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In order to improve the performance and efciency of the rotating cylindrical shell (RCS), one of the efective ways reduces the
mass of the RCS.Te scientifc and efective method is to design the variable thickness of RCS (VTRCS) along the axial direction in
response to this demand.Ten, the vibration traveling wave characteristics of VTRCS are investigated by Chebyshev–Ritz method.
Te displacement feld of the cylindrical shell is expanded in the form of the product of the Chebyshev polynomial and the
boundary function. Te kinetic and potential energies of the VTRCS are calculated based on the Sanders shell theory considering
the efects of Coriolis forces and centrifugal forces. Also, the frequency equation of the VTRCS is obtained according to the Ritz
method. Te accuracy of the modeling method is verifed by comparing the present results with literature that had done, and the
convergence of the calculated results is studied. Finally, the free-vibration traveling wave characteristics of the VTRCS in diferent
thickness variations are compared, and the parameters such as the rotational speed, thickness variation parameters, and aspect
ratio on the free-vibration traveling wave characteristics of the VTRCS are discussed. Te infuence of thickness variation on the
vibration characteristics is analyzed, which has signifcance for the lightweight design for VTRCS.

1. Introduction

Te rotating cylindrical shell (RCS) is widely used in the
industrial feld, such as high-speed rotating centrifugal
separator and rotor system of aeroengine. Te RCS is in-
creasingly demanding complex working condition in the
engineering equipment; meanwhile, the wall thickness of the
RCS shows the trend of more and more thin to meet the
increasing of performance and efciency, which lead to the
structural vibration becoming more andmore prominent. In
addition, the RCS will have special traveling wave vibration
phenomenon due to the infuence of centrifugal force,
Coriolis force, and the initial hoop tension compared with
the static cylindrical shell; thus, it is of great signifcance to
study the vibration characteristics of the RCS.

Tere are various solutions for the free vibration analysis
of the RCS; for example, some scholars used Galerkin’s
method to analyze the free vibration characteristics of the
RCS [1–5], and the diferential quadrature method was also

used to study the traveling wave properties of the free vi-
bration for the RCS [6–11]. In addition, Ritz method was
relatively simple in calculation process and could maintain
high accuracy, so it was widely used in the research of vi-
bration characteristics of RCS. For instance, Yan et al. [12]
solved an accurate solution for the vibration-damping
characteristics of a constrained stand-of-layer damping
cylindrical shell and obtained the loss factor and the fre-
quency based on the Hamilton principle. Song et al. [13]
presented an improved Rayleigh–Ritz method to investigate
the vibration and damping behavior of thin short cylindrical
shell. Nguyen et al. [14] established sandwich structures and
derived equations for the free vibration of rotating shells by
the frst-order, shear-deformation shell theory. Abbaspour
and Hosseini [15] employed the Ritz method with Cheby-
shev polynomials to perform the free vibration analysis of
the graphene platelets reinforced piezoelectric cylindrical
microshells with various boundary conditions. Qin et al.
[16–18] took Chebyshev polynomials as the admissible
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functions, employed the Rayleigh–Ritz method to derive the
motion equations for the rotating shell-plate combination,
investigated the vibration of an RCS coupled with an annular
plate based on the Sanders shell theory and Mindlin plate
theory, and calculated the strain energy of the shell and plate.
Ten, they studied the free vibration of rotating functionally
graded carbon nanotube reinforced composite cylindrical
shells with arbitrary boundary conditions. Some scholars
utilized Ritz method and Gram-Schmidt polynomials to
form approximate functions and analyzed the free vibration
of RCS [19]. Furthermore, some scholars studied the non-
linear vibration of cylindrical shells of composite materials
[20–24].

In addition, the abovementioned studies did not
consider the infuence of the thickness variation of the
RCS. However, sometimes, the RCS needs to be designed
with variable thickness in practice; that is, the thickness
varies along the axial direction, and this can further re-
duce the weight. Terefore, some scholars analyzed the
traveling wave vibration characteristics of rotating cy-
lindrical shells with variable thickness (VTRCS). Quoc
et al. [25] used Galerkin method to study the vibration
characteristics of VTRCS under thermal environment, but
only one thickness variation form was considered in
this study.

Based on the above discussion, three diferent thickness
variations are considered in this study, and Chebyshev–Ritz
method is used to investigate the free vibration traveling
wave behavior of VTRCS. Furthermore, the infuences of
parameters such as rotational speed, thickness variation
parameters, and aspect ratio of cylindrical shells on the
traveling wave behavior of free vibration for the VTRCS are
discussed, which has signifcance for the lightweight design
of rotating cylindrical shell structures.

High speed rotary drum has important application in
centrifuge, which is abstracted to the rotating cylindrical
shell (RCS) to reduce its mass and improve its performance
and efciency. Te scientifc and efective method is to
design the variable thickness of RCS along the axial di-
rection. In addition, the research can be applied to the
aircraft engine disk or other mechanical structures and
industrial felds, such as submarine, ship, drilling oil and gas
feld development, and factory workshop. Terefore, the
research in this work has important application value in the
felds of national defense and military.

2. Theoretical Modeling

Firstly, a theoretical model is established to study the
traveling wave vibration characteristics of VTRCS. Te
cylindrical shell structure rotates around its central axis with
a rotational speed Ω, its length is L, and its average radius is
R. Te (x, θ, z) is an orthogonal coordinate system estab-
lished on the surface of the cylindrical shell, and u, v, and w

are the dispositions of any point on the cylindrical shell
along the three directions of x, θ, and z, respectively, as
shown in Figure 1. It is assumed that the thickness h(x) of the
rotating cylindrical shell varies linearly along its axis, as

shown in Figure 2, which can be divided into three variation
forms, denoted as V1, V2, and V3, respectively.

Te coordinates of the upper and lower surfaces of the
cylindrical shell in the Z direction of the coordinate axis will
change under the three diferent thickness changes. Te
specifc expressions are as follows.

Te thickness change form of V1 is expressed as follows:

h1(x) � −
1
2

h0 1 − kh

x

L
􏼒 􏼓􏼒 􏼓, (1a)

h2(x) �
1
2

h0 1 − kh

x

L
􏼒 􏼓􏼒 􏼓, (1b)

where h1(x) and h2(x), respectively, represent the co-
ordinates of the upper and lower surfaces of the cylindrical
shell in the Z direction of the coordinate axis; h0 represents
the initial thickness of the cylindrical shell, that is, the
thickness at x� 0; kh represents the thickness variation
parameter.

Te thickness change form of V2 is expressed as follows:

h1(x) � −
h0

2
, h2(x) �

1
2

h0 1 − kh

x

L
􏼒 􏼓􏼒 􏼓. (2)

Te thickness change form of V3 is expressed as follows:

h1(x) � −
1
2

h0 1 − kh

x

L
􏼒 􏼓􏼒 􏼓,

h2(x) �
h0

2
.

(3)

2.1. Solution of Kinetic and Potential Energy. Te Cheby-
shev–Ritz method is used to study the VTRCS in order to
solve the natural frequency of the model. Firstly, the kinetic
energy equation and potential energy equation of the cy-
lindrical shell need to be given.

Te velocity vector of any point on the VTRCS can be
expressed as follows:

V � _r −Ωi ×(r + Rk), (4)

where k is the unit vectors along z direction and r represents
the displacement vector of the VTRCS at any point on the
coordinate system (x, θ, z), which can be described as
follows:

r � ui + vj + wk, (5)

where i, j, and k are, respectively, unit vectors along x, θ, and
z directions.

Te kinetic energy of the VTRCS can be calculated as
follows:

T �
1
2

􏽚
2π

0
􏽚

L

0
􏽚

h2(x)

h1(x)
ρ(V · V)Rdzdxdθ, (6)

Ten, the kinetic energy equation of VTRCS is obtained
by substituting equation (4) into equation (6), which is
denoted as follows:
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T �
ρ
2

􏽚
2π

0
􏽚

L

0
􏽚

h2(x)

h1(x)
_u
2

+ _v +Ω(w + R)
2

􏼐 􏼑 +( _w −Ωv)
2

􏼐 􏼑Rdzdxdθ.

(7)

According to Sanders shell theory, the strain at any point
on the rotating cylindrical shell is written as follows:

εxx � ε(0)
xx + z · ε(1)

xx ,

εθθ � ε(0)
θθ + z · ε(1)

θθ ,

cxθ � c
(0)
xθ + z · c

(1)
xθ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where ε(0)
xx , ε

(0)
θθ , and c

(0)
xθ are the strain components of the

middle surface and ε(1)
xx , ε

(1)
θθ , and c

(1)
xθ are the curvature

components of the middle surface. Tey can be expressed by
the following formula [26]:

ε(0)
xx �

zu

zx
,

ε(0)
θθ �

1
R

zv

zθ
+

w

R
,

c
(0)
xθ �

zv

zx
+
1
R

zu

zθ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9a)

ε(1)
xx � −

z
2
w

zx
2 ,

ε(1)
θθ �

1
R
2

zv

zθ
−

z
2
w

zθ2
􏼠 􏼡,

c
(1)
xθ �

1
R

zv

zx
− 2

z
2
w

zxzθ
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9b)
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Figure 1: Schematic diagram of the RCS: (a) geometry confguration of the RCS and (b, c) coordinate system of the RCS.
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Figure 2: Tree varying form of thickness for VTRCS. (a) V1. (b) V2. (c) V3.
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Te stress-strain relationship of the VTRCS can be
expressed as follows:

σx

σθ
τxθ

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

Q11 Q12 0

Q21 Q22 0

0 0 G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εxx

εθθ
cxθ

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (10)

where Q11 � Q22 � E/1 − μ2, Q12 � (μE)/(1 − μ2), G � E/2
(1 + μ).

Te strain energy of the VTRCS caused by the de-
formation can be described as follows:

US � 􏽚
2π

0
􏽚

L

0
􏽚

h2(x)

h1(x)

1
2

· σxε
(0)
xx + σθε

(0)
θθ + τxθc

(0)
xθ + z σxε

(1)
xx + σθε

(1)
θθ + τxθc

(1)
xθ􏼐 􏼑􏼐 􏼑Rdzdxdθ. (11)

Te strain energy of the VTRCS caused by centrifugal
force [27] is expressed as follows:

UCF �
ρ
2

· 􏽚
2π

0
􏽚

L

0
􏽚

h2(x)

h1(x)
R
2Ω2

1
R

zu

zθ
􏼠 􏼡

2
⎛⎝ +

1
R

zv

zθ
+ w􏼠 􏼡􏼠 􏼡

2

+
1
R

−
zw

zθ
+ v􏼠 􏼡􏼠 􏼡

2
⎞⎠Rdzdxdθ. (12)

Terefore, the total potential energy equation of the
VTRCS with variable cross section can be expressed as
follows:

U � US + UCF. (13)

Te total potential energy solution of the VTRCS lays
a foundation for studying its natural frequency and
mode shape.

2.2. Solution of Natural Frequency and Mode Shape. Te
natural frequency and mode shape of the VTRCS are solved
in this section, and the solution process is given on the basis
of the kinetic energy equation and potential energy equation
obtained by the Chebyshev–Ritz method in the previous
section.

Firstly, the displacement feld of the VTRCS can be
expressed as follows:

u � U(x) cos(nθ + wt),

v � V(x) sin(nθ + wt),

w � W(x) cos(nθ + wt),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where w is the natural frequency and n is the toroidal wave
number of the traveling wave modal. U(x), V(x), and W(x)
are modal functions, which are approximately expanded by
the product of Chebyshev polynomials and their corre-
sponding boundary functions, and the specifc formula is
expressed as follows:

U(ξ) � 􏽘
nmax

i

aifu(ξ)Pi(ξ),

V(ξ) � 􏽘
nmax

j

bjfv(ξ)Pj(ξ),

W(ξ) � 􏽘
nmax

k

ckfw(ξ)Pk(ξ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where ai, bj, and ck are unknown coefcients and Pi(ξ),
Pj(ξ), and Pk(ξ) are the frst kind Chebyshev expressions,
which can be expressed in trigonometric terms as follows:

Pl(ξ) � cos[(l − 1)arccos(ξ)] (l � i, j, k). (16)

Chebyshev polynomials can achieve fast convergence speed
and maintain high accuracy at a lower computational cost, but
they are defned on the interval [−1, 1] and have orthogonality
only on this interval, so coordinate transformation is needed,
that is, ξ � 2x/L − 1. fu(ξ), fv(ξ), and fw(ξ) represent
boundary functions along the ξ direction, which need to satisfy
the corresponding geometric boundary conditions of the
VTRCS, and the specifc expressions are shown in Table 1.

Secondly, the displacement feld equation (14) of the
VTRCS is substituted into the kinetic energy equation (7),
which can be further expressed as follows:

T �
LπRI0

4
􏽚
1

−1
w

2
U(xi)

2
+ w

2
V(xi)

2
+􏼐 4wΩV(xi)W(xi) + ,

2Ω2R2
+w

2
W(xi)

2
+Ω2 V(xi)

2
+ W(xi)

2
􏼐 􏼑􏼑dξ.

(17)
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Similarly, equation (14) is substituted into equation (13),
and the potential energy equation of the VTRCS can be
expressed as follows:

U �
πL

4R
3 􏽚

1

−1

16R
4
D11

L
4

z2W(ξ)

zξ2
􏼠 􏼡

2
⎛⎝ −

8R
2
nD12

L
2 (V(ξ) + nW(ξ))

z
2
W(ξ)

zξ2
+ ,

4R
2

L
2 A66R

2
+ D66􏼐 􏼑

zV(ξ)

zξ
􏼠 􏼡

2

−
4R

2
n

L
RA66U(ξ) −

4D66

L

zW(ξ)

zξ
􏼠 􏼡

zV(ξ)

zξ
+ ,

4R
4
A11

L
2

zU(ξ)

zξ
􏼠 􏼡

2

+
4R

3
A12

L
(V(ξ)n + W(ξ))

zU(ξ)

zξ
+
16R

2
D66n

2

L
2

zW(ξ)

zξ
􏼠 􏼡

2

+ ,

n
2

A11R
2

+ D11􏼐 􏼑V(ξ)
2

+ 2n A11R
2

+ D11n
2

􏼐 􏼑V(ξ)W(ξ) + D11n
4

+ A11R
2

􏼐 􏼑W(ξ)
2

+ ,

R
2
U(ξ)

2
n
2
A66 +
Ω2RLπI0

4
n
2

+ 1􏼐 􏼑 V(ξ)
2

+ W(ξ)
2

􏼐 􏼑 + 4nV(ξ)W(ξ) + n
2
U(ξ)

2
􏼐 􏼑dξ,

(18)

where A11, A12, and A66 represent the tensile stifness and
D11, D12, and D66 represent the bending stifness. Te
specifc expressions are denoted as follows:

A11 � 􏽚
h2(x)

h1(x)
Q11dz � 􏽚

h2(x)

h1(x)
Q22dz

A12 � 􏽚
h2(x)

h1(x)
Q12dz � 􏽚

h2(x)

h1(x)
Q21dz

A66 � 􏽚
h2(x)

h1(x)
Gdz,

D11 � 􏽚
h2(x)

h1(x)
Q11z

2
dz � 􏽚

h2(x)

h1(x)
Q22z

2dz

D12 � 􏽚
h2(x)

h1(x)
Q12z

2
dz � 􏽚

h2(x)

h1(x)
Q21z

2dz

D66 � 􏽚
h2(x)

h1(x)
Gz

2
dz.

(19)

Ten, according to equations (17) and (18), the energy
expression of the VTRCS can be obtained as follows:

Π � U − T. (20)

Te most likely approximate value is determined by
minimizing the energy expression with respect to the un-
known coefcient according to Rayleigh’s principle, so the

derivative of the energy expression with respect to the
unknown coefcient is performed as follows:

zΠ
zai

� 0,
zΠ
zbj

� 0,
zΠ
zck

� 0 (i, j, k � 1, 2, ..., nmax). (21)

Ten, equation (21) can be further transformed into an
eigenvalue matrix, which is written as follows:

K − w
2M1 − wM2􏼐 􏼑P � 0, (22)

where K is the stifness matrix, M1 and M2 are the mass
matrices, w represents the natural frequency, and P is the
eigenvector composed of unknown coefcients, namely, the
mode shape of the VTRCS, which is expressed as follows:

P � a1, ..., ai, b1, ..., bj, c1, ..., ck􏽨 􏽩
T
. (23)

Te natural frequencies and corresponding mode shapes
can be obtained by solving equation (22).

3. Numerical Results and Discussion

In this section, the calculation results are compared with
those in the existing literature, and their convergence is
studied to verify the accuracy of the establishedmodel.Ten,
the free vibration traveling wave behavior of the VTRCS is
analyzed through parameter research. Unless otherwise

Table 1: Te boundary function for diferent boundary conditions.

fu(ξ) fv(ξ) fw(ξ)

F-S 1 1 − ξ 1 − ξ
S-F 1 1 + ξ 1 + ξ
S-S 1 1 − ξ2 1 − ξ2

F-C 1 − ξ 1 − ξ 1 − ξ
C-F 1 + ξ 1 + ξ 1 + ξ
C-C 1 − ξ2 1 − ξ2 1 − ξ2
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mentioned, the length of the VTRCS L� 1m, the initial
thickness h0 � 0.02m, the thickness variation parameter
kh � 0.5, the density ρ� 1072 kg/m3, the elastic modulus
E� 172GPa, the shear modulus G� 4.2GPa, and the Pois-
son’s ratio v � 0.31, the average radius R� 0.2, the speed
ω� 25 r/s, the dimensionless frequency parameter
w∗ � wR

���
ρ/E

􏽰
, and the dimensionless speed Ω∗ �ΩR

���
ρ/E

􏽰
.

3.1. Comparison and Convergence Research. Two cases are
studied in this section to verify the accuracy and conver-
gence of the proposed method.

3.1.1. Case One. Te dimensionless frequency parameters
(DFPs) of the backward wave and the forward wave for the
RCS with uniform thickness under fxed (C-C) boundary
conditions at both ends are given, respectively, and com-
pared with the results in literature [27]. Also, the conver-
gence research is conducted, and the calculation results
under diferent number of truncation terms are listed, as
shown in Tables 2 and 3. In this example, the aspect ratio of
the RCS L/R� 10, the thick-aspect ratio h/R� 0.05, the
Poisson’s ratio v � 0.3, the dimensionless frequency pa-
rameter w∗ � wR

����������
ρ(1 − μ2)/E

􏽰
, and the dimensionless speed

Ω∗ �ΩR
����������
ρ(1 − μ2)/E

􏽰
.

It can be seen from Tables 2 and 3 that the results are
basically consistent with the results in literature [27]. Te
study shows that the calculation results converge to a certain
value with the increase of the number of truncated terms
nmax, which have converged to a sufciently accurate value
when the number of truncated terms is 11, so nmax is 11 in
the following calculation.

3.1.2. Case Two. Te second case gives the natural frequency
(Hz) of the RCS with uniform thickness under simply
supported (S-S) boundary conditions at both ends as shown
in Table 4, which is compared with the results in literature
[28]. Te cylindrical shell length L� 0.256m, average radius
R� 0.16m, thickness h� 0.0025m, elastic modulus
E� 110GPa, Poisson’s ratio v � 0.31, density ρ� 4480 kg/m3,
axial half wave number m� 1, and rotational speed
Ω� 20000 r/min.

It is observed in Table 4 that the results obtained by the
proposed model are basically consistent with those in lit-
erature [28], and the maximum error is less than 1%.

In short, the above two examples verify the correctness
and convergence of the proposed method.

3.2. Parameter Study. Te efects of diferent thickness
variations, rotational speed, thickness variation parameters,
aspect ratio, and thickness-to-diameter ratio on the traveling
wave behavior of free vibration are discussed in order to
obtain the vibration characteristics of the VTRCS under
diferent thickness variations, as shown in Figures 3–7.

Te variation of the DFPs w∗b and w∗f with the cir-
cumferential wave number n of the VTRCS is shown in
Figure 3. In the fgure, V0: kh � 0, that is, the thickness of the

RCS is uniform and remains unchanged in the x-axis
direction.

Figure 3 shows that the DFPs w∗b and w∗f for the RCS
under thickness change rise with the increase of the wave
number n in the boundary conditions of the S-S or C-C. Te
DFPs of the VTRCS are the maximum under V0 thickness
changes form, and it is the minimum under V1 thickness
changes form. Te DFPs of the VTRCS under V2 thickness
variation form are higher than those under the other two
thickness variations when V0 thickness variation form is not
considered, which are close to those under V0 thickness
variation form. It is also obvious from Figure 3 that the DFPs
of the VTRCS under the four thickness changes frstly
disperse from the same initial value and then converge to the
same value with the increase of circumferential wave
number n.

Te variation of the DFPs w∗b and w∗f with the thickness
parameter kh for the RCS under the three thickness forms
when the rotational speed is, respectively, 0 r/s, 25 r/s, and
50 r/s, is shown in Figure 4.

It is seen from Figure 4 that the DFPs for the VTRCS
decrease gradually with the increase of kh under diferent
rotational speed and thickness, and it is minimum in the
condition of the V2 thickness change. In addition, it can also
be found that the rotational speed has almost no infuence on
the variation trend of the kh.

Te variation of the DFP w∗ as the changing of Ω is
shown in Figure 5 to further study the infuence of rotational
speed on the traveling wave for the VTRCS. Te BW rep-
resents the backward wave, and FW represents the
forward wave.

Figure 5 shows that the DFPs of backward wave rise with
the increase of the rotational speed for the VTRCS, and the
DFPs of forward wave reduce gradually with the increase of
rotational speed. Te DFP value of backward wave and
forward wave under diferent rotational speed is the biggest
under V0 thickness change form. Te DFP value increases,
and their diference becomes smaller under V2 thickness
variation form when the boundary conditions change from
S-S to C-C. In addition, it can also be found that the dif-
ference between the DFPs under diferent thicknesses be-
comes signifcantly larger when the circumferential wave
number changes from 1 to 2.

Finally, the infuence of geometric parameters on the
DFPs of VTRCS is studied in Figures 6 and 7. Figure 6 gives
the variation of the DFP for the VTRCS with the changing of
the aspect ratio L/R, and Figure 7 shows the changing of the
aspect ratio R/h0.

Figure 6 manifests that the DFPs of VTRCS decrease
gradually with the increase of length-to-diameter ratio L/R.
Particularly, the DFPs decrease rapidly when the length-to-
diameter ratio is less than 3, and it decreases slowly when the
length-to-diameter ratio is more than 3. It can be seen from
Figure 7 that the backward wave w∗b and the forward wave
w∗f both decrease frst and then increase with the increase of
the thickness-to-diameter ratio for the DFP for the VTRCS.
It can also be found from Figure 7 that the diference be-
tween the DFPs under the four thickness variation forms
becomes smaller as the boundary conditions change from S-
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Table 2: DFP of backward wave w∗b for the RCS.

Ω∗ n Saito and
Endo [27]

Present
nmax� 8 nmax� 9 nmax� 10 nmax� 11 nmax� 12 nmax� 13

0.0025

2 0.05993 0.05989 0.05987 0.05987 0.05986 0.05986 0.05986
3 0.11455 0.11462 0.11461 0.11461 0.11461 0.114641 0.11461
4 0.21313 0.21317 0.21317 0.21317 0.21316 0.21316 0.21316
5 0.34225 0.34226 0.34226 0.34226 0.34225 0.34225 0.34225

0.0050

2 0.06216 0.06212 0.06210 0.06210 0.06209 0.06209 0.06209
3 0.11652 0.11660 0.11659 0.11659 0.11659 0.11659 0.11659
4 0.21486 0.21490 0.21490 0.21490 0.21490 0.21490 0.21490
5 0.34380 0.34381 0.34381 0.34381 0.34381 0.34381 0.34381

Table 3: DFP of forward wave w∗f for the RCS.

Ω∗ n Saito and
Endo [27]

Present
nmax� 8 nmax� 9 nmax� 10 nmax� 11 nmax� 12 nmax� 13

0.0025

2 0.05593 0.05589 0.05587 0.05587 0.05586 0.05586 0.05586
3 0.11155 0.11160 0.11160 0.11160 0.11159 0.11159 0.11159
4 0.21078 0.21080 0.21080 0.21080 0.21080 0.21080 0.21080
5 0.34033 0.34032 0.34031 0.34031 0.34031 0.34031 0.34031

0.0050

2 0.05460 0.05413 0.05410 0.05410 0.05409 0.05409 0.05409
3 0.11058 0.11057 0.11057 0.11057 0.11056 0.11056 0.11056
4 0.21018 0.21017 0.21016 0.21016 0.21016 0.21016 0.21016
5 0.33997 0.33993 0.33993 0.33993 0.33992 0.33992 0.33992

Note. nmax is the number of truncation terms and b and f represent the backward and forward waves, respectively.

Table 4: Comparisons of natural frequencies for the RCS.

Modes
fb ff

FEM [28] Present Error (%) FEM [22] Present Error (%)
(1, 3) 1830.45 1831.08 0.03 1436.24 1437.09 0.06
(1, 4) 1714.57 1713.40 0.07 1396.32 1395.50 0.06
Note. fb and ff represent the backward wave frequency and forward wave frequency, respectively.
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Figure 3: Continued.
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Figure 3: Variation of the DFP for the VTRCS with the circumferential wave number n. (a) S-S. (b) S-S. (c) C-C. (d) C-C.
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S to C-C. Specifcally, the infuence of thickness variation
forms on the DFPs is little when the thickness-to-diameter
ratio is higher than 25.

4. Conclusion

(1) Te vibration characteristics of the VTRCS are in-
vestigated based on the Sanders shell theory via the
Chebyshev–Ritz method. Te correctness and con-
vergence of the modeling method are verifed
through comparison and convergence research, and
it is proved that the proposed model can efectively
predict the traveling wave behavior of the free vi-
bration for the VTRCS.

(2) Te traveling wave DFP of the VTRCS rises with the
increase of the wave number n under three thickness
variation forms. Te traveling wave DFP is the
largest under V0, and it is higher than the other two
kinds of thickness under V2 when V0 is not con-
sidered, which is close to the DFP in the V0. In
addition, the DFP of the VTRCS frst discretizes
from the same initial value and then converges to the
same value with the increase of circumferential wave
number n under the four thickness variations.

(3) Te traveling wave DFP of the VTRCS gradually
decreases with the increase of the thickness change
parameter kh at diferent speeds and diferent
thicknesses. Among them, the traveling wave DFP
change is the smallest under V2 and is signifcantly
smaller than that of the other two thickness changes.
Te rotational speed has little efect on the variation
trend of traveling wave frequency with thickness.

(4) Te traveling wave DFP of VTRCS decreases grad-
ually with the increase of aspect ratio L/R and de-
creases frst and then increases with the increase of
aspect ratio h0/R. Te diference between the DFPs
becomes smaller under the four thickness variations
as the boundary conditions change from S-S to C-C.

Te variation of thickness has little efect on the
traveling wave frequency when the thickness-to-
diameter ratio is higher than a certain value.
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