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Fault diagnosis is an important means to ensure the safe and reliable operation of mechanical equipment. In machinery fault
diagnosis, collecting and mining the potential fault information of the vibration signal is the most commonly used method to
refect the operating status of the equipment. In engineering scenarios, in the face of rotating machinery with variable speed,
simple time domain analysis or frequency domain analysis is difcult to solve the problem. Te time-frequency analysis
technology that combines time-frequency transformation and data analysis can solve practical engineering problems by capturing
the transient information of the signal. At present, a large number of related literatures have been published in academic journals.
Tis paper hopes to provide convenience for relevant researchers and motivate researchers to further explore by summarizing the
published literature. First, this paper briefy explains the concept of time-frequency analysis and its development. Ten, the time-
frequency transformation method proposed for the characteristics of rotating machinery fault vibration signal and related works
of literature are reviewed, and the key issues of the application of time-frequency transformation method in rotating machinery
fault diagnosis are discussed. Next, this paper summarizes the relevant literature on the combination of data analysis technology
and time-frequency transformation and sorts out its development route and prospects. Te study reveals that time-frequency
analysis technology is able to detect the rotating machinery fault efectively. Te time-frequency analysis technology has made
abundant achievements in the feld of rotating machinery fault diagnosis. It is expected that this review would inspire researchers
to explore the potential of time-frequency analysis as well as to develop advanced research in this feld.

1. Introduction

In fault diagnosis of rotating machinery, infrared image
[1–3] and acoustic feedback can [4, 5] be used as important
indicators to judge the health status of the machine. But
due to the high cost of the infrared imaging and acoustic
emission, the analysis of mechanical vibration signals is the
most commonly used method in mechanical fault diagnosis
[6]. Mechanical systems often have complex structures.Te
vibration signal collected by the sensor is a comprehensive
refection of the vibration of each component. When the
mechanical equipment components such as bearings and
gears get fault, the vibration signal will change nonlinearly.
Extracting the feature of these changes is the key to realize
fault diagnosis. Time-frequency analysis can take into
account the global and local aspects of signals and

accurately reveal the time-varying characteristics of vi-
bration signals.

Te process of time-frequency analysis of vibration
signals can be divided into four parts: data acquisition, data
preprocessing, time-frequency transform, and data analysis.
Tis paper focuses on the latter two parts of this process,
namely time-frequency transform and data analysis, which
are keys to establishing the link between vibration signals
and fault diagnosis, as shown in Figure 1.

Time-frequency transformation establishes the mapping
relationship of vibration signal from time domain to time-
frequency domain and uses two-dimensional time-
frequency density function to represent the signal, thereby
revealing the instantaneous frequency composition of the
signal and the time-varying characteristics of each frequency
component. Te ideal time-frequency transform should
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have good time-frequency resolution, which means that the
signal energy is only concentrated in the instantaneous
frequency curve. Te structure of mechanical system is
complex, and the collected signals are a comprehensive
refection of the vibration signals of each component of the
system. Te infuence of noise and transmission path in-
creases the complexity of signal. Diferent from the general
electrical signal or acoustic signal, the vibration signal of
mechanical system often has many subcomponents, each of
which is modulated with each other, which makes it difcult
to obtain a good resolution of the time-frequency image.
Although time-frequency transformation has made great
progress in signal processing, many experts and scholars are
still making unremitting eforts in vibration signal. TeWeb
of Science database is widely regarded as the standard and
most authoritative database for scientifc research. Te most
common 8 time-frequency transformation methods are
listed, and according to the search results of Web of Science,
the number of relevant papers in the feld of mechanical fault
diagnosis in the past two decades is counted, as shown in
Figure 2. It can be seen that the number of related papers is
on the rise as a whole. Te early time-frequency transform
methods represented by wavelet transform still occupy
a large share due to their mature technical characteristics,
but in the past ten years, new technical methods have
gradually begun to occupy a larger share proportion.

Time-frequency transforms show much richer in-
formation about the signal that can reveal the health of
machinery. However, due to the complexity of vibration
signals of mechanical systems, there are a lot of noise and
similar components in the time-frequency image inevitably.
How to extract efective information becomes the focus and
difculty of research. Traditionally, the analysis of the in-
formation is generally done by engineers with the help of
their rich professional knowledge and experience. Te
earliest analysis method comes from statistics. Trough the
quantitative analysis of the time-frequency matrix of the
vibration signal, the statistical features are extracted as the
basis for fault diagnosis. With the continuous improvement

of the status of mechanical equipment health operation and
maintenance in related felds, the demand for efciency and
accuracy in fault diagnosis is also rising. Lower-level sta-
tistical features are often not applicable to complex data
structures. Experts and scholars have focused on deeper
information hidden in data and proposed many new feature
extraction methods. Since the twenty-frst century, thanks to
the rapid development of the computer industry, mechanical
engineering has continued to integrate and develop in the
direction of informationize and intelligentize. Te combi-
nation of machine learning and mechanical fault diagnosis
has become a hot topic in the current feld. Some
achievements have been made in how to efectively use
machine learning models to automatically and intelligently
analyse the results of time-frequency transformation of
signals.

In view of application of time-frequency analysis in fault
diagnosis of rotating machinery, Lakis [7] reviewed some
time-frequency transformation theories in 2007. Feng et al.
[8] gave a more detailed overview of the basic principles,
advantages, and disadvantages of various time-frequency
transformations since the 1990s and their applications in
mechanical fault diagnosis in 2013. Te above literature is
limited by the year of publication and only covers the re-
search results before 2013. However, in recent years, fre-
quency transformation technology and data analysis
technology have developed many new ideas and achieved
many achievements in their original felds. It is worth paying
attention and trying to combine the two to form a new time-
frequency analysis technology to solve the problem of
mechanical system fault diagnosis. Many researchers have
made such attempts and achieved certain results. Tese
achievements have developed diferent directions based on
diferent technologies and means, and there is no paper to
sort out and summarize these achievements.

In view of this, this paper, as a narrative review, reviews
the scientifc research achievements of time-frequency
analysis in rotating machinery fault diagnosis. It is un-
realistic to completely review all relevant articles in the feld,
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Figure 1: Time-frequency analysis fowchart.
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so this article focuses on and cites the latest research results
in the past 5 years. According to the degree of relevance to
the topic discussed in this paper, the author describes and
summarizes articles on time-frequency transformation and
time-frequency image analysis methods and summarizes the
development of related research route.

Te remaining of this paper is composed as follows: in
the second part, the application of common time-frequency
transform methods in rotating machinery fault diagnosis is
reviewed, several new time-frequency transform methods in
recent years are described, and their ideas and methods are
discussed and summarized. Te third part reviews the
analysis method for time-frequency transform, divides it
into three stages, and summarizes the results published,
respectively. Te fourth part is the conclusion.

2. Time-Frequency Transform

Time-frequency transform technology plays an important
role in establishing the link between mechanical vibration
signals and their fault diagnosis. To summarize its devel-
opment process, this paper selects several representative
methods to give a general description, among which the
formula is only a principle description, and the specifc
mathematical proof can be found in the references. Te
citations in this section are limited to papers in the feld of
rotating machinery fault diagnosis.

2.1. Traditional Time-Frequency Transform. Short-time
Fourier transform (STFT) [9] was proposed in 1946 and is
the earliest time-frequency transform technique. STFT ap-
proximates the instantaneous frequency of time-varying signals
by windowing the signal as shown in formula (1), where x(m)

is the input signal and ω(m) is the window function, and is
a common method for analyzing nonstationary signals.
However, due to its simple principle, it is difcult to make
theoretical breakthroughs in engineering applications, and it is
often used as an auxiliary or basic theoretical tool in the latest
research [10–12]. Te biggest defect of STFT is that it is limited
by the uncertainty criterion. Once the window function length
is selected, its time resolution and frequency resolution are also

determined and cannot meet the requirements of high pre-
cision at the same time.

X(n,ω) � 􏽘
∞

m�−∞
x(m)ω(n − m)e

− jωm
. (1)

In order to overcome this problem, the wavelet trans-
form (WT) proposed in the 1980s adds time translation and
scale scaling parameters to the basis function and has
adaptive microscopic ability to frequency changes as shown
in formula (2), where Scale a controls the expansion of the
wavelet function, and translational τ controls the translation
of the wavelet function. Peng and Chu [13] systematically
summarized and reviewed the application and development
of wavelet transform in the feld of mechanical fault di-
agnosis in 2004. Yan et al. [14] introduced the classical
wavelet transform and the second-generation wavelet
transform (SGWT) including continuous wavelet transform
(CWT), discrete wavelet transform (DWT), and wavelet
packet transform (WPT) in 2014.

WT(a, τ) �
1
��
a

√ 􏽚
∞

−∞
f(t)∗ψ

t − τ
a

􏼒 􏼓 dt. (2)

In recent studies, researchers often combine wavelet
transform with other technical methods to enhance its time-
frequency representation. Chen et al. [15] proposed an in-
stantaneous time-frequency transform method based on the
combination of overcomplete rational extended discrete
wavelet transform (ORDWT) and HHT to extract the
transient periodic pulse features implicit in vibration signals.
Wang et al. [16] proposed an enhanced kurtosis map based
on the combination of wavelet envelopes and signal enve-
lopes at diferent depths to determine the location of the
resonance frequency band to realize the identifcation of
weak bearing faults. Wang et al. [17] proposed an adaptive
adjustable quality factor wavelet transform (ATQWT)
method based on the optimization of time-frequency kur-
tosis index to realize the separation of weak features in the
original signal of bearing early faults. Ma et al. [18] proposed
a time-frequency analysis of the synchronous spline kernel
chirp wavelet transform (SSCET) by introducing the fre-
quency rotation operator and frequency shift operator of the
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Figure 2: (a) Most common 8 time-frequency transformation methods. (b) Number of related papers.
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spline kernel chirp wavelet transform (SCT) based on the
synchronous extraction transform, which efectively sup-
presses the interference of noise on the time-varying
characteristics of the vibration signal. Shi et al. [19] pro-
posed a new time-frequency analysis method based on
wavelet and synchronous extraction transform, which im-
proved the concentration of time-frequency representation
by extracting the frequency spectrum of the wavelet
transform of the signal at the corresponding scale of the
intermediate frequency. Dai et al. [20] proposed a denoising
technique of rotating machinery signals based on the ele-
ment analysis method and wavelet transform to extract the
fault impulse features from the target signal.

Wigner–Ville distribution (WVD) is also one of the
earliest time-frequency transformation methods. In recent
years, the research direction of scholars still focuses on
suppressing its cross-interference term [21–24]. However,
due to its own principle, the existence of the cross-
interference term is inevitable, which makes it difcult to
obtain a good time-frequency expression.

Among the traditional time-frequency transforms, the
wavelet transform benefts from the energy of its multi-
resolution analysis and is still widely used in the feld when
faced with a large number of nonstationary random process
signals in practical applications. Although wavelet transform
has the requirement of simultaneous detection of high and
low frequency parts in the signal, its analysis results depend
on the selection of basic functions, and waveforms with low
similarity to the basic functions will be ignored.

2.2. Sparse Decomposition. In view of the problem of basis
function selection, a sparse decomposition (SD) method was
proposed in the 1990s. By constructing a complete dictionary
and using a fully redundant function system to replace the
orthogonal basis function, the signal can adaptively select the
basis function according to its characteristics, and at the same
time, the signal can obtain a more concise representation.

For a given signal y ∈ Rn, it is sparsely represented; i.e.,

y � Dx, subject  tomin‖x‖0. (3)

Among them, the matrix D ϵRn×m(m> n) called dic-
tionary; the vector x ϵRm called sparse coefcient; ‖x‖0≪m

is the sparse degree of x, indicating the number of nonzero
elements in x.

For the optimal solution of signal sparse decomposition,
a large number of experts and scholars have carried out
related research, continuously improved the optimization
algorithm, and achieved certain results in signal processing
such as speech and image. In recent years, some scholars
have improved this method and applied it to vibration
signals. Huang et al. [25] in 2017 detailed the application of
resonance-based sparse signal decomposition (RSSD) in
mechanical fault diagnosis. Jin et al. [26] applied the sparse
decomposition method based on double Q factor wavelet to
the fault feature extraction of wind power planetary gearbox
through parameter optimization. Wang et al. [27] estab-
lished a sparse low-rank decomposition model based on
robust principal component analysis for bearing fault

vibration signals, revealing the sparsity of fault characteristic
frequencies and the low-rank nature of background dis-
turbances. Aiming at the multicomponent selection prob-
lem, He et al. [28] proposed a sparse decomposition-based
demodulation method for gear-bearing overlapped modu-
lation signals and designed the characteristics of the dic-
tionary matching compound fault of steady-state harmonic
atoms and transient shock atoms.

At present, the main application of sparse de-
composition is in coding, denoising, and weak signal ex-
traction, and it is rarely used in time-frequency analysis of
rotating machinery fault diagnosis because of the hyper-
parameter assignment problem. And when facing multi-
feature targets, taking the optimal solution obtained with
sparsity as the only constraint may lose the target.

2.3. Empirical Mode Decomposition. Since the twenty-frst
century, based on the adaptive processing technology of
data, empirical mode decomposition (EMD) occupies
a pivotal position in the feld of nonstationary signal pro-
cessing. Diferent from the past time-frequency trans-
formation methods, EMD decomposes the signal according
to the time scale characteristics of the data itself and does not
need to set any basis function in advance.

If the instantaneous frequency of a signal has physical
meaning, then its local signal must be symmetrical with zero
mean and has the same number of zero crossings and ex-
treme points. On this basis, Huang et al. proposed the
concept of intrinsic mode functions (IMF) [29]. Huang et al.
believe that any signal can be split into the sum of several
intrinsic modal components. Te intrinsic modal compo-
nents have two constraints:

(1) In the entire time range, the number of zero-crossing
points and extreme value points difers by at
most one

(2) At any time, the average value of the local maximum
envelope and the local minimum envelope is zero

EMD is the process of decomposing a signal to obtain its
intrinsic modal components, as shown in Figure 3. Te
specifc process is as follows:

Te mean value of the upper and lower envelopes of the
signal x(t) is calculated as m1 and calculated the diference
between (t), m1, and h1

h1 � x(t) − m1. (4)

Judging whether h1 satisfes the IMF constraint condi-
tions, if not, the mean value of the envelopes of h1 is cal-
culated as m11, calculate the diference.

h11 � h1 − m11. (5)

Repeat above process k times until h1k satisfes the IMF
constraints.

c1 � h1k, (6)

c1 is the frst IMF of the signal x(t), which contains the
shortest period component in the signal. Obtain the residual
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r1 � x(t) − c1. (7)

Treat the residual as a new signal x(t) and repeat above
process.

r2 � r1 − c2, · · · , rn

� rn−1 − cn,
(8)

until the termination condition is met

x(t) � 􏽘
n

i�1
ci + rn. (9)

EMD is widely used in the feld of mechanical fault
diagnosis. In 2013, Lei et al. [30] introduced some appli-
cations of EMD algorithm in rotating machinery faults
diagnosis based on the classifcation of diagnostic objects. In
recent years, some scholars have further optimized the EMD
algorithm from the view of the structure of the EMD al-
gorithm. Zhang et al. [31] optimized the local wave time-
frequency analysis method by improving the extremal do-
main mean mode decomposition (EMMD) and proposing
a new screening stop condition, and decomposed the ob-
tained components, and extracted the average instantaneous
frequency and energy ratio as the fault. Te feature vector
constructs a neural network for state judgment. Yan et al.
[32] proposed an improved adaptive variational mode de-
composition (IAVMD) time-frequency analysis algorithm
for rotor fault diagnosis.

At the same time, the researchers also looked at the
possibility of combining the EMD algorithm with other
algorithms. Amirat et al. [33] proposed a bearing fault
detection method based on the combination of empirical
mode decomposition and statistical analysis. Liu et al. [34]
proposed an integrated time-frequency analysis method
based on EMD andWVD and predicted the remaining life of
the gearbox through a particle flter method based on the
Wiener process state-space model. Wu et al. [35] used
convergent empirical mode decomposition (EEMD) to
suppress cross-term interference in WVD time-frequency
representation of vibration signals and used the compressed
local binary mode grayscale histogram as a feature to input
into BP neural network to achieve fault classifcation.

EMD algorithm is based on the iterative process, which is
diferent from the traditional method of decomposing vi-
bration signals using basis functions. It provides a unique
idea for subsequent research in terms of time-frequency
transformation. However, when the signal contains dis-
continuous components, EMD will produce frequency ali-
asing phenomenon [36]. Many scholars have proposed
targeted optimization schemes, but it is difcult to funda-
mentally solve this problem due to the limitation of the
recursive-based IMF separation method of EMD.

2.4. Variational Mode Decomposition. In 2014, Dragomir-
etskiy and Zosso [37] proposed variational mode de-
composition (VMD), which achieved nonrecursive IMF
decomposition by constructing and solving the variational
constraint problem, and efectively avoiding the possible
frequency aliasing phenomenon in EMD. In VMD algo-
rithm, the signal x(t) is decomposed, assuming that all its
IMF components are narrowband signals concentrated near
their respective center frequencies, and a constrained op-
timization problem is established according to the com-
ponent narrowband conditions, thereby estimating the
center frequencies of the IMF components and recon-
structing IMF components. Te process can be outlined as
follows.

IMF is defned as AM and FM signal, does Hilbert
transform on IMF component uk, and fnds its analytical
signal.

δ(t) +
j

πt
􏼒 􏼓∗ uk(t). (10)

Move the analytical signal to the corresponding base-
band by frequency shifting.

δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jωkt
. (11)

Estimate signal bandwidth by H1-Gaussian norm.

δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jωkt

�������

�������

2

2
. (12)

To minimize the sum of the bandwidths of each IMF
component, the constrained variational model can be
expressed as follows:
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min
uk{ } ωk{ }

δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jωkt

�������

�������

2

2
, subject  to 􏽘

k

uk(t) � x(t), (13)

where uk􏼈 􏼉 � u1, · · · , uK􏼈 􏼉, ωk􏼈 􏼉 � ω1, · · · ,ωK􏼈 􏼉 represents all
IMF components and their center frequencies.

Te constraint model is solved by the alternating di-
rection method of multipliers, and the center frequency and
bandwidth of each IMF component are continuously
updated to realize the adaptive decomposition of the signal.
Some scholars have successfully applied VMD tomechanical
fault diagnosis. Isham et al. [38] briefy summarized the
application of VMD in gear and bearing fault diagnosis and
proposed that VMD has the disadvantage of parameter-
dependent design.

Aiming at this shortcoming, Jiang et al. [39] studied the
variation characteristics of the extracted modal center fre-
quency under diferent initial center frequencies and pro-
posed an icf-guided VMD method to accurately extract the
weak damage features of rotating machinery. Li et al. [40]
proposed a periodic pulse extraction method based on
improved adaptive VMD and adaptive sparse coding
shrinkage noise reduction and adaptively determined the
number of modes and penalty factors according to diferent
signals for fault diagnosis of rotating machinery.

Some researchers combine VMD with other analysis
methods to improve its performance. Chen et al. [41]
proposed a variational nonlinear chirp mode decomposition
(VNCMD) method, which uses demodulation techniques to
convert nonlinear chirp signals into narrowband signals. On
this basis, Wei et al. [42] proposed a new variational non-
linear component decomposition (VNCD) method, and by
modifying the optimization function of VNCMD, it has
stronger adaptive ability in practical applications. Pan et al.
[43] proposed a nonlinear sparse mode decomposition
(NSMD) method to improve the robustness, which uses
local narrowband components obtained by constrained
singular local linear operators as the base signal to complete
the signal decomposition.

As a newer time-frequency transformation method,
VMD is less used in fault diagnosis of rotating machinery at
present. Its dependence on parameter design and low
computational efciency provide the possibility for further
optimization.

2.5. Synchrosqueezing Transform. In 2011, inspired by the
EMD algorithm, Daubechies et al. [44] proposed the syn-
chrosqueezing transform (SST) from the postprocessing of
the time-frequency transform. SST can generate a time-
frequency matrix with higher aggregation by rearranging
the energy distribution. Taking the synchrosqueezing
wavelet transform as an example, do wavelet transform with
signal x(t) and its time-frequency matrix.

Wx(a, b;ψ) � 􏽚 x(t)a
−1/2ψ

t − b

a
􏼠 􏼡dt. (14)

Among them, a is the scale factor, b is the translation
factor, and ψ is the wavelet function.

Improving the time-frequency energy aggregation by
compressing the value of [ωi − ∆ω,ωi + ∆ω] to ωi. Tis
process can be expressed as follows:

Tx ωi( 􏼁 � ∆ω− 1
􏽘

ωk� Wx−ωi| |≤∆ω/2

Wxa
−3/2
k ∆ak,

(15)

where k is the scale number of the wavelet.
Similarly, the synchrosqueezing transform method can

be used as a postprocessingmethod for other time-frequency
transform methods such as STFT, so as to improve the
energy aggregation of the time-frequency matrix.

In the feld of mechanical fault diagnosis, Li and Liang
[45] proposed a TF method based on generalized syn-
chrosqueezing transform (GST) to detect and diagnose
gearbox faults. Feng et al. [46] improved the syn-
chrosqueezing transform using iterative generalized de-
modulation. Guan et al. [47] designed a velocity
synchrosqueezing transform to improve the ambiguity in the
analysis of vibration signals of rotating machinery under
nonstationary conditions. Ni et al. [48] proposed a time-
frequency analysis method based on VMD and SST to
improve the problem of low time-frequency resolution when
processing multicomponent signals. Yu et al. [49–51] pro-
posed an optimization scheme based on fxed point iterative
algorithm to solve the problem of energy difusion in syn-
chrosqueezing transform when processing strong frequency
conversion signals and then optimized for the problem of
nonredistribution points. Tu et al. [52] proposed the hori-
zontal synchrosqueezing transform, which improved the
energy concentration of the time-frequency diagram and
achieved the accurate reconstruction of the vibration signal
component through the local estimation of the group delay.
Yi et al. [53] obtained the high-resolution TF distribution of
the gear vibration signal based on the rearrangement
method and the second-order synchrosqueezing transform.
He et al. [54, 55] proposed the time-rearranged syn-
chrosqueezing transform (TSST), obtained the time-
frequency map of the high-energy aggregation by calcu-
lating the group delay estimator and rearranging the time-
frequency coefcients in the time direction, and at the same
time preserved the reversibility. Later, proposed SST based
on down-sampling FFT, by combining with selective re-
distribution and frequency subdivision scheme, balanced
accuracy and computational efciency in the face of large-
scale vibration signal processing. Cao et al. [56] improved
the computational efciency of T SST through parameter
optimization.

As a postprocessing method, synchrosqueezing trans-
form is excellent in providing high-resolution time-
frequency representation by performing energy rearrange-
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ment on the basis of traditional time-frequency transform.
However, it is sensitive to noise and may get frequency
aliasing when analyzing nonstationary signals.

2.6. Synchroextracting Transform. Inspired by the idea of
improving the energy aggregation of time-frequency matrix
by means of time-frequency rearrangement, Yu et al. [57]
proposed the synchroextracting transform (SET). By con-
structing a synchroextracting operator, the SET has a better
antinoise performance. For a single-component signal
x(t) � Aejω0t, its time-frequency obtained by STFT can be
expressed as follows:

Ge(t,ω) � Ag ω − ω0( 􏼁e
jω0t

, (16)

where g is the Gaussian window function. By taking the
partial derivative with respect to time t, the instantaneous
frequency trace of can be obtained as follows:

ω0(t,ω) � −j ∙
ztGe(t,ω)

Ge(t,ω)
. (17)

Time-frequency transform expression of SET is defned as

Te(t,ω) � Ge(t,ω) ∙ δ ω − ω0(t,ω)( 􏼁. (18)

Tat is, only the frequency components in the range of
the instantaneous frequency trajectory ω0(t,ω) are retained,
and the frequency components in the rest part are removed
so that the time-frequency matrix has high-energy aggre-
gation. δ(ω − ω0(t,ω)) is called the synchronous extraction
operator. For multicomponent signals, the processing
method is the same as the above process when the frequency
interval of each component signal is not less than twice the
frequency support range of the window function.

On this basis, Chen et al. [58] proposed an improved SET,
which has better robustness to noise pollution through the
second-order Taylor expansion of the extraction operator.
You et al. [59] introduced an improved penalty function based
on a convex optimization scheme on the basis of the SET to
denoise the signal. Xu et al. [60, 61] proposed a method for
extracting and reconstructing synchronously extracted and
transformed signal components based on sequential statistical
flters and used the shock sensitivity kurtosis index to screen
the fault components to realize the fault detection of the inner
ring of rolling bearings, and a generalized S-SET is also
proposed, which has good robustness to noise. Yu et al. [62]
proposed a new technique binding the demodulation tech-
nique, and SET is thus in this paper to overcome the limi-
tations that SET technique certain has in dealing with strong
time-varying signals. Li et al. [63] presented a new extraction
operator to improve the energy concentration of the TFR of
a noise contaminated multicomponent signal by using an
adaptive ridge curve identifcation process together with SET
to solve the drawback that the time-frequency representation
of a signal produced by SETcan be afected by noise contained
in the signal.

Judging from the current research results, synchronous
extraction and transformation have obvious advantages in
the resolution of time-frequency images. But at the same

time, it also brings the disadvantage of low computational
efciency and can only be used as an ofine analysis method.

2.7.OtherMethods. In addition to the above time-frequency
transformation methods, some scholars have optimized and
reorganized the existing methods according to the actual
needs of the project and have also achieved certain results.
Feng et al. [64–66] used Vold-Kalman fltering to separate
single-component components in rotating machinery vi-
bration signals and then achieved high-resolution time-
frequency representation through methods such as Hil-
bert transform and high-order energy separation. Te fre-
quency content of nonstationary signals provides a solution.
Yang et al. [67] proposed a new basis tracking technique, and
experiments showed that this method has good sparsity for
the time-frequency feature representation of vibration sig-
nals. Shi et al. [68] and Huang et al. [69], respectively,
proposed a fault diagnosis method combining STFT with
generalized demodulation. Chen and Feng [70] proposed an
iterative generalized time-frequency redistribution method
and improved the time-frequency resolution by decom-
posing the nonstationary multicomponent signal into
a constant-frequency single-component signal. Shi et al. [71]
proposed a generalized stepwise demodulation trans-
formation (GSDT) to improve the energy concentration
level of time-frequency analysis. Deng et al. [72] proposed
amethod to automatically determine the optimal ordering of
fractional Hilbert transforms using diferential evolution
(DE) algorithm. Ma et al. [73] used the probability angular
velocity algorithm based on the time-frequency represen-
tation to construct the phase function of the vibration signal
and introduced a generalized demodulation operator to
eliminate the rotational speed fuctuation. Guan et al. [74]
proposed the velocity synchronous linear chirp transform
(VSLCT), which utilizes a time-varying window length to
dynamically provide an ideal time-frequency resolution
according to changing conditions.

2.8. Summary. Troughout the decades of development of
time-frequency transformation technology, it can be found
that the traditional time-frequency transformation tech-
nology is still widely used, and its theory has become more
and more perfect. It can be said that it is difcult to make
breakthroughs in the method itself. However, in the past ten
years, new time-frequency transform technology based on it
has been emerging. Overall, time-frequency transform
technology has developed more and more rapidly, and
object-oriented has also shifted from analog signals or
simple signals to nonlinear time-varying complex signals.
Realizing the clear and accurate expression of signals in the
time-frequency domain is the main goal of development in
this feld.

In order to achieve this goal, the current research di-
rection mainly focuses on two aspects: one is to study how to
decompose the signal into a single-component modal signal
and then adopt Hilbert transform for the single-component
modal signal; the other is to study the way of postprocessing
and perform energy rearrangement on the time-frequency
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matrix. Both of these two directions have their own ad-
vantages and disadvantages, and each has its own scope of
application when facing specifc problems as shown in
Table 1. It is difcult to compare the advantages and dis-
advantages of the two qualitatively or quantitatively at
present. Moreover, the existing time-frequency trans-
formation methods often bring about a signifcant reduction
in computational efciency while pursuing high time-
frequency resolution, which will also be one of the possi-
ble research directions in the future.

3. Data Analysis of Time-Frequency Images

Te time-frequency transform shows the richer time-varying
characteristics of vibration signals by mapping the one-
dimensional time domain signal to the two-dimensional
time-frequency plane. However, the time-frequency image
does not spontaneously match the fault type, and the re-
lationship between them is often difcult to see intuitively.
To establish the connection between the time-varying
characteristics in the time-frequency image, the state of
the mechanical equipment requires further data analysis.
Ten, the time-frequency images can be classifed according
to the results of data analysis. In this section, data analysis
methods commonly used in time-frequency analysis of
rotating machinery fault diagnosis are divided into three
stages and reviewed according to their development history.

3.1. Based on Statistical Method. Te earliest data analysis is
based on statistical indicators of the data, and such methods
are often very intuitive and simple to implement. Zhao et al.
[75] proposed to use the contour map to enhance the display
of the power distribution in the wavelet transform time-
frequency map. Cai Yanping et al. [76] segmented the time-
spectrum contour map of the vibration signal according to
the image segmentation theory and used fuzzy C-means
clustering by selecting the feature parameters such as the
centroid position, feature body area, and number and en-
tropy of the segmented image. Li et al. [77] proposed to use
the frst-order moment of the S-transform time-frequency
diagram of the vibration signal as the eigenvector and
proved its efectiveness by classifying the vibration signal of
the engine under fve operating conditions. Dhamande and
Chaudhari [78] extracted the time-frequency statistical
features from the multilayer wavelet coefcient map of
continuous wavelet transform for the problem of bearing
composite fault identifcation for SVM training. Wang et al.
[79] constructed a median map based on the video map of
nonfaulty data, designed a new metric based on the distance
between the time-frequency map of the measured signal and
the median map, and used hypothesis testing to make
classifcation decisions.

Although the statistical-based analysis method is simple
and efcient, it is greatly afected by the quality of time-
frequency images and has poor robustness to noise. It is
often difcult to establish a unifed quantitative standard for
diferent data sets, and the established diagnostic models
lack mobility.

3.2. Based on Feature Extraction. With the continuous
progress of industrial engineering, there are further re-
quirements for the accuracy of fault diagnosis of me-
chanical equipment. It is imperative to deeply mine time-
frequency images to reveal their hidden features and es-
tablish a diagnostic model with high robustness and
generalization. With rich experience and subject knowl-
edge, many scholars have extracted variety of features to
guide fault diagnosis from the time-frequency represen-
tation of vibration signals.

Some studies have proposed innovative time-frequency
image features from the perspective of signal analysis. Zhu
et al. [80] used singular value contribution rate and entropy
weight to construct multiweight singular value de-
composition (MWSVD) and extracted features from the
time-frequency matrix obtained by wavelet packet trans-
form. Park et al. [81] proposed a new time-frequency image
feature for fault diagnosis of variable speed rotating
machinery.

Some studies extract time-frequency image features
from the perspective of the image itself. Iatsenko et al. [82]
proposed an adaptive ridge extraction method based on
dynamic path optimization and fxed point iteration.
Huang et al. [83] proposed a multitime-frequency curve
extraction method suitable for nonpeak-to-peak ridge
lines. Guo et al. [84] proposed a ridge estimation method
based on variational nonlinear chirp mode decomposition.
Chen et al. [85] proposed a high-precision time-frequency
characteristic curve extraction method for variable speed
bearing fault diagnosis based on iterative envelope tracking
flter (IETF). Shi et al. [86] proposed a linear trans-
formation of frequency matching, which improved the
accuracy of frequency ridge extraction in the time-
frequency map. Liu et al. [87] proposed a method based
on generalized demodulation to iteratively extract time-
frequency curves from the time-frequency representation
of vibration signal components using a fast path optimi-
zation algorithm. Dou and Lin [88] proposed an adaptive
variable bandwidth cost function (AVBCF) to adaptively
search for ridge extraction regions in time-frequency im-
ages. Li et al. [89] proposed an iterative feature ridge ex-
traction (ICRE) strategy to automatically extract multiple
feature ridges on the time-frequency plane.

Some studies use numerical methods to analyse time-
frequency images. Fu et al. [90] proposed a signal identi-
fcation method that combines the signal time-frequency
matrix with a window to perform singular value de-
composition, extracts its eigenvectors, and combines with
BP neural network. Cai et al. [91] formed a diagnostic ei-
genvector by extracting the invariant moment feature of the
EMD-WVD vibration spectrum time-frequency image of
the vibration signal. Hou et al. [92] extracted the spectral
singular values of vibration signals as fault features. Wang
et al. [93] proposed a new semisupervised multilayer non-
negative matrix factorization method, using a two-layer
non-negative matrix factorization model to learn hierar-
chical attribute representations of fault categories and se-
verity from the time-frequency distribution (TFD) of the
signal.
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Tere are also some researches on feature extraction of
time-frequency images with the help of technical methods in
other felds. Wang Fengtao et al. [94] applied the two-
dimensional manifold (2D-LPP) algorithm to efectively
extract the time-frequency projection image representing
the bearing fault state on the basis of HHT time-frequency
analysis. Yang et al. [95, 96] proposed a time-frequency
feature extraction method based on matching pursuit
technique. Wang et al. [97] used the time-varying autore-
gression (TVAR)model to decompose the time-spectrogram
of the vibration signal, and the threshold value was selected
to calculate its energy mean value as a feature. Zhang et al.
[98] used the impulse coupled neural network to decompose
the optimal generalized S-transform time-frequency map
into binary and defned and extracted the capture ratio
sequence of the binary image as the characteristic parameter
of the rolling bearing fault signal. Yan et al. [99] proposed to
use the SVM classifcation model based on particle swarm
optimization to learn the multidomain fault feature in-
formation of vibration signals and realize the identifcation
of multifault states of rolling bearings. Ziqian et al. [100]
proposed an adaptive dynamic weighted fusion method of
time-frequency features based on attention mechanism.

Judging from the research results, with classifcation
accuracy as the standard for extracting time-frequency
image features, there are often quite rich mathematical
tools that can achieve or approximately achieve the same
efect. Based on these tools and relevant experience
knowledge in the feld of fault diagnosis, many methods of
feature extraction have been developed. Despite the rigorous
theoretical support, these methods have not yet formed
a complete architecture.

3.3. Based on Artifcial Intelligence. Although the analysis
method based on feature extraction has achieved many
achievements in the feld, with the vigorous development of
the computer industry, in the actual engineering scene, faced
with the complex and huge amount of data and the demand
for online diagnosis, often requires an automated way to
reduce the dependence on engineers. With the help of ar-
tifcial neural network, it is expected to achieve this goal.

Artifcial neural network is an important branch of
artifcial intelligence. By simulating biological neural
network, the computer has the ability to recognize
existing knowledge and acquire new knowledge, contin-
uously improve performance, and realize self-

improvement [101]. In the past two decades, thanks to
the substantial improvement of computer computing
power, artifcial neural networks have been greatly de-
veloped, and their models often have high complexity and
large capacity, which means that they can complete more
complex learning tasks. Since the twenty-frst century,
artifcial neural networks have demonstrated their supe-
rior performance in several tests and competitions. In
recent years, artifcial neural network models such as deep
autoencoders [102, 103], deep belief networks [104], and
convolutional neural networks [105, 106] have also been
widely used in the feld of mechanical fault diagnosis. Te
basic structure of artifcial neural network is shown in
Figure 4.

In the early research, scholars often directly applied the
neural network model to the classifcation of time-frequency
images. Chen et al. [107] proposed a CNN automatic
classifcation method based on discrete wavelet transform
time-frequency map. Wang et al. [108] and Li et al. [109],
respectively, proposed a fault diagnosis method using CNN
to automatically classify the vibration signal STFT time-
frequency diagram. Zeng et al. [110] used CNN to classify
the S-transformed time-frequency image of the gearbox
vibration signal to realize the identifcation of fault types.
Belmiloud et al. [111] learns with the wavelet packet de-
composition of vibration signals as the input data of CNN.
Kumar et al. [112] used CNN to learn to classify time-
frequency images obtained by wavelet transform of signals in
the angle domain. Ma et al. [73] proposed an intelligent fault
diagnosis method based on generalized demodulation (GD)
with deep residual network (DRN).Wei et al. [113] proposed
a fault vibration framework based on residual network
(ResNet) and extreme learning machine ELM to classify and
identify the time-frequency domain images of vibration
signals. Lin et al. [114] proposed an intelligent identifcation
method for gearbox faults that combines variational mode
decomposition (VMD) and probabilistic neural network
(PNN).

After achieving certain results, many scholars are not
satisfed with the simple application of artifcial neural
network and began to deeply explore its combination with
mechanical fault diagnosis. Jing et al. [115] comparatively
analyzed the performance of CNN for learning features from
raw data and time-frequency domain transformation. Zeng
and Li [116] studied the recognition performance of time-
frequency matrices constructed by diferent time-frequency
methods of CNN for vibration signals of gearbox

Table 1: Advantages and disadvantages of time-frequency transformation method mentioned.

Method Advantages Disadvantages

Traditional method
STFT With simple principle Limited by the uncertainty criterion
WD has adaptive microscopic ability Need to set the basis function
WVD Has good time-frequency aggregation Has a cross-interference term
SD Don’t need to set basis function Difcult to solve to multi-feature tasks

Preprocessing method EMD Adaptively decomposes the signal Produces frequency aliasing
VMD Avoids frequency aliasing Low computational efciency

Postprocessing method SET Improves time-frequency aggregation Sensitive to noise,
SST Has a better antinoise performance Low computational efciency
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transmissions under variable speed conditions. Verstraete
et al. [117] validated the ability of the CNN model to ac-
curately diagnose faults by comparing three time-frequency
analysis methods as raw signal representations. Shi et al.
[118] compared and analyzed the situation when the time-
domain grayscale image and time-frequency image of vi-
bration signal were input to CNN from the aspects of model
convergence speed and recognition accuracy.

At the same time, some scholars have optimized the
mechanical fault diagnosis model based on artifcial neural
network from diferent angles with their experience and
knowledge in the feld.

Starting from the time-frequency matrix as the input of
the neural network, Zhu et al. [119] reduced the size of the
time-frequency matrix of the vibration signal by bilinear
interpolation. Pang et al. [120] transformed the time-
frequency map into a low-dimensional encoding matrix
with strong sparsity based on the discrete cosine transform
(DCT) algorithm to improve the computational efciency
of the CNN model. Wang et al. [121] adopted the newly
proposed Bidirectional on-Negative Matrix Factorization
(BiNMF) method to obtain the low-rank feature matrix of
the time-frequency map, which greatly compresses the
computational complexity of the tfr-based prediction al-
gorithm. Wan et al. [122] used convolutional autoencoder
(DCAE) to perform image denoising on wavelet transform
time-frequency maps of vibration signals in diferent states
to improve the classifcation efect of CNN. Drawing on the
practice of CNN model in image processing, Hasan et al.
[123] performed grayscale image processing on the con-
tinuous wavelet transform time-frequency map of vibra-
tion signal and then sent it to the network for pattern
recognition, which improved the accuracy of network
recognition. Zhao et al. [124] used the synchronous ex-
traction transform to eliminate the divergent energy in the
time-frequency image, which improved the network’s
ability to identify fault features in the time-frequency image
in the case of strong noise.

For the characteristics of vibration signals, starting from
the optimization of the network structure, Jahromi et al.
[125] optimized the dynamic fuzzy neural network based on
sequential fuzzy clustering with the input of the time-
frequency map of the dimensionality-reduced wavelet
transform. He and He [126] embedded a time-synchronized
resampling mechanism in the deep learning structure to
introduce vibration analysis as a hard constraint into the
deep learning structure, resulting in higher diagnostic ac-
curacy. Liu et al. [127] proposed a fault diagnosis method
based on an improved multiscale residual generative
adversarial network and a feature-augmented-driven cap-
sule network.Te adversarial generative strategy was used to
efectively solve the problem of imbalance between fault data
and nonfault data in intelligent bearing diagnosis. Ding et al.
[128] proposed a new time-frequency transformer model
based on the Transformer model for extracting abstract
features from video representations of vibration signals.
Bearing experimental data verify its feasibility.

In addition, some scholars also put forward optimization
ideas from other aspects. Facing the problem of possible
missing samples in fault diagnosis, Zhang et al. [129] pro-
posed an improved convolutional neural network (CNN)
method, which utilizes multiple parallel convolutional layers
to achieve complementary time-frequency feature extrac-
tion. Facing the computational pressure brought by the high
sampling rate of vibration signals, Huang et al. [130] adopted
the channel attention deep residual network (CADRN) as
a diagnostic model and proposed a time-frequency fault
diagnosis method for planetary gearboxes in a cloud
environment.

3.4. Summary. Tis section reviews the development of data
analysis for time-frequency matrices of vibration signals,
and divides it into three stages: based on statistics, based on
feature extraction, and based on artifcial intelligence as
shown in Table 2. It should be noted that the stage division
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Figure 4: Basic structure of artifcial neural network.

10 Shock and Vibration



here is carried out according to the order of publication, but
it does not mean that they have a substitution relationship
with each other. Te statistics method extracts the surface
information of the time-frequencymatrix, so it is often easily
disturbed by components such as noise. Te feature ex-
traction method generally has good robustness by mining
the deep information contained in the time-frequency
matrix, but at the same time, it relies on the experience
knowledge of experts and scholars in related felds. Te
artifcial intelligence method reduces the need for experience
to a certain extent by constructing an end-to-end artifcial
neural network diagnostic model, and the diagnostic model
adaptively extracts features from the time-frequency matrix
and establishes a connection with the mechanical health
status. However, it is not enough to apply the artifcial neural
network model to mechanical fault diagnosis according to
the prior knowledge of computer and other felds. Te
optimization of the model is still inseparable from the ex-
perience and knowledge of experts and scholars in the feld.

Predictably, with the rapid development of computer
technology and the overall popularization of artifcial in-
telligence algorithm, intelligent and automatic data analysis
method will play a dominant role in mechanical system fault
diagnosis. However, the “black box” problem of artifcial
intelligence algorithm will be the biggest obstacle to theo-
retical research and practical application. More and more
scholars pay attention to this problem, how to enhance the
credibility of intelligent algorithms through expert knowl-
edge will be the future research trend.

4. Conclusions

Tis paper reviews the application of time-frequency anal-
ysis in mechanical fault diagnosis and divides it into two
parts: obtaining time-frequency images and extracting fea-
tures from time-frequency images. In terms of obtaining
time-frequency images, in order to obtain a time-frequency
matrix with higher resolution and energy aggregation, the
current research directions of experts and scholars mainly
focus on the single-modal component decomposition of the
signal and the energy rearrangement of the time-frequency
matrix. In terms of feature extraction for time-frequency
images, statistical-based feature extraction methods can only
extract surface information; feature extraction-based anal-
ysis methods can mine deeper information in time-
frequency matrices but rely heavily on the experience and
knowledge of experts and scholars. Te analysis method of
artifcial intelligence builds an end-to-end artifcial neural
network diagnosis model between the time-frequency ma-
trix and the mechanical state and automatically learns and

extracts features from the time-frequency matrix. However,
in the application of artifcial neural network models, the
complexity of the models involved is very high, so that better
performance can often be achieved only by adjusting the
parameters, and the requirements for users are low, but the
model lacks a strict theoretical basis [131]. In the long run,
such an approach often creates hidden dangers because the
reliability of the model cannot be assessed. From a scientifc
point of view, it is highly inadvisable to rely on luck to
construct and tune deep learning network parameters. Te
optimization of the model and the evaluation of its reliability
must return to the empirical knowledge of experts and
scholars. Te heavy workload of extracting features from big
data is adaptively completed by the artifcial neural network
model, and it should be the future development direction to
analyse and evaluate the situation of feature extraction based
on empirical knowledge to make the fnal decision.

Among the methods of time-frequency analysis, time-
frequency transformation and data analysis are two parts of
complementary and parallel development. Te forward di-
rection of time-frequency conversion technology is to fnd
better time-frequency representation of vibration signals to
fully display signal characteristics. Te research of data
analysis technology focuses on how to mine features and
establish a direct mapping relationship between features and
fault types. In the current study, these two parts tend to be
independent of each other. How to combine the two more
efectively may be one of the future research directions. In
addition, although the introduction of intelligent algorithms
has improved the efectiveness and efciency of time-
frequency analysis, it has led to the decline of credibility
to some extent. Te choice of intelligence, automation, and
reliability, or to achieve a certain balance state, will also be
the direction worth exploring in the future research.
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