 r/min. (e) LMS output MSE changing with tap-length
for input torque at 3000 r/min. (f ) LMS output MSE changing with tap-length for output torque at 3000 r/min.

Table 5: Te optimum tap-length of LMS.

Input torque
at 1000 r/min

Output torque
at 1000 r/min

Input torque
at 2000 r/min

Output torque
at 2000 r/min

Input torque
at 3000 r/min

Output torque
at 3000 r/min

LMS tap-length 36 20 40 18 40 20
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the flter process is carried out by Kalman flter algorithm,
the information components of IMFs are counted in di-
rectly, the results of reconstructed torque signals are shown
in Figure 22.Te SNR comparisons between original signal and
denoised signal are shown in Table 4; the quality of signal is
improved prominently by EMD algorithm. Te outcomes of
denoising torque signal are improved in the smoothness and
stability, and the interference factors, such as sensor stochastic
error and dynamic disturbance of couple, are depressed.

In the mechanical transmission, the motion parameters
are requested to process in real-time, although EMD ofers an
efective approach to acquire denoised signal, the requirement
of process in real-time is not satisfed, and the LMS combined
with EMD can conquer disadvantages of EMD.

For calculating the optimum of tap-length, the MSE is
used as index to evaluate, and the results are shown in
Figure 23, and optimum of tap-length is shown in Table 5.
Te LMS algorithm is carried out, and the result is shown in
Figure 24. Te results indicate the LMS can appropriately
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Figure 24:Te results of LMS flter for torque. (a)Te LMS flter of input torque at 1000 r/min. (b)Te LMS flter of output torque at 1000 r/
min. (c)Te LMS flter of input torque at 2000 r/min. (d)Te LMS flter of output torque at 2000 r/min. (e)Te LMS flter of input torque at
3000 r/min. (f ) Te LMS flter of output torque at 3000 r/min.
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process no-denoised torque signal, the denoising error is
narrow, and its efect can match with EMD algorithm, and
LMS algorithm can fulfll denoising processing.

6. Discussion and Conclusion

Not only the core transmission facilities, such as RV reducer,
but also the accurate kinetic parameter measurements are the
critical factors in precise transmission.Tis paper focuses on the
efcient approach to extract the more authentic signal from the
transmission systems. Te extraordinary advantages of EMD
enable its outstanding power to processing signal, but non-
instantaneous limitation restricts it to conduct online assign-
ment. Te combination between EMD and LMS is carried out,
and the specifc procedures are presented in this paper and
illustrated in the simulation signal and experiment signals.

In the processing, the CMSE and l2-norm are employed
to discriminate the diferent components of IMFs. Te
EMD-PR strategy is applied in the denoising, the noise
components of IMFs are discarded directly, the mixed
components of IMFs will be counted in the reconstructed
signal after being processed, and the information compo-
nents will be used in the reconstruction directly. Diferent
from the regular works of using threshold approach to
denoising, the Kalman flter is applied in the denoising for
mix components of IMFs.Te reconstructed signal is used as
reference signal in LMS processing. Tis hybrid approach
can be evolved with diferent algorithms with diferent time-
domain decomposition and diferent online flter methods.

Te RV reducer experiments are carried out; kinetic
parameters, rotation speed, and torque are measured in the
experiments, especially the torque signal exists in amount of
proportion of noise.Te developed algorithm in this paper is
conducted in simulation signal andmechanical transmission
signal, and the EMD-LMS hybrid algorithm realizes high
quality denoising.

Additionally, the proposed denoising approach pos-
sesses the ability to be applied to not only mechanical
transmission but also other areas to process signal in time.
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