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Te benefts of noise can be found in nonlinear systems where a type of resonances can inject the noise into systems to enhance weak
signals of interest, including stochastic resonance, vibrational resonance, and chaotic resonance. Such benefts of noise can be improved
further by adding some items into the nonlinear systems. Considering the time-dependent memory of fractional-order derivative and
time-delay feedback whichmakes the nonlinear systems take advantage of their historical information andmakes the output of nonlinear
systems afect the input by feedback control, therefore, we attempt to design the model of stochastic resonance (SR) enhanced by both
fractional-order derivative and time-delay feedback. Among them, fractional-order derivative and time delay would reinforce thememory
of nonlinear systems for historical information and feedback would use the output of systems to control the systems precisely.Terefore,
we hope that their advantageswould be fused to improve theweak signal detection performance of SR further.Ten, it would be applied to
bearing fault diagnosis and compared with that without fractional-order derivative and time-delay feedback and even other diagnostic
methods. Te experimental results indicate that the SR enhanced by fractional-order derivative and time-delay feedback where a local
signal-to-noise ratio is designed as the objective function to optimize these tuning parameters of the proposedmethod could enhance early
fault signature of bearings and outperform that without fractional-order derivative and time-delay feedback and even infogram method.

1. Introduction

Stochastic resonance (SR) is a kind of nonlinear phenomena
where noise is injected into nonlinear systems to enhance their
outputs [1]. Terefore, SR lets us discover the benefts of noise
[2].With the development of research, it is found that there are
lots of the benefts of noise in real world in addition to SR [3],
for example chaotic resonance [4–6] and vibrational reso-
nance [7]. Such a behavior has attracted sustaining attention to
apply it into various felds such as image enhancement [8],
information transmission [9], and fault detection and fault
diagnosis of rotating machinery [10–13], especially the

development and future directions of SR in machine fault
diagnosis have been summarized and proposed by [10, 14].

Among them, SR-based fault detection and fault di-
agnosis has become one of the most widely studied and
applied directions. Tey can be categorized into novel po-
tentials [15], novel nonlinear systems [16], novel behaviors
[17], novel methodologies [18], and others. Because this
paper focuses on improving novel nonlinear systems, we
would review the development of novel nonlinear systems,
which mainly contains two aspects.

On the one hand, some scholars attempt to add the
fractional-order derivative into nonlinear systems to induce
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more abundant dynamics for better weak signal detection
than those without fractional-order derivative. For example,
Zheng et al. applied genetic algorithms to optimize the multi
parameters of fractional-order SR for weak signal detection
[19]. Yang et al. investigated stochastic P-bifurcation and SR
in fractional-order bistable nonlinear systems, indicating that
the fractional-order SR can enhance the weak signal better
than integral-order ones [20]. Zeng et al. designed a new
indicator, namely, weighted correctional signal-to-noise ratio,
to tune the parameters of fractional-order SR for mechanical
fault diagnosis [21]. Qiao et al. employed the fractional-order
derivative to improve the second-order SR for enhancing
weak fault signature of machinery [22]. Guo et al. studied the
efect of random mass and signal-modulated noise on SR in
fractional-order harmonic oscillators [23]. Yu et al. explored
the SR in two coupled fractional harmonic oscillators induced
by a dichotomous fuctuating mass, indicating that coupling
strength and the fractional order both beneft to weak signal
detection [24]. Zhong et al. studied the collective SR in
globally coupled fractional-order harmonic oscillators in-
duced by multiplicative noise [25]. Te above researches
indicated that the fractional-order derivative is able to im-
prove SR for weak signal detection than integral-order ones.

On the other hand, time delay can utilize the historical
information of nonlinear systems to enhance weak signal
detection, whereas feedback could achieve the precise
control of nonlinear systems for improving the output.
Terefore, some scholars pay more attention to studying the
SR with time delay and feedback. For example, Wu and Zhu
investigated the SR in a bistable system with time-delayed
feedback driven by non-Gaussian noise by using two in-
dicators including quasi-steady-state probability distribu-
tion function and signal-to-noise ratio (SNR) [26]. Lu et al.
proposed a time-delayed feedback SR method for me-
chanical fault diagnosis [27]. Shi et al. presented a time-
delayed tristable SR method for mechanical fault diagnosis,
suggesting that time delay and feedback afect the noise
enhanced stability [28]. Meanwhile, Shi et al. designed
a high-order time-delayed feedback tristable SR method for
enhancing weak fault signature [29]. Wadop Ngouongo et al.
reported the SR with memory efects in a deformation
potential [30]. Wang et al. studied the efect of fractional
damping and time-delayed feedback on SR [31]. Li et al.
studied the time-delayed feedback monostable SR in bearing
fault diagnosis by fusing minimum entropy deconvolution
[32]. Wang et al. explored the infuences of time-delayed
feedback on logical SR and the results indicated that the
delay time can enhance the output SNR [33]. Yang et al.
indicated that the time delay can control primary resonance
and SR, and increasing feedback intensity can suppress the
vibrations [34]. Liu et al. proposed a controlled SR method
with time-delayed feedback to enhance weak fault signature
of machinery [35]. In sum, both time delay and feedback can
improve the weak signal detection of SR by precise control
and information memory.

Te above summary of literature has indicated that both
fractional-order derivative and time-delayed feedback can
improve the weak signal detection of SR from historical
information memory, precise control, and so on. Up to now,

however, the SR with both fractional-order derivative and
time-delayed feedback has not been studied and applied to
mechanical fault diagnosis yet. Terefore, this paper at-
tempts to fuse their advantages to improve the weak signal
detection of SR further, thereby enhancing the weak early
fault signature of the machinery. Inspired by such an idea,
the remainder of this paper is organized as follows. Section 2
designs a SR model enhanced by fractional-order derivative
and time-delay feedback and provides its mathematical
expression. In Section 3, we apply the SR enhanced by
fractional-order derivative and time-delay feedback to
bearing fault diagnosis and a bearing fault experiment is
performed to demonstrate its efectiveness and feasibility.
Even the comparison between those with or without
fractional-order derivative and time-delay feedback is made.
Finally, conclusions are drawn in Section 4.

2. An SR Model Enhanced by Fractional-Order
Derivative and Time-Delay Feedback

Te existing nonlinear systems of SR are of two kinds:
overdamped and underdamped ones [36]. Overdamped SR
characterizes the low-pass fltering properties [37, 38], while
underdamped SR characterizes the band-pass fltering
properties which is more suitable to enhance weak signals
under strong background noise than overdamped ones
[39, 40]. Hence, we pay attention to underdamped SR and it
can be described as follows:

d2x
dt

2 + c
dx

dt
� −

zU(x)

zx
+ A cosω0t + ε(t), (1)

where c is the damping factor and c> 0, A and ω0 are the
amplitude and angular frequency of the periodic signal. x

and t are moving trajectory of Brownian particles in U(x) as
time varies and time, respectively. ε(t) is the Gaussian white
noise. U(x) is the harmonic-Gaussian double-well potential
given by equation (2) and has richer dynamics than classical
bistable potential. Terefore, it can be used to design the SR
model enhanced by fractional-order derivative and time-
delay feedback.

U(x) �
k

2
x
2

+ α exp − βx
2

 , (2)

where k, α, and β are the adjusting parameters. Te
harmonic-Gaussian double-well potential has two stable
states and one unstable state located at x± � ±����������
ln(2αβ/k)/β


and xu � 0, respectively. Te height of po-

tential barrier is ∆U � α − k[1 + ln(2αβ/k)]/(2β). To keep
the bistability of harmonic-Gaussian double-well potential,
2αβ/k> 0 and further k< 2αβ. Te potential is plotted in
Figure 1 under diferent tuning parameters. It can be found
that when α and β are kept unchanged, tuning k can change
the depth and width of double wells, as shown in Figure 1(a),
where k< 2αβ. When k starts to become larger and k> 2αβ,
the bistability of harmonic-Gaussian double-well potential
loses becomes a monostable potential, as shown in Fig-
ure 1(b). Terefore, the following work would be performed
under the condition of k> 2αβ.
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Furthermore, the Grunwald–Letnikov fractional-order
derivative [41, 42] is added into equation (1) as follows:

d2x
dt

2 + c
dϑx
dt

ϑ � −
zU(x)

zx
+ A cosω0t + ε(t), (3)

where ϑ is the fractional order and ϑ ∈ (0, 2] [43]. We re-
write equation (3) for numerical solution easily as follows:

dϑx
dt

ϑ � y,

d2x
dt

2 �
dφy

dt
φ ,φ � 2 − ϑ,

dφy

dt
φ � − cy −

zU(x)

zx
+ A cosω0t + ε(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

According to the defnition of the Grunwald–Letnikov
fractional-order derivative, equation (4) can be transformed
into the following discrete expression:

x(l) � − 
l− 1

j�1
ωϑ

jx(l − j) + h
ϑ
y(l − 1),

y(l) � − 
l− 1

j�1
ωφ

j y(l − j) + h
φ

− cy(l − 1) − kx(l − 1) + 2αβx(l − 1)exp − βx
2
(l − 1)  + F(l − 1) ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

where ωϑ
0 � 1, ωϑ

l � [1 − (ϑ + 1)/l]ωϑ
l− 1, and l � 1, 2, ..., N in

which N is the length or the number of sampling points of
the signal F(t) � A cosω0t + ε(t). Te variable h is the in-
tegral step. x(l), y(l), andF(l) are the corresponding dis-
crete expressions of x(t), y(t), andF(t), respectively. It can
be seen from equation (5) that adding the fractional-order
derivative into the underdamped SR can make the current
value of output x(t) highly depend on historical values of the

past. Due to the above reason, the fractional-order derivative
can enhance the weak signal detection of SR. Moreover, such
a property is consistent with a mechanical signal which has
high dependence between each value.

Furthermore, we consider the memory of time delay to
historical information and the precise control of feedback to
the output of SR [44]. Te time-delay feedback item is added
into equation (4) to obtain the following equation:
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Figure 1: Harmonic-Gaussian double-well potentials under diferent adjusting parameters: (a) with α� 3 and β� 7 and (b) with α� 1 and
β� 1.
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dϑx(t)

dt
ϑ � y(t),

d2x(t)

dt
2 �

dφy(t)

dt
φ ,φ � 2 − ϑ,

dφy(t)

dt
φ � − cy(t) − kx(t) + 2αβx(t) exp − βx(t)

2
  + θx(t − τ) + F(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where θ > 0 is the feedback strength and τ is the time delay.
Equation (6) can be discretized to solve it numerically as
follows:

x(l) � − 
l− 1

j�1
ωϑ

jx(l − j) + h
ϑ
y(l − 1),

y(l) � − 
l− 1

j�1
ωφ

j y(l − j),

+ h
φ

− cy(l − 1) − kx(l − 1) + 2αβx(l − 1)exp − βx
2
(l − 1)  + θx l − ⌊τfs⌋(  + F(l − 1) ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where fs is the sampling frequency and the notation ⌊∙⌋
stands for round down. In equation (7), when − ⌊τ/h⌋< 0,
x(l − ⌊τfs⌋) � x(0) � 0. According to the conclusions in
[45, 46], the small delay is acceptable when τ < 1.

Terefore, a SR model enhanced by fractional-order
derivative and time-delay feedback is built in equation
(6) and its numerical solution expression can be given
by equation (7). In the model, there are eight tuning
parameters to control the SR for enhancing weak
signal detection, including fractional order ϑ ∈ (0, 2],
damping factor c> 0, harmonic-Gaussian double-well
potential parameters including k, α, and β with the
condition k< 2αβ, feedback strength θ, time delay
0< τ < 1, and integral step 0 < h< 1. Obviously, it is im-
possible for us to set up these tuning parameters artif-
cially. For this purpose, we would use the optimization
algorithms to tune these parameters automatically in this
proposed method for enhancing weak fault signature of
machinery.

3. Fractional-Order Derivative and Time-Delay
Feedback Enabled Stochastic Resonance for
Bearing Fault Diagnosis

In this section, we would propose an adaptive SR method
based on the model built in Section 2 to enhance weak fault
signature for identifcation. Moreover, an experiment on
bearing faults was performed to verify the feasibility and
efectiveness of the proposed method.

3.1. Te Proposed Method. Te proposed fractional-order
derivative and time-delay feedback enabled stochastic res-
onance method for bearing fault diagnosis is shown in
Figure 2 and the detailed processes are given as follows:

(1) Parameter initialization: Te proposed method is
based on the SR model built in equation (6) and,
therefore, it has eight tuning parameters including
fractional order ϑ, damping factor c, potential pa-
rameters k, α and β, feedback strength θ, time delay τ,
and integral step h. According to their defnitions
and physical meanings, they are initialized as
ϑ ∈ (0, 2], c ∈ (0, +∞], k ∈ (0, +∞], α ∈ (0, +∞],
β ∈ (0, +∞], θ ∈ (0, +∞], τ ∈ (0, 1), and h ∈ (0, 1),
respectively.

(2) Output solution: Te vibration signal F(t) of bear-
ings with the sampling frequency fs and the data
length N is fed into equation (6). Ten, the output
x(l) can be calculated by using equation (7) where
l � 1, 2, · · · , N. In the solving process, the initiali-
zation values of these tuning parameters including ϑ,
c, k, α, β, θ, τ, and h would be substituted into
equation (7) for solving x(l).

(3) Parameter optimization: According to equation (8),
we can calculate the local signal-to-noise ratio
(LSNR) of the output x(l) as an objective function of
the genetic algorithms. For fault diagnosis of ma-
chines, the intensity of fault signature in the local
frequency band would be cared instead of the whole
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frequency band.Terefore, LSNR indicator has more
meaning to evaluate weak fault signature enhanced
by SR. Furthermore, the solving issue can be
transformed into the following optimal issue in
equation (9).

LSNR � 20 log
A ⌊fc × N/fs⌋ + 1( 


i�⌊fc×N/fs⌋+1+M

i�⌊fc×N/fs⌋+1− MA(i)
, (8)

where A(i) denotes the amplitude at i-th spectral line
of the frequency spectrum of the output signal x(l)

and M is the tuning range for selecting a local
frequency band, and here M � 50. fc denotes the
theoretical value of the fault characteristic frequency
of bearings, which can be calculated by virtue of
structural parameters and operating speed of
bearings.

max
ϑ,c,k,α,β,θ,τ,h

LSNR s.t.

ϑ ∈ (0, 2],

c ∈ (0, +∞],

k ∈ (0, +∞],

α ∈ (0, +∞],

β ∈ (0, +∞],

θ ∈ (0, +∞],

τ ∈ (0, 1),

h ∈ (0, 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

(4) Optimal output calculation and fault identifcation.
Te optimal parameter set for maximizing the LSNR
is substituted into equation (7) for solving xopt(l).
Ten, common spectral analysis such as frequency
spectrum and envelope spectrum is performed on
the xopt(l) to recognize the weak fault signature of
roller bearings, which especially pays close attention
to the spectral peaks at the fault characteristic fre-
quencies of the bearings.

3.2. Experimental Verifcation. In this subsection, the pro-
posed fractional-order derivative and time-delay feedback
enabled stochastic resonance method is applied to bearing
fault diagnosis for verifying its feasibility and efectiveness.
Due to contact fatigue, uneven lubrication, misalignment,
and so on, it is inevitable for roller bearings to occur wears
and other types of defects [47–49]. In early stage of defects,
the changes of vibration and oil temperature of bearings are
too weak to be visible to the naked eye [50]. In serious stage
of defects, the changes of vibration and oil temperature of
bearings are very clear to be observed by ears and fngers
[51]. Terefore, it is a challenge for us to detect the early
defects of bearings by using advanced methods and tech-
nologies. For this purpose, we would apply the proposed
method to early fault diagnosis of bearings.

Four Rexnord ZA-2115 double row bearing run-to-
failure experiments under the rotating speed 2000 rpm and
radial load 6000 lbs were performed to acquire the bearing
failure data by using PCB 353B33 accelerometers and a data
acquisition card. Te bearing experimental rig is shown in

Figure 3(a) and the corresponding sensor placement is il-
lustrated in Figure 3(b). Tis experimental rig is composed
of four tested bearings, an AC motor, and rub belts. In the
bearing run-to-failure experiment, the sampling frequency is
20 kHz and the sampling time is 1.024 seconds. Te ex-
perimental parameters of tested bearing are shown in Ta-
ble 1. In the process of experiment, an inner race defect
occurs on the tested bearing 3, as shown in Figure 3(c).
According to the equation that finner � rspeed/60∗ 1/2∗
n(1 + d/D cosψ), where finner is inner race fault charac-
teristic frequency, rspeed is the rotating speed, n is the number
of rollers, d is the roller diameter, D is the pitch diameter,
and ψ is the contact angle, and the theoretical inner race fault
characteristic frequency finner � 296.93Hz.

Te time-domain signal collected from a bearing usually
changes when a damage occurs in a bearing. Both its am-
plitude and distribution may be diferent from those of the
time-domain signal of a normal bearing. Root mean square
(RMS) refects the vibration amplitude and energy in time
domain [53]. Figure 4(a) depicts the RMS of the tested
bearing 3. It can be found from Figure 4(a) that the RMS
starts to be stable and then becomes larger slowly and fnally
degenerates rapidly. To the end, a serious defect occurred on
the tested bearing 3. Terefore, we choose the vibration
signal at the early stage of defects to perform the spectral
analysis, as shown in Figure 4(b). From the raw signal, we
can see weak impacts but they are submerged by strong
noise. In Figure 4(c), there are clear spectrum peaks at
232.5Hz, 493.8Hz, etc., but we cannot see the spectral peaks
at the inner race fault characteristic frequency and its
harmonics. Meanwhile, we also cannot see the corre-
sponding spectral peaks from the zoomed envelope spec-
trum in Figure 4(d).

Te raw signal in Figure 4(b) is fed into the proposed
method and the underdamped SR without both fractional
derivative and time-delay feedback to enhance weak fault
signature, respectively. Te enhanced results are plotted in
Figure 5. It can be found that there are clear repetitive
impacts in the time-domain signal as shown in Figure 5(a)
and we can see the eye-catching spectral peaks at the inner
race fault characteristic frequency and its harmonics from
the corresponding frequency spectrum in Figure 5(b) and
even side frequency bands with the interval rotating fre-
quency. Te above information tells us the fact that an inner
race wear has happened in the tested bearing 3. Te di-
agnosis results are consistent with the experimental results.
Meanwhile, Figures 5(c) and 5(d) show the enhanced signal
and its zoomed frequency spectrum by using the under-
damped SR without both fractional derivative and time-
delay feedback, where the objective function is usually SNR
instead of LSNR. It can be noticed that there exists a eye-
catching spectral peak at the inner race fault characteristic
frequency, but we cannot see other any diagnostic in-
formation, that is, because the SNR indicator would be
calculated by the ratio between the energy at the inner race
fault characteristic frequency and the energy at the whole
frequency band in addition to fault signature, resulting in
energy concentration and ignoring other diagnostic in-
formation. Moreover, the spectral peak at the inner race fault
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Accelerometers

Bearing 1

Bearing 2

Bearing 3
Bearing 4

Motor

Rub belts

(b) (c)

Figure 3: Bearing test rigs and sensor placement illustration: (a) bearing test rigs, (b) sensor placement illustration, and (c) the tested bearing
with an inner race wear [52].

Initialize eight tuning parameters

Input the vibration signal into the model in Eq. (6)

Solve the output x (l) with l=1, 2, ..., N
numerically of Eq. (6) by using Eq. (7)

Calculate the LSNR of the output x (l) as the 
objective function of the genetic algorithm

Maximum of LSNR?

Output the optimal parameter set and substitute it 
into Eq. (7) to solve the optimal output xopt (l) 

Perform the spectral analysis on the optimal output 
xopt (l) to identify weak fault signature of bearings
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End

Update eight tuning parameters in their ranges

Yes

No

Figure 2: Te fowchart of the proposed method.
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Table 1: Experimental parameters of tested bearings.

Parameters Values
Rotating speed 2000 rpm
Pitch diameter 2.815 in
Number of balls 16
Sampling frequency 20 kHz
Roller diameter 0.331 in
Contact angle 15.17°
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Figure 4: Te RMS and raw signal of the tested bearing 3: (a) the RMS, (b) raw signal, (c) frequency spectrum, and (d) zoomed envelope
spectrum.
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characteristic frequency using the proposed method is
higher than that one using underdamped SR without both
fractional derivative and time-delay feedback. Te above
comparison demonstrates that the proposed method has
richer diagnostic information and higher spectral peak at the
inner race fault characteristic frequency than underdamped

SR without both fractional derivative and time-delay
feedback.

For comparison, the advanced infogrammethod [54–56]
is applied to process the raw vibration signal in Figure 4(b),
and the infogram for selecting the most informative fre-
quency band is shown in Figure 6. It can be seen that the SE
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Figure 5: Te enhanced result and its spectrum using the proposed method and underdamped SR without both fractional derivative and
time-delay feedback: (a) time-domain signal and (b) its zoomed frequency spectrum using the proposed method and (c) time-domain signal
and (d) its zoomed frequency spectrum using underdamped SR without both fractional derivative and time-delay feedback.
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infogram in Figure 6(a) and SES infogram in Figure 6(b)
select diferent fltered frequency band and its parameters.
Terefore, we apply two fltered frequency bands to flter the
raw signal and the results are depicted in Figure 7. It can be
seen that the SE infogram flters out the cyclostationary
information as shown in Figure 7(a), but we cannot see the
peaks at the inner race fault characteristic frequency and its
harmonics from Figure 7(b). On the contrary, the SES
infogram flters out the impulsivity information as shown in
Figure 7(c), but we cannot also see the peaks at the inner race
fault characteristic frequency and its harmonics from
Figure 7(d). Te comparison with other non-SR methods
demonstrates the feasibility and superiority of the proposed
method further.

4. Conclusions

Stochastic resonance (SR) has become a hot signal pro-
cessingmethod and has been widely used inmechanical fault
diagnosis, such as fractional-order SR and time-delayed
feedback SR. Here, fractional-order SR can utilize the
historical information to enhance weak fault signature, and
time delay and feedback can improve the memory of SR
and tune it precisely. Terefore, we attempt to fuse
fractional-order derivative and time-delayed feedback to
develop the better SR method. Inspired by the idea,
fractional-order derivative and time-delay feedback en-
abled SR method for bearing fault diagnosis is proposed in
this paper. Te comparison with the advanced infogram
and the SR without fractional-order derivative and time-
delay feedback is made. Te results indicate that the
proposed method has a little superiority in enhancing weak
fault signature and richer diagnostic information in the
enhanced results than the SR without fractional-order
derivative and time-delay feedback. In future work, we
would pay more attention to design SR-based flters to take
the place of flters in infogram for exploring the SR-based
infogram.
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