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In this work, the dynamic response of Euler–Bernoulli beams of four diferent boundary conditions with fractional order internal
damping under a traversing moving load is investigated. Te load is assumed to be moving with diferent values of constant
velocity. A proposed approach to obtain the closed-form solution of the problem based on Green’s functions combined with
a decomposition technique in the Laplace transform domain is introduced. Several cases are studied and compared to the
literature; for instance, if simply supported beam is considered, the following three cases are to be explored: the case of elastic (or
undamped) beam, the damped (or viscously damped) beam, and fnally the fractionally damped beam modeled by the fractional
Kelvin–Voigt model.Te efects to the beam dynamic response induced bymagnitude of moving load velocity, damping ratio, and
fractional damping order are explored. Te results expressed sufcient agreement with similar problems found in literature and
evidenced that the dynamic response of beams is signifcantly afected by varying the fractional order of beam damping as well as
the moving load velocity. Accordingly, using fractionally damped materials exhibits better realistic behavior of beams and
intermediate between elastic and viscous beam behaviors.

1. Introduction

Te subject of dynamic response under diverse types of
loading for beams of viscoelastic materials is considered of
utmost importance. Many applications of beams are found
in bridges, railways, aircraft, and vehicles. As a result,
various progressive studies have been performed to address
the damping conduct of such materials (Rossikhin et al. [1],
Paunović et al. [2], and Klanner et al. [3]).

Te prevalent use of the Euler–Bernoulli beam model is
attributed to its simplicity and ability to give reasonable
estimations for various engineering issues. Utilizing the
Euler–Bernoulli’s equation, Hilal and Zibdeh [4] presented
a paper contributory to the major issue concerning the
vibrations of an elastic homogenous isotropic beam excited
by moving loads under generic boundary conditions. Te
beam was subjected to moving force with constant velocity
and according to the beam’s response; closed-form solutions

were acquired. In this study, Sumelka et al. [5] reformulated
the classical Euler–Bernoulli theory utilizing fractional
calculus. Such generalization was called fractional
Euler–Bernoulli beams, and it resulted in nonlocal spatial
description. After two years, Blaszczyk [6] derived the
Euler–Bernoulli beam equation by using the variational
approach that leads the equation to contain left and right
fractional Caputo derivatives simultaneously. Ten, it was
transformed into an integral equation to be solved analyt-
ically and numerically.

On the other hand, Fractional derivative models have
proven to be of signifcant value for the precise character-
ization of the damping behavior of various types of materials
(Bagley and Torvik [7]). Leibnitz and De L’Hospital were the
frst to have introduced the concept of fractional derivatives
in the 16th century (Podlubny [8]). When compared to
diferent mathematical models including the Maxwell
model, Kelvin–Voigt model, or other models instituted by
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Flügge [9], Pipkin [10], and Christensen [11], the fractional
derivative model was found to coincide with the experi-
mental data very well utilizing fewer parameters according
to Di Paola et al. [12].Tus, studying the damping properties
of materials using these techniques is becoming essential and
proven to be efcacious.

Adolfsson [13] used the fractional order model in in-
vestigations involving viscoelastic materials to obtain the
large deformations of investigated beams. Studies on the
dynamic response of beams resting on fractional viscoelastic
foundation are also found in the literature. Te efect of the
moving load velocity on such beams was presented by Ouzizi
et al. [14], while the same authors investigated the efect of
inducing multiple harmonic moving loads with a constant
speed on the beam dynamical response (Ouzizi et al. [15]).
More recently, in the study by Praharaj and Datta [16], the
same beam response was investigated again when subjected
to a moving load. In this study, the fractional order
derivative-based Kelvin–Voigt model was used to describe
the rheological properties of the viscoelastic foundation,
while the Reimann–Liouville fractional derivative model was
applied for a fractional derivative order, and the resulted
fractional diferential equation of motion was solved by
applying the modal superposition method and triangular
strip matrix approach. In all of these studies, the efects of
diferent system parameters on the beam response were
evaluated.

Te solution of a fractionally damped beam equation is
examined by Jena et al. [17] by applying the homotopy
analysis method to calculate the dynamic response. Te
unit step and unit impulse functions are deliberated for this
analysis, and the acquired results for diferent orders of the
fractional derivatives are compared well with others and
achieved by the Adomian decomposition method, which
was used in 2007 by Liang and Tang [18] to derive the
analytical solution of viscoelastic that continues fraction-
ally damped beam considering step and impulse function
responses.

In 2016, a study involving a nonproportionally damped
Euler–Bernoulli beam, which was subjected to moving loads,
determined an analytical solution to assess the dynamic
properties of such systems (Svedholm et al. [19]). In this
investigation, it was assumed that the system’s dynamic
behavior can be assessed by superposition considering that
adequate orthogonality conditions were derived and
a closed-form solution for the dynamic behavior for a given
eigenvalue was proposed. In the same year, Freundlich
adopted the modal superposition approach to obtain the
solution for force vibrations of a fractionally damped beam,
while a convolution integral of fractional forcing function
and Green’s function were utilized to acquire the beam’s
behavior. Ten, an assessment of the beam’s dynamic re-
sponse under diferent fractional derivative orders and the
moving load’s velocities was performed. Green’s function
model was also used back in 1997 by Foda and Abduljabbar
to investigate the efects of various parameters on the dy-
namic behavior of a plainly propped Euler– Bernoulli beam
submitted under a transverse moving load. Te process was
then proven to be simple and efective.

In this study, Labȩedzki et al. [20] modeled both stifness
and damping terms in the Euler–Bernoulli beam equations
using fractional derivatives for the Cantilever case this time.
Te equations were formulated and solved for beams with
and without tip mass. Te other two boundary conditions
(namely, fxed-fxed and Cantilever-fxed) were considered
by Blaszczyk et al. [21] to be analyzed by the fractional
Euler–Bernoulli beam equation, where the diferential
equation of motion was converted into an integral one
considering the mentioned boundary conditions and exact
solution was obtained, which contained a composition of the
left and right Reimann–Liouville integrals. Te study pre-
sented three solutions for a constant, power, and trigono-
metric functions. On the other hand, Abro et al. [22]
presented an analytic study of a simply supported beam case
based on the modern fractional approaches utilizing
Caputo–Fabrizio and Atanagna–Baleanu fractional difer-
ential operators. Te equation of motion was fractionalized
to investigate the efects of principal parametric resonances,
and Laplace and Fourier sine transforms were invoked for
investigating the exact solution.

Considering that the fractional derivative provides reliable
models of fractionally damped structures and that few con-
tributions have been introduced in this feld so far, the need is
still there to realize more generic closed-form solutions and
investigate the impact of diferent parametric changes on
beams’ response under diferent loading scenarios. Within
this context, this study introduces a novel formulation of the
closed-form solution of the Euler–Bernoulli beam with in-
ternal damping expressed by the fractional derivative, when
traversed by a concentrated load moving with constant ve-
locity, while considering the following four beam boundary
conditions (BCs): pinned-pinned (PP), fxed-fxed (FF), fxed-
pinned (FP), and fxed-free or Cantilever (FC). In the in-
troduced approach, the governing equation of the
Euler–Bernoulli beam described using the fractional Kel-
vin–Voigt model is written as a fourth order partial difer-
ential equation and Caputo’s defnition is employed for the
fractional derivative. Te orthogonality conditions are in-
troduced to convert the partial diferential equation into
a second order ordinary diferential equation, while at this
stage, Laplace transform is exercised using the decomposition
technique introduced in the study of Abu-Alshaikh et al. [23],
combined with Green’s theorem to obtain the closed-form
solution of the problem.

For verifcation purposes, the obtained closed-form
solution of the fractionally damped beam is utilized to
obtain solutions for the beam without damping, and with
integer order damping cases, these solutions are then
compared with those available in the literature.

To conclude, the dynamic response of the fractionally
damped Euler–Bernoulli beam having four diferent beam
BCs (namely, pinned-pinned (PP), fxed-fxed (FF), fxed-
pinned (FP), and fxed-free or Cantilever (FC)) is in-
vestigated in this paper. Te analysis is based on Green’s
functions’ approach combined with a decomposition tech-
nique in the Laplace transform domain; the closed-form
solutions are analytically generated, and the results are
discussed through the selected numerical examples.
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Furthermore, the impacts bestowed upon the beams’ re-
sponse by the moving load velocity, damping ratio, and the
order of fractional derivatives are illustrated. It is worth
mentioning that all the obtained solutions are truncated
using the mathematical software Maple (Maplesoft [24]).
Te resulted fractional derivative damping models may
allow researchers to choose more suitable models to pre-
cisely ft experimental ones.

2. Basic Concepts and Formulations

Te fundamental concepts of a beam model with fractional
damping are introduced in this section. Primarily, detailed
presentation of the basic formulation for the fractional Euler
Bernoulli beam is shown using the fractional Kelvin–Voigt
model. Tis is followed by a step-by-step solution of the
equation of motion for diferent case studies deploying
relations for internal damping of viscoelastic materials and

natural frequencies of vibration modes for elastic beams, the
generalized Delta function, fractional calculus, Green’s
functions, and some other special functions’ concepts.

In order to study the beam with the fractional model of
internal damping, the elastic behavior of thematerial should be
studied with the aid of the Kelvin–Voigt model for creep,
(Christensen [11]), which reveals the relation between the stress
σ(t) and strain ε(t) in the elastic region, and since the strain
rate, _ε(t), is appearing in thatmodel, it is possible to implement
the theory of the fractional order derivatives to write the stress
variations with time for any value of the fractional derivative, α,
and its value in our work is 0< α≤ 1. According to the frac-
tional order Kelvin–Voigt model, which was proposed by
Shermergor [25] and adopted in several following works, for
instance, Rossikhin and Shitikova [26], and with further ma-
nipulations related to the derivation of this model, as in the
study by Nasir [27], it is convenient to write the following:

σ(t) � Eε(t) + Cα D
α
0(ε(t))( 􏼁 � Eε(t) +

Cα

Γ(1 − α)
􏽚

t

0

_ε(τ)

(t − τ)
α dτ, (1)

where E is the modulus of elasticity, μ is the viscous damping
coefcient of the beam, Cα is the characteristic internal
damping coefcient of the material, and Γ (.) is Euler’s
Gamma function. Moreover, Caputo’s defnition of the
fractional derivative, Podlubny [8], is used to write the
fractional derivative in the integral form, and it is going to be
used in this work to solve the beam’s fractional order
equation of motion, as will be discussed during the analysis.

After this brief discussion, as equation (1) illustrates, it
can be found that one simple fractional model, the Kel-
vin–Voigt fractional model, can be applied for investigating

the dynamics of viscoelastic materials, and this model has an
intermediate behavior between elastic and viscous materials.
For more discussion regarding this model and its applica-
tions, the interested reader is advised to visit (Bonfanti et al.
[28]) and references therein.

Based on the aforementioned analysis, the governing
equation of the Euler–Bernoulli beam described using the
fractional Kelvin–Voigt model can be written as a fourth
order partial diferential equation (Di Lorenzo et al. [29]) in
the form as follows:

ρ
z
2

w(x, t)

zt
2 + EI

z
4

w(x, t)

zx
4􏼢 􏼣 + Cα I D

α
0+

z
4

w(x, t)

zx
4􏼠 􏼡􏼢 􏼣 � mgδ(x − vt), (2)

where w(x, t) is the transverse displacement of the neutral
beam axis at point with coordinate x and time t, m is the
moving load, which has a constant velocity v, and the term
δ(x − vt) represents theDirac delta function, which has a unity
magnitude when x � vt; otherwise, it is equal to zero.
Moreover, the term Dα

0+ (w(x, t)) � (zαw(x, t)/ztα) repre-
sents the fractional derivative of order α. Tis term is com-
monly introduced in the literature using various defnitions;
one of themost well-known defnitions is the Caputo fractional
derivative, Podlubny [8], which can be written as follows:

z
α
w(x, t)

zt
α �

1
Γ(k − α)

􏽚
t

0

w(x, u)

(t − u)
α+1− k

z
k
w(x, u)

zu
k

du. (3)

Te model of equation (2) is a general representation of
viscoelastic Euler–Bernoulli beams that can have various
BCs, and this model is used to solve the problem under

consideration for various beam end conditions: the pinned-
pinned, fxed-fxed, pinned-fxed, and fxed-free cases, and
diferent values of α between zero and unity are to be
considered. In obtaining the solution for equation (2), the
density ρ, modulus of elasticity E, moment of inertia I, and
the characteristic coefcient of the material Cα are all as-
sumed to be constants.

For any vibrationmode, φn(x) is considered, whileYn(t)

is the vibration mode of the beam, the modal form of w(x, t)

can be written in the form of infnite series as follows:

w (x, t) � 􏽘
∞

n�1
φn(x)Yn(t). (4)

In equation (4), the subscript n denotes the mode
number investigated, and the accuracy of the results depends
on the total number of modes truncated using the series;
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only the frst mode of vibration is truncated in this work for
which acceptable levels of accuracy are obtained. Tis is
going to be discussed in detail during this analysis. Nev-
ertheless, the theoretical procedure implemented enables the

researcher, if desired, to efectively investigate a greater
number of modes.

Te undamped free vibration mode φn(x) is written for
general beam boundary condition as follows:

φn(x) � sin cnx( 􏼁 + An cos cnx( 􏼁 + Bn sin h cnx( 􏼁 + Cn cos h cnx( 􏼁, (5)

where An, Bn, and Cn are constants evaluated from the BCs
and cn is the root of the frequency equation, and all are
obtained as listed in Table 1.

When substituting equations (4) into (2) and consid-
ering that Cα � E(μ/E)α, we get the following:

EI 􏽘
N

n�1
φiv

n (x)Yn(t) + C
α
I 􏽘

N

n�1

dαYn(t)

dt
α φiv

n (x) + μ 􏽘
N

n�1
φn(x)€Yn(t) � mgδ(x − vt). (6)

Multiplying each term by φm(x) and integrating over the
entire length of the beam from 0 to L gives the following:

􏽚
L

0
EI 􏽘

N

n�1
φm(x)φiv

n (x)Yn(t) dx + 􏽚
L

0
C
α
I 􏽘

N

n�1

dαYn(t)

dt
α φm(x)φiv

n (x)dx + 􏽚
L

0
μ 􏽘

N

n�1
φm(x)φn(x) €Yn(t)dx

� 􏽚
L

0
mgφm(x)δ(x − vt) dx,

(7)

Now, it is possible to apply the orthogonality conditions,
which imply the following important results:

χn � 􏽚
L

0
μ φ2

n(x) dx, (8)

􏽚
L

0
φm(x)φ(iv)

n (x) dx � c
4
n

0, if m≠ n,

χn

μ
, if m � n.

⎧⎪⎪⎨

⎪⎪⎩

(9)

Using trigonometric and hyperbolic integration re-
lations, it is simply shown that equation (9) is applicable for
any combination of BCs (Rao [30]). Tus, in terms of
equations (8) and (9), (7) becomes

EI 􏽘
N

n�1
c
4
nYn(t) + C

α
I 􏽘

N

n�1
c
4
n

dαYn(t)

dt
α + μ 􏽘

N

n�1

€Yn(t) 􏽚
L

0
φ2

n(x)dx � mg 􏽘
N

n�1
􏽚

L

0
φn(x)δ(x − vt)dx. (10)

Let P0 � mg, then the diferential equation of the nth mode
of vibration of the generalized displacement or modal response
of the beam may be rearranged and written as follows:

EI
c
4
nχn

μ
Yn(t) + C

α
I

c
4
nχn

μ
dαYn(t)

dt
α + χn

€Yn(t)

� P0 􏽘

N

n�1
ϕn(vt),

(11)

or

€Yn(t) +
C
α
I

μ
c
4
n

dαYn(t)

dt
α +

EI

μ
c
4
nYn(t) �

P0

χn

􏽘

N

n�1
φn(vt).

(12)

Ten, equation (12) can be solved using a decomposition
method similar to that used in the study of Abu-Mallouh et al.
[31] for a linear beam equation of motion; nevertheless, if the
equation of motion is nonlinear, the same decomposition is
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primarily used and then another decomposition is applied to
resolve the nonlinear terms; this process is normally called the
Adomian decomposition method (ADM) for nonlinear sys-
tems, refer to Kwong et al. [32] for more details regarding the
ADM and its applications. From equation (12), the solution of
the vibration mode of the beam, Yn(t), is assumed to have
a series form as follows:

Yn(t) � 􏽘
∞

J�0
Y

J
n(t). (13)

So, equation (12), in view of equation (13), is written as
follows:

􏽘

∞

J�0

€Y
J

n(t) +
C
α
Ic

4
n

μ
􏽘

∞

J�0

dαY
J
n(t)

dt
α +

EIc
4
n

μ
􏽘

∞

J�0
Y

J
n(t) �

P0

χn

􏽘

N

n�1
φn(vt). (14)

Substituting the nth natural frequency ωn and the
damping ratio ζn as follows:

ωn � c
2
n

���
EI

μ

􏽳

,

ζn �
C
α
Ic

4
n

2μωn

�
C
αωn

2E
.

(15)

Tus, equation (14) becomes

􏽘

∞

J�0

€Y
J

n(t) + 2ωnζn 􏽘

∞

J�0

dαY
J
n(t)

dt
α + ω2

n 􏽘

∞

J�0
Y

J
n(t) �

P0

χn

􏽘

N

n�1
φn(vt), (16)

and by rearranging equation (16), we get the following:

􏽘

∞

J�0

€Y
J

n(t) + ω2
n 􏽘

∞

J�0
Y

J
n(t) �

P0

χn

􏽘

N

n�1
φn(vt) − 2ωnζn 􏽘

∞

J�0

dαY
J
n(t)

dt
α . (17)

Table 1: Frequency equations and vibration modes for the transverse vibration of beams (Rao [30]).

Beam end
conditions Frequency equation Vibration mode (normal

function) Value of βnl

PP sin(cnl) � 0 ϕn(x) � Cn[sin(cnx)]

c1l � π,

c2l � 2π
c3l � 3π
c4l � 4π

FF cos(cnl)cos h(cnl) � 1 ϕn(x) � Cn

sin h(cnx) − sin(cnx)

+αn[cos h(cnx) − cos(cnx)]
􏼨 􏼩 where

αn � (sin h(cnl) − sin(cnl))/(cos(cnl) − cos h(cnl))

c1l � 4.730041
c2l � 7.853205
c3l � 10.99560
c4l � 14.13765

FP tan(cnl)tanh(cnl) � 0 ϕn(x) � Cn

sin(cnx) − sinh(cnx)

+αn[cosh(cnx) − cos(cnx)]
􏼨 􏼩 where

αn � (−sin(cnl) − sin(cnl))/(cos(cnl) − cosh(cnl))

c1l � 3.926602
c2l � 7.068583
c3l � 10.21017
c4l � 13.35177

FC cos(cnl)cos h(cnl) � −1 ϕn(x) � Cn

sin(cnx) − sin h(cnx)

−αn[cos(cnx) − cos h(cnx)]
􏼨 􏼩 where

αn � sin(cnl) + sin(cnl)/ cos(cnl) + cos h(cnl)

c1l � 1.87504
c2l � 4.69409
c3l � 7.85457
c4l � 10.9955
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Applying the decomposition form illustrated in equation
(13), equation (17) can be divided into a system of two
recursive equations as follows:

d2Y0
n(t)

dt
2 + ω2

nY
0
n(t) �

P0

χn

φn(vt), (18)

d2YJ
n(t)

dt
2 + ω2

nY
J
n(t) � −2ωnζn

dαY
J−1
n (t)

dt
α ; J≥ 1. (19)

It is noteworthy that in equation (18), the subscript n
denotes the vibration mode to be studied, while in equation
(19), the superscript J is used to indicate the number of terms
considered in the decomposition. In the following equations,
for enhanced readability, the summation signs in equations
(18) and (19) are dropped (same for the following equations);
nevertheless, when writing the fnal solutions, the summa-
tion terms are to be reconsidered. Now, by defningΦn(s) to

be the Laplace transform of the vibration mode function, as
shown in equation (5), then we get the following:

Φn(s) �
Ωn

s
2

+Ω2n
+

Ans

s
2

+Ω2n
+

BnΩn

s
2

−Ω2n
+

Cns

s
2

−Ω2n
, (20)

where Ωn � cnv. Taking the Laplace transform for equation
(18), while assuming homogenous conditions, yields to the
following:

s
2
y
0
n(s) + ω2

ny
0
n(s) �

P0

χn

Φn(s). (21)

Ten, the initial part of the solution in the Laplace
domain is simplifed by rearranging equation (21) in terms
of y0

n(s) and then applying the direct Laplace inverse to get
the initial solution in the time domain denoted by Y0

n(t), as
follows:

Y
0
n(t) �

P0

χnω
2
n Ω

4
n − ω4

n􏼐 􏼑

− Ω2n + ω2
n􏼐 􏼑 Ωniωn sin h iωnt( 􏼁 + ω2

n sin Ωnt( 􏼁􏽨 􏽩

+ Anω
2
n Ω

2
n + ω2

n􏼐 􏼑 cos h iωnt( 􏼁 − cos Ωnt( 􏼁􏼂 􏼃

+ Bn Ω
2
n − ω2

n􏼐 􏼑 Ωniωn sin h iωnt( 􏼁 + ω2
n sin h Ωnt( 􏼁􏽨 􏽩

−Anω
2
n Ω

2
n − ω2

n􏼐 􏼑 cos h iωnt( 􏼁 − cos Ωnt( 􏼁􏼂 􏼃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (22)

Taking the Laplace transform for equation (19), while
assuming homogenous conditions and considering that
J≥ 1, yields to the following:

s
2
y

J
n(s) + ω2

ny
J
n(s) � −2ωnζns

α
y

J−1
n (s). (23)

Rearranging equation (23), the recursive formula for the
solution is obtained as follows:

y
J
n(s) �

−2ωnζns
α

s
2

+ ω2
n􏼐 􏼑

y
J−1
n (s). (24)

So, using equation (24) with the aid of the value y0
n(s)

from equation (21) and applying math induction, the general
form of yJ

n(s) for J≥ 1 is written as follows:

y
J
n(s) �

(−1)
J
P0Φn(s) 2ωnζns

α
( 􏼁

J

χn s
2

+ ω2
n􏼐 􏼑

J+1 . (25)

Ten, the total series solution, in the Laplace domain, is
written as follows:

yn(s) �
P0Φn(s)

χn s
2

+ ω2
n􏼐 􏼑

+ 􏽘
∞

J�1

(− 1)
J
P0Φn(s) 2ωnζns

α
( 􏼁

J

χn s
2

+ ω2
n􏼐 􏼑

J+1 .

(26)

Tis can be rearranged as follows:

yn(s) �
P0Φn(s)

χn s
2

+ ω2
n􏼐 􏼑

+
P0Φn(s)

χn s
2

+ ω2
n􏼐 􏼑

􏽘

∞

J�1

− 2ωnζnsα

s2 + ω2
n

􏼠 􏼡

J

⎡⎣ ⎤⎦.

(27)

Comparing the series in equation (27) with the general
form of the geometric series, that is,

􏽘

b

J�a

ΥRJ
􏼐 􏼑 �

Υ R
a

− R
b+1

􏼐 􏼑

1 − R
. (28)

In this, Υ � P0Φn(s)/χn(s2 + ω2
n) and R � −2ωnζnsα/

s2 + ω2
n. Realizing that the quantities ωn, ζn are positive

values, then if 2ωnζnsα/s2 + ω2
n < 1, the summation presented

in equation (27) according to equation (28) becomes the
following:

yn(s) �
P0Φn(s)

χn s
2

+ ω2
n􏼐 􏼑

+
P0Φn(s) −2ωnζns

α
( 􏼁

χn s
2

+ ω2
n􏼐 􏼑 s

2
+ 2ωnζns

α
+ ω2

n􏼐 􏼑
.

(29)

As a result, to fnd the solution in the time domain, it is
desired to fnd the Laplace inverse for equation (29), and for
this purpose, a number of cases will be studied hereafter.

2.1. Elastic Beam. Beams behave elastically when the
damping ratio equals zero; therefore, the closed-form so-
lution of the elastic beam can be written as follows:
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Yn(t) �
P0

ωnχn Ω
4
n − ω4

n􏼐 􏼑

ω2
n +Ω2n􏽨 􏽩 Ωn sin ωnt( 􏼁 − ωn sin Ωnt( 􏼁􏼂 􏼃

+ωnAn ω2
n +Ω2n􏽨 􏽩 cos ωnt( 􏼁 − cos Ωnt( 􏼁􏼂 􏼃

+ Bn ω2
n −Ω2n􏽨 􏽩 Ωn sin ωnt( 􏼁 − ωn sin h Ωnt( 􏼁􏼂 􏼃

+ωnCn ω2
n −Ω2n􏼐 􏼑 cos ωnt( 􏼁 − cos h Ωnt( 􏼁( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

To verify the validity of this solution, the simply sup-
ported beam case is considered, and the coefcients of the
vibration mode in equation (30) are all set to zero, then the
solution becomes the following:

Yn(t) �
P0

χn ω2
n −Ω2n􏼐 􏼑

sin Ωnt( 􏼁 −
Ωn sin ωnt( 􏼁

ωn

􏼢 􏼣. (31)

Tis equation represents exactly the same result obtained
by other formulations made in the literature (Rao [30] and
Abu-Malloh et al. [31]). Finally, by substituting equation
(30), with equation (4), the transverse displacement of the
system w(x, t) at point x and time t for the elastic beam can
be written in the following form:

w(x, t) � 􏽘
N

n�1

P0 φn(x)

ωnχn Ω
4
n − ω4

n􏼐 􏼑

ω2
n +Ω2n􏼐 􏼑 Ωn sin ωnt( 􏼁 − ωn sin Ωnt( 􏼁( 􏼁

+ωnAn ω2
n +Ω2n􏼐 􏼑 cos ωnt( 􏼁 − cos Ωnt( 􏼁( 􏼁

+Bn ω2
n −Ω2n􏼐 􏼑 Ωn sin ωnt( 􏼁 − ωn sin h Ωnt( 􏼁( 􏼁

+ωnCn ω2
n −Ω2n􏼐 􏼑 cos ωnt( 􏼁 − cos h Ωnt( 􏼁( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (32)

2.2. Integer Order Damped Beam. Considering the viscous
beam described by the Kelvin–Voigt model while being af-
fected by a moving load with constant velocity, then the
generalized displacement of this special case can be obtained as

Yn(t) � Yn1(t) + Yn2(t) + Yn3(t) + Yn4(t), (33)

where

Yn1(t) �
P0

χnZ2

1
Z1
Ωn 2ω2

nζ
2
n +Ω2n − ω2

n􏼐 􏼑sin h Z1t( 􏼁 cos h ωnζnt( 􏼁 − sin h ωnζnt( 􏼁􏼂 􏼃􏽨 􏽩

+ 2ωnζnΩn cos h Z1t( 􏼁 cos h ωnζnt( 􏼁 − sin h ωnζnt( 􏼁􏼂 􏼃 − cos Ωnt( 􏼁􏼂 􏼃 − Z3 sin Ωnt( 􏼁

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

Yn2(t) �
P0An

χnZ2

1
Z1

ωnζnZ4 sin h Z1t( 􏼁 sin h ωnζnt( 􏼁 − cos h ωnζnt( 􏼁( 􏼁􏼂 􏼃 + 2Ωnωnζn sin Ωnt( 􏼁

+ Z3 cos h Z1t( 􏼁 cos h ωnζnt( 􏼁 − sin h ωnζnt( 􏼁( 􏼁 − cos Ωnt( 􏼁􏼂 􏼃

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

Yn3(t) �
P0Bn

2χnZ2

1
Z1Z5

2Ωn −2ω2
nζ

2
n +Ω2n + ω2

n􏼐 􏼑 sin h Z1t( 􏼁 cos h ωnζnt( 􏼁 − sin h ωnζnt( 􏼁􏼂 􏼃􏽨 􏽩

−
1

Z5

4Ωnωnζn cos h Z1t( 􏼁 cos h ωnζnt( 􏼁 − sin h ωnζnt( 􏼁􏼂 􏼃 − 2 cos h Ωnt( 􏼁􏼂 􏼃

2 sin h Ωnt( 􏼁 Ω2n + ω2
n􏽨 􏽩

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

Yn4(t) �
P0Cn

2χnZ5

1
Z1

2ωnζnZ3 sin h Z1t( 􏼁 sin h ωnζnt( 􏼁 − cos h ωnζnt( 􏼁􏼂 􏼃􏼂 􏼃

− 2Ωnωnζn +Ω2n + ω2
n􏼐 􏼑 cos h Ωnt( 􏼁 − sin h Ωnt( 􏼁( 􏼁

− 2Z4 cos h Z1t( 􏼁 sin h ωnζnt( 􏼁 − cos h ωnζnt( 􏼁􏼂 􏼃

+ −2Ωnωnζn +Ω2n + ω2
n􏼐 􏼑 cos h Ωnt( 􏼁 + sin h Ωnt( 􏼁( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(34)
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in which

Z1 � ωn

������

ζ2n − 1,

􏽱

Z2 � 4Ω2nω
2
nζ

2
n + Z

2
3,

Z3 � Ω2n − ω2
n,

Z4 � Ω2n + ω2
n,

Z5 � 4Ω2nω
2
nζ

2
n − Z

2
4.

(35)

Finally, by substituting equation (33) in equation (4),
then w(x, t) for the beam with integer order damping can be
written in the following form:

w(x, t) � 􏽘
N

n�1
Yn(t) sin cnx( 􏼁 + An cos cnx( 􏼁 + Bn sin h cnx( 􏼁 + Cn cos h cnx( 􏼁􏼂 􏼃. (36)

2.3. Fractional Kelvin–Voigt Model. In this section, the
fractional Kelvin–Voigt modeled beam is studied; the beam
is assumed to be fractional with order of α, where 0≤ α≤ 1,

referring to equation (29), and the recursive formula for this
beam in the Laplace domain can be written as follows:

yn(s) �
P0Φn(s)

χn s
2

+ ω2
n􏼐 􏼑

−
2P0Φn(s)ωnζns

α

χn s
2

+ ω2
n􏼐 􏼑 s

2
+ 2ωnζns

α
+ ω2

n􏼐 􏼑
� yn0(s) − yn1(s). (37)

For the frst term, yn0(s), the direct Laplace inverse is
used to fnd the solution, as it was previously achieved in
equation (22). Ten, Laplace inversion for yn1(s) term can
be obtained by applying the convolution theorem as follows:

yn1(s) �
2ωnζnP0s

αΦn(s)

χn s
2

+ ω2
n􏼐 􏼑 s

2
+ 2ωnζns

α
+ ω2

n􏼐 􏼑
�

2ωnζnP0Φn(s)

χn s
2

+ ω2
n􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦
s
α

s
2

+ 2ωnζns
α

+ ω2
n

􏼠 􏼡 � f(s) g(s). (38)

For f (s), Laplace inverse is directly obtained as follows:

F(t) �
2ζnP0

χn Ω
4
n − ω4

n􏼐 􏼑

Ω2n + ω2
n􏼐 􏼑 Ωn sinωnt − ωn sinΩnt( 􏼁

+ Anωn Ω
2
n + ω2

n􏼐 􏼑 cosωnt − cosΩnt( 􏼁

− Bn Ω
2
n − ω2

n􏼐 􏼑 Ωn sinωnt − ωn sin hΩnt( 􏼁

− Cnωn Ω
2
n − ω2

n􏼐 􏼑 cosωnt − cos hΩnt( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(39)

For g(s), the following fractional Green’s function of the
third order is used to obtain the Laplace inverse (Podlubny
[8]) as follows:

G(t) �
1
a

􏽘

∞

k�0

(− 1)
k

k!

c

a
􏼒 􏼓

k

t
ξ(k+1)−1

E
(k)

ξ−ψ,ξ+ψk
−

b

a
t
ξ−ψ

􏼠 􏼡􏼢 􏼣.

(40)

Ten, g(s) can be rewritten as follows:

g(s) �
1

s
2− α

+ ω2
ns

− α
+ 2ωnζn

. (41)

Te coefcients are as follows:

a � 1, b � ω2
n, c � 2ωnζn, ξ � 2 − α,ψ � −α. (42)

Hence, G(t) becomes
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G(t) � 􏽘
∞

k�0

(− 1)
k

k !
2ωnζn( 􏼁

k
t
(2− α)(k+1)− 1

E
(k)
2,2−α+αk −ω2

nt
2

􏼐 􏼑,

(43)

where E
(k)
2,2−α+αk(−ω2

nt2) is the kth derivative of the Mit-
tag–Lefer function, which is defned as follows:

E
(k)
2,2−α+αk −ω2

nt
2

􏼐 􏼑 � 􏽘
∞

j�0

(j + k)! −ω2
nt

2
􏼐 􏼑

j

j! Γ(2j + 2k + β − αk)
. (44)

So, equation (40) becomes the following:

G(t) � 􏽘
∞

k�0

(− 1)
k

k !
2ωnζn( 􏼁

k
t
(2−α)(k+1)−1

􏼐 􏼑

· 􏽘
∞

j�0

(j + k) ! −ω2
nt

2
􏼐 􏼑

j

j! Γ(2j + 2k + β − αk)
.

(45)

Now, applying the convolution theorem for the func-
tions presented in equations (39) and (45) leads to

Yn1(t) � F(t)∗G(t) � 􏽚
t

0
F(t − τ) G(τ) dτ. (46)

Te solution of the integration in equation (46) is found
analytically by rearranging equation (45) as follows:

G(t) � 􏽘
∞

k�0
􏽘

∞

j�0

(− 1)
k 2ωnζn( 􏼁

k
(j + k) ! −ω2

n􏼐 􏼑
j

k ! j ! Γ(2j + 2k + β − αk)

· t
(2− α)(k+1)+2j− 1

.

(47)

Defning the following parameters, we have

H � H(k, j) � (2 − α)(k + 1) + 2j, (48)

ϑ1 � ϑ1(k, j) �
(−1)

k 2ωnζn( 􏼁
k
(j + k) ! −ω2

n􏼐 􏼑
j

k ! j ! Γ(2j + 2k + β − αk)
. (49)

Hence, G (t) becomes the following:

G(t) � 􏽘
m

k�0
􏽐
∞

j�0
ϑ1 t

H−1⎡⎣ ⎤⎦. (50)

By computing integration in equation (46) term by term,
the value of Yn1(t) is found as a summation of the following
four equations:

Yn1a(t) �
2P0ζnωnΩnt

H+1

χn Ω
2
n − ω2

n􏼐 􏼑 H(H + 1)

LommelS 1 3/2H, 1/2ωnt( 􏼁

ωnt( 􏼁
H+1/2 −

LommelS 1 3/2H, 1/2Ωnt( 􏼁

Ωnt( 􏼁
H+1/2

⎧⎨

⎩

⎫⎬

⎭,

Yn1b(t) �
2P0Anζnωnt

H+1

χn Ω
2
n − ω2

n􏼐 􏼑H(H + 1)

H LommelS1 1/2H, 3/2ωnt( 􏼁

ωnt( 􏼁
H+1/2 −

ΩnH LommelS 1 1/2H, 3/2Ωnt( 􏼁

Ωnt( 􏼁
H+1/2

+
LommelS 1 3/2H, 1/2ωnt( 􏼁

t ωnt( 􏼁
H+1/2 −

LommelS 1 3/2H, 1/2Ωnt( 􏼁

t Ωnt( 􏼁
H+1/2

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

Yn1c(t) �
2P0ζnωnBnΩnt

H+1

χn Ω
2
n + ω2

n􏼐 􏼑H(H + 1)

LommelS1 3/2H, 1/2ωnt( 􏼁

ωnt( 􏼁
H+1/2 −

hypergeom [1], [1 + 1/2, 3/2 + 1/2H], 1/4Ω2nt
2

􏼐 􏼑

Ωnt( 􏼁
H+1/2

⎧⎨

⎩

⎫⎬

⎭,

Yn1d(t) �
2P0Cnζnωn

χn Ω
2
n − ω2

n􏼐 􏼑H(H + 1)

Hωnt
H+1LommelS1 1/2H, 3/2ωnt( 􏼁

ωnt( 􏼁
H+1/2 −

t
HLommelS1 3/2H, 1/2ωnt( 􏼁

ωnt( 􏼁
H+1/2

+
LommelS1 3/2H, 1/2ωnt( 􏼁

t ωnt( 􏼁
H+1/2 −

LommelS1 3/2H, 1/2Ωnt( 􏼁

t Ωnt( 􏼁
H+1/2

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(51)

Tus,

Yn1(t) � 􏽘
∞

k�0
􏽘

∞

j�0
ϑ1 Yn1a(t) + Yn1b(t) + Yn1c(t) + Yn1d(t)􏼂 􏼃⎡⎢⎢⎣ ⎤⎥⎥⎦,

(52)

where the hypogeom(.) and LommelS1(.) are the generalized
hypergeometric and generalized Lommel special functions,
respectively, and then Yn(t) is obtained by adding the two
solutions in equations (22) and (52). Finally, w(x, t) for the

fractionally damped beam can be written in the following
form:

w(x, t) � 􏽘
N

n�1
Yn(t) sin cnx( 􏼁 + An cos cnx( 􏼁􏼂

+Bn sin h cnx( 􏼁 + Cn cos h cnx( 􏼁􏼃.

(53)

All the solutions of the previously presented formula-
tions are truncated and fulflled using the mathematical
software package, Maple.
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3. Results and Discussion

In this section, a numerical verifcation will initially be
presented to verify the obtained formulation in the previous
section, and then the application of these equations is ex-
tended to plot the generalized defection response of the
beam to a moving load for the four BCs considered.
Moreover, the proposed results are to be compared to those
corresponding results present in the literature obtained
using diferent approaches. Finally, the efects of the load

normalized velocity, damping ratio, and the order of the
fractional derivative on the beam’s response are presented
and discussed.

3.1. Numerical Verifcation of the Formulations. In order to
perform the numerical verifcation of the solutions of
equations for the frst mode shape (n � 1) and after con-
sidering that the nondimensional length of the beam is unity,
some arbitrary set of parameters are taken as follows:

P0 � 254.365465N μ � 3000
kg
m

L � 1m EI � 215280Nm,

ω1 � 4.654654
rad
s
Ω1 � 25.654645

rad
s

c1 � 1.6541654m
− 1 χ1 � 1565.654,

t � 0.06546 s A1 � 0.3512613 B1 � 0.19414165 C1 � 0.89747.

(54)

Tese parameters are to be substituted in the corre-
sponding equations to obtain the response of the beam in terms
of maximum defection. It is important to mention that, for
most results shown in this section, a nondimensional analysis is
practiced, for which the units of the above parameters are
eliminated, and this practice is advantageous to generalize the
results for any desired set of data.

Firstly, the response of the elastic beam case in terms of
maximum defection at midpoint of the PP beam due to the
moving load is calculated by the closed-form solution, as
shown in equation (30). Te resulted values of this solution
are considered as control. Ten, the beam with integer order
damping case equations are used to calculate the response of
the elastic beam, which can be achieved by setting the value
of ζ to be approaching zero. Systematically, the elastic beam
response is recalculated by the fractional Kelvin–Voigt beam
equations. In this case, both αand ζ are set to be approaching
zero. Both results from integer order damped and fractional
order Voigt equations are compared to the control solution
as listed for each term in Table 2.

It can be seen from Table 2 that, for the simple case of
elastic beam, all equations obtained within this contribution
provided almost the same solutions with an error
approaching zero percent. It is worth noting that results
from the frst mode of vibration are used in the whole paper
because it is proved to be the most efective one in such
beam cases.

Te same procedure of verifcation is performed this
time by solving integer order damped PP beam case using
equation (33) by setting ζ � 0.25 and then comparing the
resulted defection at beam midspan to those obtained using
the fractional Voigt beam equations when α � 1 and
ζ � 0.25, which in this case represents a beam with integer
order damping.

Table 3 shows that the solution of defection obtained
from the integer order damping solution fts exactly into the
solution obtained from the fractional beam equations, which
implies that both elastic and integer order damping beam

cases can be solved by the proposed set of fractional beam
equations.

3.2. Efect of theMoving LoadVelocity. In order to generalize
the representation of the solution of the beam, di-
mensionless parameters are introduced, namely, di-
mensionless speed (β) of the moving load, which is the ratio
of the load speed (v) to the load critical speed (Ccr), and the
dimensionless time (t), which equals to tv/L. Here, Ccr �

ω1L/π as mentioned in the study by Hilal and Zibdeh [4].
Te normalized beam defection then can be defned as
follows:

w xmax, t( 􏼁 �
w xmax, t( 􏼁

(STD)max
, (55)

where xmax and (STD)max are location and value of the
maximum static defection of the beam, respectively, and the
normalized position x is defned as the position along the
beam (x) divided by the beam length (L), as x � x/L.

In Figure 1, the normalized elastic beam defections
versus the dimensionless time are plotted for PP, FF, FF, and
FC beams, considering fve diferent load velocities:
β � 0.05,0.2,0.5,0.8, and 1. Te curves of these fgures con-
form well with those obtained in the literature considering
similar parameters (Foda and Abduljabbar [33] and Fryba
[34]). Moreover, from Figure 1, it can be clearly seen that at
lower velocity, the response reaches its peak at a certain value
of t and then decreases to zero at t � 1. While at higher
velocities, the peak is shifted to the right, and it is still high at
t � 1. Moreover, the response of the beam increases by
increasing the velocity, until it reaches its peak at β � 0.5,
and then the maximum response values start to decrease as β
increases. On the other hand, at very low velocities, the
response behavior is reciprocating since the moving load is
not able to deform the beam efectively, while at higher
velocities, the response behavior is more obviously afected
by the moving load. In order to compare the response of the
four types of beams under the moving load, β � 0.5 is chosen
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Table 2: Defection of elastic beam.

Eqn. term
By elastic case

equations (control)
By integer order damping case

equations
By fractional order damping case

equations
Defection Defection Error (%) Defection Error (%)

1st 0.0001685609707709 0.0001685609707709 0 0.0001685609707709 0
2nd 0.0000953743185763 0.0000953743185763 0 0.0000953743185763 0
3rd 0.0000434171060674 0.0000434171060674 0 0.0000434171060674 0
4th 0.0003910063958128 0.0003910063958128 0 0.0003910063958128 0

Table 3: Defection of beam with integer order damping.

Eqn. term
By integer order

damping case equations
By fractional order damping case equations

Defection Defection Error (%)
1st 0.00016205306007776 0.00016205306005099 1.65×10−8

2nd 0.000090246447172046 0.000090246447172822 8.60×10−10

3rd 0.000041888988041822 0.000041888988041144 1.62×10−9

4th 0.00037354980321408 0.00037354980321542 3.58×10−10
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Figure 1: Maximum response of elastic beam at diferent β values. (a) Pinned-pinned, (b) fxed-fxed, (c) fxed-pinned, and (d) fxed-free.
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as a speed parameter since the response at this velocity is
relatively high compared with other velocities. Table 4 lists
the maximum normalized defection of the four types of
beams at β � 0.5, as shown in Figures 1 and 2, which show
a comparison for the actual (dimensional) beams’ response
along the normalized beam length. From Table 4 and Fig-
ure 2, the maximum beam defection occurs earlier, in terms
of time and distance, in the PP beam than the other cases.

3.3. Efect of Damping Ratio. In general, when increasing the
damping ratio, the response of the beam is normally decreased;
to check if this applies on the results of the proposed for-
mulations and to compare with the previously obtained results
by other approaches, Figure 3 is plotted to show the response of
the beam with integer order damping under varying damping
ratios (ζ � 0, 0.1, 0.2, and 0.3). Te curves of these fgures ft
exactly into the results obtained in the literature by Hilal and
Zibdeh [4].Te efect of the damping ratio is clear in this fgure;
as for ζ � 0.0, the beam demonstrated exact elastic response,
and when increasing ζ, responses get closer to each other, while
at t � 1, all the responses are almost zero.

Figure 4 shows the dynamic response of the four beams
when β � 0.5 and ζ � 0,0.1,0.2, and 0.3. Te curves of this
fgure confrm that when ζ � 0, beams respond elastically;
however, when increasing the damping ratio, the peak de-
fection decreases and gets shifted to a higher value of t. Also,
the defection of the beam in the fgures decreased when the
damping ratio increased, and this result agrees with the

concept of damping since the damping reduces the vibration
efect of the beam.

Table 5 lists the percentage reduction of the peak nor-
malized defection for each type of beam under study, in
which the PP case exhibited more reduction percent in its
normalized defection than the other cases.

An attempt to study the efect of themoving load velocity
on the beam response at diferent damping ratios is made by
plotting Figure 5. Tis fgure, in particular Figure 5(a),
exhibits that the same trend appeared in similar fgures
found in the literature [4], while Figure 6 compares the
response of diferent end condition beams when they are
damped with integer order at β� 0.5 and ζ � 0.1.

3.4. Efect of the Fractional Derivative. In this subsection, the
efect of the beam’s fractional derivative order to the beam’s
response is investigated, and this efect is not widely studied
in the literature, especially for general beam BCs. Never-
theless, for the simply supported beams’ case, some previous
works [35] are found and compared to the results of the
present work. Figures 7 and 8 are plotted to demonstrate the
efect of a wide range of varied velocities of moving load on
the midspan responses of the PP and FF beam, respectively,
when fractional order α� 0.5, while in Figure 9, the frac-
tional derivative α is varying and the responses of the beam
to a moving load of β� 0.5 are plotted.Te damping ratio for
all of these fgures is taken as ζ � 0.1. When comparing the
curves of Figure 7 to the curves of the available cases in the

Table 4: Maximum defection of elastic beams with the normalized time.

Beam end conditions Position of max.
defection (m)

Time corresponds to
max. defection (sec) Max. normalized defection

PP 0.5 0.665 1.70694872328
FF 0.5 0.71 1.66289273724
FP 0.554 0.7605 1.72303418723
FC 1.0 1.0 1.06559158286
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Figure 2: Maximum dimensional response of the four boundary conditions of elastic beams at β� 0.5 with the normalized length.
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Figure 3: Dynamic response for pinned-pinned beam with integer order damping at β � 0.25.
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Figure 4: Maximum normalized response of beams with integer order damping at β � 0.5. (a) Pinned-pinned, (b) fxed-fxed, (c) fxed-
pinned, and (d) fxed-free.
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Table 5: Comparison of the maximum defection of elastic beams and damped beams with integer order at β � 0.5.

Beam BC
Maximum dynamic defection

Elastic beam Damped beam with
integer order Percentage reduction (%)

PP 1.70694872328 1.500448614128 12.1
FF 1.66289273724 1.455719563051 12.5
FP 1.72303418723 1.521338905741 11.7
FC 1.06559158286 0.9824228067444 7.8
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Figure 5: Variations of the normalized defection with the velocity of the moving load. (a) Pinned-pinned, (b) fxed-fxed, (c) fxed-pinned,
and (d) fxed-free.
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literature (β� 0.25, 0.5, 0.75, and 1 only), it can be said that
this fgure presents a solution that conforms to others
presented previously (Freundlich [35]), while the curves of
Figure 9 showed equal peaks’ response to similar curves in
the literature; however, diferences appeared due to the
numerical solution accuracy and to the efect of the damping
ratio considered. Figure 9 implies that, by decreasing the
order of the derivative, the response of the beam increases;
nevertheless, the peak of the curve is not shifted, so the beam
still reaches its peak value at the same time. Moreover, the
noticeable efects of the fractional derivative on these curves
are around the normalized peaks’ region and at the end of
the normalized time region rather than the rest of the curve
regions. If the curves of Figures 7 and 8 are compared with
the beams damped with the integer order, clear diferences in

the peak values are noticed; hence, decreasing the order of
the fractional derivative yields to increasing the normalized
defection of the beams. In Figure 10, a comparison among
the responses of fractionally damped beams of the four end
conditions is presented at β � 0.5, ζ � 0.1, and α � 0.5.
Table 6 supported by Figure 11 presents the maximum
dimensional defection of the elastic, integer order damped,
and fractionally damped beams at diferent BCs, while ζ �

0.1 and β � 0.5.Te data in Table 6 show that for beam types
studied, when increasing the order of the fractional de-
rivative, defection decreases; moreover, the response of the
fractionally damped beams is always lower than the elastic
beam and greater than the damped beam with integer order;
that is, the behavior of the fractionally damped beam is
intermediate between the elastic and fully viscous beam.
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Figure 6: Maximum dimensional response of damped beams with integer order of diferent boundary conditions at β � 0.5 and ζ � 0.1.
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Figure 7: Dynamic response of the pinned-pinned beam at α� 0.5 and varying β.

Shock and Vibration 15



0

0.4

0.8

1.2

1.6

2

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

0.2 0.4 0.6 0.8 10
Normalized time

α=0.5
α=00.25

α=1
α=0.75

(a)

0

0.4

0.8

1.2

1.6

2
N

or
m

al
iz

ed
 d

ef
le

ct
io

n

0.2 0.4 0.6 0.8 10
Normalized time

α=0.5
α=00.25

α=1
α=0.75

(b)

0

0.4

0.8

1.2

1.6

2

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

0.2 0.4 0.6 0.8 10
Normalized time

α=0.5
α=00.25

α=1
α=0.75

(c)

0

0.4

0.8

1.2

1.6

2

N
or

m
al

iz
ed

 d
ef

le
ct

io
n

0.2 0.4 0.6 0.8 10
Normalized time

α=0.5
α=00.25

α=1
α=0.75

(d)

Figure 9: Dynamic defections at the midspan of beam at various values of α when β � 0.5, (a) pinned-pinned, (b) fxed-fxed, (c) fxed-
pinned, and (d) fxed-free.
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Figure 8: Dynamic response of the fxed-fxed beam at α� 0.5 and varying β.
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 . Conclusions and Recommendations

Tis study investigated the dynamic response of
Euler–Bernoulli beams of four diferent BCs with fractional
order internal damping traversed by a moving load. An
approach is introduced to obtain the closed-form solution of

the problem based on Green’s functions combined with the
decomposition technique. Comparisons with the previous
studies available in the literature for verifcation purposes
showed great matching, and based on these verifcations,
further results were performed for cases that have not been
available in the literature yet. Te moving load efects were
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Figure 10: Maximum dimensional response of fractionally damped beams of diferent end conditions at β � 0.5, ζ � 0.1, and α � 0.5.

Table 6: Comparison of the maximum defection of elastic, integer order damped, and fractionally damped beams when ζ � 0.1 and β � 0.5.

Beam BCs
Maximum dynamic defection of diferent types of beams

Elastic Fractional α � 0.25 Fractional α � 0.5 Fractional α � 0.75 Integer order damped
PP 1.706948723 1.694170748 1.671691038 1.616274628 1.500448614
FF 1.662892737 1.656430881 1.640546497 1.590357290 1.455719563
FP 1.723034187 1.671252915 1.654289293 1.611554490 1.521338905
FC 1.065591582 1.049447374 1.035502397 1.013632963 0.982422807
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Figure 11: Maximum dimensional response of elastic, integer order damped, and fractional (α � 0.5) pinned-pinned and fxed-fxed beams
at β � 0.5.
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investigated for a range of diferent values of constant ve-
locity. In addition, the efects of the beams’ dynamic re-
sponse caused by the order of fractional derivative internal
damping were also explored.

Te main conclusion of this research is that the efects of
using the fractional order derivative model containing
fractional constitutive law gives some good consequences,
despite the difculties of using the fractional model due to
the complicated math techniques and programming eforts.

From the obtained results and fgures, the following
conclusions can be also drawn:

(a) Te amplitude of normalized defection increases
with the moving load velocity increase to a certain
value, and then it starts to decrease.

(b) Te beam dynamic oscillations were more evident
for lower values of moving load velocities. In par-
ticular, PP beam sufered clearer oscillations.

(c) Positions of the beam’s amplitude response shifts to
the right when the load velocity increases.

(d) Among the investigated load velocities, the maxi-
mum beam normalized response appeared at β� 0.5
for all BCs.

(e) When damping ratio was decreased, beams sufered
more oscillations and response amplitudes were
shifted to the left.

(f ) Te largest amplitude of normalized defection
appeared for PP case and the lowest appeared for FC,
while the largest amplitude of dimensional response
appeared in the FC case and the lowest was for FF.

(g) Te fractional order afected most of the amplitude
response of FF and the least that of FC, while for PP
and PF, efects were clearer at the time end.

(h) Beam defection at α� 0.5 is found to be less than the
average defection of those when α� 0.0 (undamped
case) and α� 1.0 (one integer damping case), which
implies that the defection does not change linearly
with the order of the fractional derivative α.

For any certain engineering application, further future
research can be implemented, in order to investigate the
optimal fractional order derivative (α) that yields to the best
desired beam defection. Moreover, it has been shown that,
for the frst natural frequency, the proposed analytical
model results in excellent beam defection results. Nev-
ertheless, for other beam’s natural frequencies, validations
of the proposed analytical model could be performed.
Moreover, the impact of various mass ratios between the
moving load and the total weight of the beam could be held
in future studies. Additionally, the problem can be im-
proved for moving vehicles, trains, or multiloads or masses,
and the efect of the functionally graded material on the
dynamic response may also be studied. Furthermore, the
efect of large deformations on the beam dynamic de-
fection can be studied, where a nonlinear term is to be
added to the beam governing equation, and in this par-
ticular case, approximate numerical solutions are expected
to be generated.
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