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Near-feld acoustic holography (NAH) is an efective tool for realizing accurate sound feld reconstruction in three-dimensional
space on the prerequisite that appropriate elementary wave functions are selected or constructed tomatch the characteristics of the
sound sources. However, for elongated sources, common wave functions, i.e., plane, cylindrical, or spherical waves, sometimes do
not perform well during the sound feld projections. To solve this problem, statistically optimized near-feld acoustical holography
combined with prolate spheroidal wave functions is proposed. In the approach, the sound feld is expanded by a series of prolate
spheroidal wave functions, whose wavefronts can be set nearly conformal to the elongated sources. Based on these wave functions,
fewer expansion terms are required to model the sound feld, and the need for regularization can be reduced during the inverse
solving process. Terefore, the accuracy of the reconstruction results can be further improved. Numerical simulations are
conducted by two types of elongated source models, namely, spatially separated and extended.Te results show that the proposed
method can efectively reconstruct the sound pressures of elongated sources and perform robustly across a wide frequency range.
Simultaneously, a designed experiment is carried out in an anechoic chamber, which demonstrates the feasibility of the proposed
method.

1. Introduction

Near-feld acoustic holography (NAH) [1] is a powerful
technique for noise source identifcation and sound feld
visualization. It can realize accurate sound feld re-
construction in three-dimensional space with a transducer
array placed in the near-feld of sound sources. Because of
the measurement of evanescent waves, the limitation of the
Raleigh criterion can be circumvented in NAH [2], and the
sound sources can be localized with a high resolution. In
general, NAH models a sound feld as a superposition of
elementary wave functions (EWFs) [3], whose weighting
coefcients are calculated by matching sound pressures
measured on the hologram surface. Te EWFs can be plane,
cylindrical, or spherical wave functions, and sound felds
generated by monopole, dipole, or multipole point sources
in diferent positions can also be regarded as EWFs [4].

However, NAH is an inverse acoustic problem, which re-
quires not only a regularization procedure but also an ap-
propriate selection or construction of the EWFs to yield
stable solutions, especially for sound sources with complex
shapes. Once the EWFs match the characteristics of the
sound sources well, the ill-posedness of the inverse problem
can be suppressed [3], and the reconstruction results can be
less sensitive to the measurement noise.

After 40 years of development, various NAH algorithms
based on diferent EWFs have been established, for example,
discrete Fourier transform-based NAH (DFT-based NAH)
[5–7], inverse boundary element method (IBEM) [8–10],
equivalent source method (ESM) [11–14], statistically op-
timized NAH (SONAH) [15–17], Helmholtz equation least
squares (HELS) [18–21], and so on. Teoretically, DFT-
based NAH implicitly expands the sound feld by a set of
EWFs such as plane, cylindrical, or spherical wave functions,
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while the spatial spectra can be considered as the weighting
coefcients. Te advantages of DFT-based NAH are
prominent; for instance, it is simple to implement, and the
calculation speed is usually very high. However, in DFT-
based NAH, the hologram surface and the source surface are
constrained to be conformal to the level surface of a sepa-
rable coordinate system, which cannot always be satisfed in
engineering practice. In order to cope with irregularly
shaped sound sources, IBEM is developed. It can construct
a transfer matrix relating to the radiated sound pressure to
the normal component of the surface velocity by discretizing
the Helmholtz integral equation directly or by introducing
fctitious simple sources on the source surface indirectly
[22]. In fact, the fctitious simple sources here play the same
roles as the EWFs and are used as an intermediate step to
recover the sound feld. Since the discretization procedure in
IBEM is so complex, ESM is proposed, which is charac-
terized by its simplicity and high efciency. Te basic as-
sumption of ESM is that the sound feld radiated by
a vibrating structure can be expressed by a set of equivalent
sources (monopole or dipole) distributed in the interior of
the structure. Generally, the radiated sound felds from these
equivalent sources can be regarded as a series of EWFs, and
the weighting coefcients (source strengths) are usually
solved by satisfying measured pressures on the hologram
surface. Diferent from ESM, SONAH uses a single set or
multiple sets of EWFs (plane, cylindrical, or spherical wave
functions) to establish a sound feld transfer matrix between
the hologram locations and the reconstruction locations,
while Tikhonov regularization is usually employed to sta-
bilize the reconstruction results [23]. As a similar approach
to SONAH, HELS explicitly calculates the coefcients of the
EWFs and the errors are minimized by a least squares
method (LSM) [24]. Overall, SONAH and HELS can be
applied to an arbitrarily shaped sound source and have no
restrictions on the positioning of themeasurement points. In
addition, SONAH and HELS can both be implemented with
only a few measurements and yet produce accurate re-
construction results. However, Wang and Wu [18] andWall
et al. [3] pointed out that the EWFs should be carefully
selected to match the characteristics of the sound sources or
the sound feld. For example, the spherical wave functions
are often selected for a chunky object, and the plane wave
functions are often selected for a rectangular plate. Other-
wise, SONAH and HELS may perform a poor convergency
because more EWFs are needed during the sound feld
projection. Once high-order terms are used, noise on the
hologram surface can afect the reconstruction results easily.

Te fundamentals of the aforementioned NAH algo-
rithms can be concluded as follows: the radiated sound feld
is approximated by a series of EWFs, whose weighting
coefcients are estimated by the measured data. Ten,
a sound feld transfer matrix between the hologram locations
and the reconstruction locations is established. Finally, an
appropriate regularization method is incorporated to sta-
bilize the reconstruction results. Overall, the performance of
diferent NAH algorithms is mainly infuenced by the ability
of the EWFs to represent the sound feld, the ability of the
hologram surface to record enough sound feld information,

and the ability of the regularization method to flter out the
noise contamination [3]. To be more specifc, the EWFs can
be selected from the eigen functions of the Helmholtz
equation in diferent coordinate systems, such as plane,
cylindrical, or spherical wave functions. Typically, these
wave functions are orthogonal and complete in the space
domain. At the same time, the EWFs can also be constructed
by the equivalent sources, but the distribution density and
retreat distance from the source surface need to be designed
manually. Generally, the EWFs are expected to refect the
geometry of the vibrating body, which can reduce the need
for regularization and improve the accuracy of re-
construction results. Terefore, it is important to select or
construct proper EWFs according to the characteristics of
the sound sources.

Te objective of this paper is to reconstruct the radiated
sound feld of elongated sound sources, such as the un-
manned underwater vehicle of large aspect ratios or the
trailing edge of airfoils. As a result, prolate spheroidal wave
functions (PSWFs) [25] are chosen as a new kind of EWFs in
NAH to represent the radiated sound feld. It should be
noted that PSWFs are the eigen functions of the Helmholtz
equation in the prolate spheroidal coordinate system. Of
course, PSWFs are orthogonal and complete in the space
domain. Besides, for prolate spheroidal waves, the wave-
fronts are just like a sphere stretched along a certain spatial
dimension and can be set nearly conformal to the geometry
of the elongated source, which may lead to a strong ability of
the PSWFs to represent the radiated sound feld. Te for-
mulas and characteristics of PSWFs are systematically de-
scribed by Flammer [25] and Li et al. [26]. Tough PSWFs
are complex and not easy to calculate, much work has been
performed to simplify the calculation procedure and im-
prove the numerical precision, and several reliable code
scripts shared by Van Buren and Boisvert [27], Li et al. [28],
Falloon et al. [29], Ogburn et al. [30], and Adelman et al. [31]
have been proven to be working efectively, which contribute
greatly to the application of PSWFs. Up to now, PSWFs have
been widely used in many research felds such as electro-
magnetic scattering [26], acoustic scattering [32], and
acoustic radiation modes [33].

In the present work, SONAH combined with PSWFs is
proposed to reconstruct the radiated sound feld of an
elongated sound source. For brevity, the proposed method is
abbreviated to PS-SONAH. In this method, the radiated
sound feld is expanded by a series of PSWFs, and the
reconstructed sound pressures are expressed as a linear
superposition of the measured sound pressures. Meanwhile,
the modifed Tikhonov regularization (MTR) method [20] is
incorporated to deal with the ill-posed inverse problem,
while the regularization parameter is chosen by the gener-
alized cross-validation (GCV) [34] method. Te efective-
ness and robustness of the proposed method are verifed
through numerical simulations and a designed experiment,
and the advantages of the proposed method for elongated
sound sources are demonstrated through a comparison with
traditional SONAH algorithms that use plane, cylindrical, or
spherical wave functions, representing the sound feld. Te
present study also includes an investigation of the infuence
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of a key parameter of the proposed method, namely, the
interfocal distance.

Tis paper is organized as follows: in Section II, the basic
theory of PS-SONAH is presented. In Section III, numerical
simulations are conducted to validate the efectiveness of PS-
SONAH and compare the proposed method with traditional
SONAH algorithms, and the confguration of the interfocal
distance in PS-SONAH is explored. In Section IV, a designed
experiment is carried out to validate the feasibility of PS-
SONAH. Finally, conclusions are summarized in Section V.

2. Statistically Optimized Near-Field Acoustic
Holography Using Prolate Spheroidal
Wave Functions

2.1. Prolate Spheroidal Coordinate System. Te prolate
spheroidal coordinate system can be constructed by rotating
the two-dimensional elliptic coordinate system around the
major axis of the confocal ellipses [25, 26]. As shown in
Figure 1, in a prolate spheroidal coordinate system, the
coordinate surfaces are prolate spheroids (ξ � “const”),
hyperboloids (η � “const”), and half-planes (φ � “const”).
Te interfocal distance is denoted by d. Te prolate
spheroids are formed by rotating the confocal ellipses, and
the hyperboloids are formed by rotating the confocal hy-
perbolas. Similar to the Cartesian, cylindrical, and spherical
coordinate systems, the prolate spheroidal coordinate sys-
tem is also a curvilinear orthogonal system. When the z-axis
is chosen as the axis of rotation, prolate spheroidal co-
ordinates (ξ, η,φ) are related to Cartesian coordinates
(x, y, z) by the following:

x �
d

2

��������������

ξ2 − 1  1 − η2 



cosφ,

y �
d

2

��������������
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d

2
ξη,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where 1≤ ξ <∞, − 1≤ η≤ 1, and 0≤φ≤ 2π. Correspond-
ingly, coordinates (ξ, η,φ) can be derived from Cartesian
coordinates (x, y, z) as follows:

ξ �
R1 + R2( 

d
,

η �
R1 − R2( 

d
,

φ � atan2
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where R1 �

�����������������

(z + d/2)2 + x2 + y2


and R2 �
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(z − d/2)2 + x2 + y2


represent the distances between the
feld point and two foci and atan2(•) represents the four-
quadrant inverse tangent function.

2.2. Sound Field Expansion by Prolate Spheroidal Wave
Functions. Te sound pressure radiated from an elongated
sound source into the ideal fuid medium should satisfy the
wave equation. For a time-independent and single-
frequency sound feld, the wave equation can be trans-
formed into the Helmholtz equation as follows:

∇2 + k
2

 p(r) � 0, (3)

where p(r) represents the complex sound pressure, k � ω/v
is the wave number, ω is the angular frequency, and v is the
sound speed. Te Helmholtz equation is separable in the
prolate spheroidal coordinate system and can be rewritten as
[25]

z

zξ
ξ2 − 1 

z

zξ
+

z

zη
1 − η2 

z

zη
+

ξ2 − η2

ξ2 − 1  1 − η2 

z
2

zφ2 + c
2 ξ2 − η2 ⎡⎢⎣ ⎤⎥⎦p(ξ, η,φ) � 0, (4)

where c � kd/2 � πd/λ is a dimensionless quantity refecting
the ratio of d to the wavelength λ. By the separation of
variables, the eigen functions to equation (4) are derived as

Φ(q)
mn(ξ, η,φ; c) � R

(q)
mn(c, ξ)Smn(c, η)

cos(mφ),

sin(mφ),
 (5)

whereΦ(q)
mn(ξ, η,φ; c) is the primitive PSWFs, R(q)

mn(c, ξ) is the
qth kind of prolate spheroidal radial function with
q � 1, 2, 3, 4, and Smn(c, η) is the frst kind of prolate
spheroidal angle function. Te subscripts m � 0, 1, 2, . . . and

n � m, m + 1, m + 2, . . . represent the order and degree of
the PSWFs, respectively.

Previous studies have demonstrated the analogous re-
lationships between R(q)

mn(c, ξ) and the spherical Bessel
functions [28], indicating that R(3)

mn(c, ξ) and R(4)
mn(c, ξ) can be

obtained by R(1)
mn(c, ξ) and R(2)

mn(c, ξ) in the form as follows:

R
(3)
mn(c, ξ) � R

(1)
mn(c, ξ) + iR

(2)
mn(c, ξ),

R
(4)
mn(c, ξ) � R

(1)
mn(c, ξ) − iR

(2)
mn(c, ξ),

(6)
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where i �
���
− 1

√
is the imaginary unit. Meanwhile, the as-

ymptotic forms of R(3)
mn(c, ξ) and R(4)

mn(c, ξ) are given by the
following [25]:

lim
cξ⟶∞

R
(3)
mn(c, ξ) �

1
cξ

exp icξ − i
(n + 1)π

2
 ,

lim
cξ⟶∞

R
(4)
mn(c, ξ) �

1
cξ

exp − icξ + i
(n + 1)π

2
 .

(7)

It is observed that both R(3)
mn(c, ξ) and R(4)

mn(c, ξ) can
satisfy the Sommerfeld radiation condition in the far feld
(cξ⟶∞). When the time dependency is assumed as e− iωt,
R(3)

mn(c, ξ) and R(4)
mn(c, ξ) can be used to describe the distance

dependency of the outgoing and incoming wave functions,
respectively [35]. To further depict outgoing and incoming
waves in the three-dimensional space, the φ-dependency
should be changed from cos(mφ) and sin(mφ) to eimφ. In
this case, the negative integers of m must be considered.
Terefore, three new sets of functions are defned [25] as
follows:

R
(3)
− mn(c, ξ) � R

(3)
mn(c, ξ),

R
(4)
− mn(c, ξ) � R

(4)
mn(c, ξ),

S− mn(c, η) � (− 1)
m(n − m)!

(n + m)!
Smn(c, η).

(8)

Notice that these defned functions are important
complements to the primitive PSWFs andmake it possible to
construct the outgoing and incoming wave functions. In the
following, the subscripts of R(3)

mn(c, ξ), R(4)
mn(c, ξ), and

Smn(c, η) are redefned as n � 0, 1, . . . ,∞ and m � − n,

. . . , − 1, 0, 1, . . . , n.

Since the diferential equations with respect to
Smn(c, η) and eimφ are in Sturm–Liouville form [30], fol-
lowing the Sturm–Liouville theory, the eigen functions
Smn(c, η) can form an orthogonal basis over the interval
η ∈ (− 1, 1), and the eigen functions eimφ can form an
orthogonal basis over the interval φ ∈ (0, 2π). Conse-
quently, it is inferred that the products of Smn(c, η) and
eimφ, Smn(c, η)eimφ, can form an orthogonal basis over the
product domain. And the orthogonality property can be
expressed by


2π

0
dφ

1

− 1
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imφ
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im′φ
 

∗
dη

� 2πNmnδmm′δnn′ ,
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,

(9)

where Nmn is the normalization factor, δnn′ and δmm′ are the
Kronecker delta functions, and the superscript “∗” repre-
sents the complex conjugation. Analogous to the spherical
harmonics, the prolate spheroidal harmonics can be defned
by

H
m
n (η,φ; c) �

�������������
2n + 1
4π

(n − m)!

(n + m)!



Smn(c, η)e
imφ

. (10)

Of course, the prolate spheroidal harmonics Hm
n (η,φ; c)

are normalized and orthogonal:
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Figure 1: Prolate spheroidal coordinate system: (a) coordinate surfaces and (b) confocal ellipses and hyperbolas. (ξ, η,φ) represents the
prolate spheroidal coordinates.
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It should be noted that Hm
n (η,φ; c) is not orthogonal

over the real spheroid surface since the surface area Jacobian
(weighting function) is not mentioned in equation (11).
Instead, Hm

n (η, φ; c) is orthogonal over a special spheroid
surface with respect to a unit weighting function [33].

When the prolate spheroidal radial functions R(3)
mn(c, ξ)

and R(4)
mn(c, ξ) and the prolate spheroidal harmonics

Hm
n (η,φ; c) are combined, we can express the outgoing and

incoming PSWFs as

Φoutmn(ξ, η,φ; c) � R
(3)
mn(c, ξ)H

m
n (η,φ; c),

Φinmn(ξ, η,φ; c) � R
(4)
mn(c, ξ)H

m
n (η,φ; c).

(12)

Evidently,Φoutmn(ξ, η,φ; c) andΦinmn(ξ, η,φ; c) can form an
orthogonal and complete spatial basis, and any steady sound
feld obeying the Helmholtz equation in a source-free region
can be expressed by the outgoing and incoming PSWFs as
follows:

p(ξ, η,φ) � 
∞

n�0


n

m�− n

amn(c)Φoutmn(ξ, η,φ; c)

+ bmn(c)Φinmn(ξ, η,φ; c),

(13)

where amn(c) and bmn(c) are the undetermined weighting
coefcients. However, for an exterior acoustic problem, all
the sound sources are within an enclosed boundary surface.
Te incoming prolate spheroidal waves cannot be excited,
and only the outgoing prolate spheroidal waves should be
considered. Tus, the coefcients of Φinmn(ξ, η,φ; c) are set to
zero and bmn(c) � 0, and the solution to the exterior
problem can be simplifed to

p(ξ, η,φ) � 
∞

n�0


n

m�− n

amn(c)Φoutmn(ξ, η,φ; c). (14)

2.3. Principle of Statistically Optimized Near-Field Acoustic
Holography. Te principle of SONAH is that the sound feld
can be represented by a set of EWFs, and the reconstructed
sound pressure can be calculated as a linear superposition of
the measured sound pressures [4, 36]. In this paper, the
outgoing PSWFs are introduced to SONAH, and a new
sound feld reconstruction method called PS-SONAH is
established. In fact, PS-SONAH is an extension of the
SONAH method. It is assumed that the complex sound
pressures are measured at a set of locations, namely,
rhl � (ξhl, ηhl,φhl), l � 1, 2, . . . , L, and on the hologram
surface Γh. Since outgoing PSWFs are utilized to approxi-
mate the radiated sound feld, the pressures on Γh can be
expanded by the following:

p rhl(  ≈ 

J

j�1
aj(c)Φoutj rhl; c( , (15)

where the subscripts of the outgoing PSWFs are replaced by
j � n2 + n + m + 1. Compared to equation (14), the expan-
sion terms are truncated at J in equation (15), and only
a subset of functions is used to approximate the sound feld.
Tis is because the computational resource is always limited,
and the high-order terms should also be discarded for their
high sensitivity to the measurement noise. In practice, the
approximation error in equation (15) is quite small and can
even be neglected when J is properly set up. Considering all
the measurement points, equation (15) can be written as
follows:
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. (16)

For the sake of brevity, equation (16) is denoted inmatrix
form as follows:

ph � Ψha, (17)

where ph is a column vector of the measured pressures, a is
a column vector of the weighting coefcients, and Ψh is
a L × J matrix of the outgoing PSWFs evaluated at the
measurement points.

Furthermore, in SONAH, the sound pressure at an ar-
bitrary reconstruction location rs in the source-free region
can be estimated by measured sound pressures as follows:

p rs(  � 
L

l�1
gl rs( p rhl(  � pT

hg rs( , (18)

where g(rs) � [g1(rs), g2(rs), . . . , gL(rs)]
T is the complex

estimation weights and the superscript “T” represents the
transpose of a matrix or vector. Generally, g(rs) can be
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found by using equation (18) to provide a good estimation
for the outgoing PSWFs as follows:

Φoutj rs; c(  � 
L

l�1
gl rs( Φoutj rhl; c( . (19)

Considering diferent orders, the matrix form of equa-
tion (19) can be written as follows:

α rs; c(  � Ag rs( , (20)

where α(rs; c) � [Φout1 (rs; c),Φout2 (rs; c), . . . ,ΦoutJ (rs; c)]T is
a column vector of the outgoing PSWFs evaluated at the
position rs and A is the transpose of the matrix Ψh. Te
problem of solving equation (20) is overdetermined when
the measurement points are less than the wave functions
L< J. Tis means that the exact solution does not exist, and
only the least square solution can be obtained as follows:

g rs(  � AHA 
− 1
AHα rs; c( , (21)

where “H” represents the Hermitian transpose and (•)− 1

represents the pseudoinverse. If L> J, the problem of solving
equation (20) becomes underdetermined and there are an
infnite number of solutions. Among all these solutions, the
least-norm solution can be derived as follows:

g rs(  � AH AAH
 

− 1
α rs; c( . (22)

Here, we assume that the sound feld is sufciently
measured and the number of measurement points is greater
than the number of wave functions. By substituting equation
(22) into equation (18), we can get the reconstructed sound
pressure as follows:

p rs(  � pT
hA

H AAH
 

− 1
α rs; c( . (23)

Since the matrix AAH is often ill-conditioned, the
measurement noise in ph can be greatly amplifed during the
inverse solving process and will easily ruin the re-
construction results; thus, a regularized inverse of AAH is
required. As AAH is a positive semidefnite matrix, it can be
represented by the eigenvalue expansion as follows:

AAH
� VGVH

,

G � diag σ1, σ2, . . . , σj, . . . , σJ ,
(24)

where V is a matrix of eigenvectors and G is a diagonal
matrix containing the eigenvalues σ1 > σ2 > . . . > σJ ≥ 0.
According to the theory of MTR [37], the regularized inverse
of AAH can be expressed by the following:

Rα � VFαdiag
1
σ1

,
1
σ2

, . . . ,
1
σJ

 VH
,

Fα ≡ diag · · · ,
σj




2

σj




2

+ α α/ α + σj




2

  
2

 

, · · ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(25)

where α is the regularization parameter and Fα is a low-pass
flter that can alleviate the singularity of small eigenvalues
during the matrix inversion. At last, the reconstructed sound
pressure can be expressed by the following:

p rs(  � pThA
HRαα rs; c( . (26)

In fact, the accuracy of the reconstructed sound pressure
depends heavily on the regularization parameter α. If the
regularization parameter is set too large, it will be over-
regularized and the main components of the sound feld may
be fltered out. Instead, when the regularization parameter is
too small, it will be under-regularized and the noise infu-
ence cannot be efectively suppressed. Hence, in this paper,
as Williams [37] suggested, we would fnd the optimal
regularization parameter by minimizing the GCV function
as follows:

Λ(α) ≡
pThA

HV E − Fα( 
����

����
2
2

Tr E − Fα(  
2 , (27)

where E is the unit matrix, ‖•‖2 represents the l2-norm of
a matrix, and Tr(•) represents the trace of a matrix.

3. Numerical Simulations

Te performance of the PS-SONAH method is investigated
by two elongated numerical source models, namely, line-
arraymonopoles and a simply supported thin plate driven by
a harmonic point force in the center. Te line-array
monopoles represent the spatially separated sources, and
the thin plate represents the spatially extended sources. Te
two diferent kinds of source models can validate the ef-
fectiveness of PS-SONAH in diferent circumstances.

Te simulation diagram is shown in Figure 2. It can be
seen that the measurement confgurations for both source
models are identical. In the simulations, the source model is
located at the plane of x � 0m. Te hologram surface Γh is
located at x � 0.2m with a dimension of 1.2 × 1.2m2. Te
pressure measurements are implemented by a planar array
containing 25 × 25 � 625 microphones. Tese microphones
are spaced uniformly with a resolution of 0.05m. Note that
the dense sampling measurements and the large hologram
aperture can make sure that the sound feld information is
sufciently recorded. Te sound feld reconstruction is
carried out on three planar surfaces, namely, Γ1, Γ2, and Γ3.
Tese reconstruction surfaces are mutually orthogonal and
can refect the reconstruction results in three-dimensional
space.Te surface Γ1 possesses the same size as the hologram
surface Γh and is located at x � 0.1m. Te surface Γ2 is
located at y � 0m with a dimension of 1.2 × 0.5m2. Te
surface Γ3 is located at z � 0m with a dimension of
0.5 × 0.5m2. Te reconstruction points on the three re-
construction surfaces are all spaced at 0.05m. At the same
time, the intersections of the orthogonal reconstruction
surfaces, lines 1–3, are used to investigate the detailed re-
construction results. In particular, line 1 is located at
(x, y) � (0, 0)m, line 2 is located at (x, z) � (0, 0)m, and
line 3 is located at (y, z) � (0, 0)m.
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For comparison, traditional SONAH algorithms that
use plane, cylindrical, or spherical wave functions rep-
resenting the sound feld are also conducted. Table 1 lists
the four kinds of wave functions that are used in the
simulations. In the table, the spherical wave
functions that represent outgoing waves are defned as
Φs

mn(r, θ, φ) with respect to spherical coordinates
(r, θ,φ). h(1)

n (kr) is the nth-order spherical Hankel
function of the frst kind. Ym

n (θ, φ) is the spherical
harmonics of degree n and order m. Meanwhile, the
outgoing PSWFs are denoted by Φpsmn(ξ, η,φ; c), and the
interfocal distance is set to be d � 1.2m, slightly larger
than the length of the source model. Te cylindrical wave
functions representing the outgoing waves are denoted
by Φc

n,kz
(ρ,φ, z) with respect to cylindrical coordinates

(ρ,φ, z). H(1)
n (krρ) is the nth-order Hankel function of the

frst kind, kr is the radial wavenumber, and ρ0 is a small
reference radius. Te plane wave functions are defned by
Φp

ky,kz
(x, y, z), in which kx, ky, and kz represent the

wavenumbers in three axial directions. F(kx) is
a weighting function that is used to ensure a constant
directional power density [36]. For the sake of simplicity,
traditional SONAH algorithms that use plane, cylin-
drical, and spherical wave functions representing the
sound feld are abbreviated as P-SONAH, C-SONAH,
and S-SONAH, respectively. In addition, the regulari-
zation methods in these three algorithms are set in
common with the PS-SONAH method.

Te simulation procedure is stated as follows: frst, the
source model is confgured. Ten, the theoretical pressures
on the hologram surface and three reconstruction surfaces
are calculated. In order to model the real testing environ-
ment, Gaussian white noise with a signal-to-noise ratio
(SNR) of 30 dB is added to the pressures on the hologram

surface. Next, pressures on the hologram surface are utilized
by diferent SONAH algorithms to reconstruct the pressures
on Γ1, Γ2, and Γ3. Finally, reconstructed pressures are
compared to theoretical pressures, and the performances of
diferent SONAH algorithms can be evaluated. To quanti-
tatively assess the performance, the reconstruction error is
defned as follows:
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line 1
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Figure 2: Diagram of two sourcemodels: (a) line-array monopoles and (b) a simply supported thin plate driven by a harmonic point force in
the center. Γh is the hologram surface. Γ1, Γ2, and Γ3 are three reconstruction surfaces. Lines 1–3 are used to investigate the detailed
reconstruction results in three diferent directions.

Table 1: Four kinds of wave functions used in the simulations.

Spherical wave functions
Φs

mn(r, θ,φ) � h(1)
n (kr)Ym

n (θ,φ)

n � 0, 1, . . . , 10
m � − n, − (n − 1), . . . , n − 1, n

Prolate spheroidal wave functions
Φpsmn(ξ, η,φ; c) � R(3)

mn(c, ξ)Hm
n (η,φ; c)

d � 1.2m, c � 1/2kd

n � 0, 1, . . . , 10
m � − n, − (n − 1), . . . , n − 1, n

Cylindrical wave functions
Φc

n,kz
(ρ,φ, z) � H(1)

n (krρ)/H(1)
n (krρ0)einφeikzz

kr �

������

k
2

− k
2
z



, k
2 > k

2
z

i

������

k
2
z − k

2


, k
2 < k

2
z

⎧⎪⎨

⎪⎩

ρ0 � 0.02m
n � − 9, − 8, . . . , − 1, 0, 1, . . . , 8, 9
|kz|max � π/0.1m− 1, Δkz � 2π

2.4m
− 1

Plane wave functions
Φp

ky,kz
(x, y, z) � F(kx)ei(kyy+kzz+kxx)

kx �

����������
k
2

− k
2
y − k

2
z


, k

2 > k
2
y + k

2
z

i
����������
k
2
y + k

2
z − k

2


, k
2 < k

2
y + k

2
z

⎧⎪⎨

⎪⎩

F(kx) �
�����
k/|kx|



|ky|max � π/0.1m− 1, Δky � 2π/2.4m− 1

|kz|max � π/0.1m− 1, Δkz � 2π/2.4m− 1
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RE �
pcal − pthe

����
����2

pthe

����
����2

× 100%, (28)

where pcal is the reconstructed pressure and pthe is the
theoretical pressure.

3.1. Validation by Line-ArrayMonopoles. In this section, the
performance of PS-SONAH is examined by a line-array
source model. As shown in Figure 2(a), the line-array
source model consisting of 51 monopoles is placed along
the z-axis, spanning from z � − 0.5 to 0.5m. Te monopoles
are spaced at 0.02m. In the simulation, all the source
strengths and phases are set in common.Te fuidmedium is
assumed to be air, and the sound speed is set at 340m/s. Te
theoretical sound pressures from the line-array monopoles
are all calculated with the free-feld Green’s function, and the
simulation test is conducted at 1000Hz. After adding the
Gaussian white noise, sound pressures on the hologram
surface are shown in Figure 3(a). It can be seen that sound
felds radiated by diferent monopoles are joined together
because of the strong interference efect. Te benchmark
pressures on Γ1, Γ2, and Γ3 are also depicted in Figure 3(b).

Since the line-array source model is a highly non-
spherical object, Wu [24] suggested that the origin of the
spherical wave functions should be backward from the
center of the source model by about half of the characteristic
dimension. Terefore, we set the origin of spherical wave
functions at (− 0.5, 0, 0)m. However, for the other three
wave functions, the origins of wave functions are still located
at the center of the source model. More detailed confgu-
rations of the four wave functions are listed in Table 1.

Figure 4 shows the reconstructed pressures by S-
SONAH, PS-SONAH, C-SONAH, and P-SONAH and the
benchmarks on the surface Γ1. It can be seen that the
reconstructed sound pressures by PS-SONAH and C-
SONAH match the benchmark pressures fairly well. In
contrast, redundant ripples in Figure 4(e) indicate that P-
SONAH does not work well. A possible explanation for this
might be that a few high-order plane wave functions (ev-
anescent waves) are incorporated to approximate the in-
terference pattern on Γh, but the measurement noise
prevents us from getting the right weighting coefcients.
Since the amplitudes of these high-order wave functions are
greatly amplifed during the inverse reconstruction, ripples
connected with these functions start to appear on Γ1 and
cause large reconstruction errors. In other words, plane wave
functions may not be a good choice to represent the radiated
sound feld of line-array monopoles, and it is difcult for the
regularization method to balance the approximation error
on Γh and the reconstruction error on Γ1. For S-SONAH, the
reconstructed pressures manifest a radial pattern in Fig-
ure 4(b), which can be attributed to the singularity of the
spherical wave functions at the locations close to the origin.
REs of S-SONAH, PS-SONAH, C-SONAH, and P-SONAH
are 24.1%, 2.0%, 2.5%, and 24.2%, respectively. Apparently,
the results demonstrate that C-SONAH and PS-SONAH can
backward reconstruct the sound feld of line-array
monopoles well.

Figure 5 depicts a comparison of the reconstructed
pressures by S-SONAH, PS-SONAH, C-SONAH, and P-
SONAH on surface Γ2. Figure 6 demonstrates the com-
parison on surface Γ3. It is found that S-SONAH, PS-
SONAH, and C-SONAH can yield accurate results on both
Γ2 and Γ3. However, the reconstructed pressures by P-
SONAH difer from the benchmarks considerably at loca-
tions far from the hologram surface. Moreover, REs of both
PS-SONAH and C-SONAH are calculated below 3% on Γ2
and Γ3, indicating the efectiveness of PS-SONAH and C-
SONAH during the forward sound feld reconstruction for
line-array monopoles.

To investigate the reconstruction results in a more de-
tailed sense, the sound pressure levels (SPLs) calculated by S-
SONAH, PS-SONAH, C-SONAH, and P-SONAH over lines
1–3 are shown in Figure 7. It can be observed that the
reconstructed SPLs by S-SONAH difer greatly from the
benchmarks at the edges of line 1 and line 2. Meanwhile, P-
SONAH presents many ripples over line 2 and displays
a huge deviation from the benchmarks over line 3. As
explained above, the ability of either plane wave functions or
spherical wave functions to represent the sound feld of the
line-array source model seems inadequate. On the one hand,
more expansion terms are required in P-SONAH and S-
SONAH to match the pressures on Γh. On the other hand,
the incorporation of high-order wave functions will make
the transfer matrix more sensitive, resulting in too much
burden on the regularization method during the inverse
solving process. In contrast, PS-SONAH and C-SONAH
display almost perfect agreements with the benchmarks over
the three lines, which means that both methods can accu-
rately recover the sound feld characteristics in three-
dimensional space.

Figure 8 shows REs of S-SONAH, PS-SONAH, C-
SONAH, and P-SONAH versus frequency on three re-
construction surfaces. Te frequency ranges from 100 to
1000 Hz. Obviously, REs of S-SONAH grow larger with
the increase of frequency on three reconstruction surfaces,
while PS-SONAH can always keep the errors at a low level.
Compared to PS-SONAH, there are more fuctuations in
the error curves of C-SONAH on Γ2 and Γ3, which may be
caused by the improper selection of the regularization
parameter. Considering the good performance of C-
SONAH on Γ1, it is inferred that the regularization pa-
rameter, which is suitable for the sound feld re-
construction on Γ1, may perform over-regularized during
the forward sound feld projection on Γ2 and Γ3. On
surface Γ1, the mean REs of S-SONAH, PS-SONAH, C-
SONAH, and P-SONAH in the whole frequency range are
8.5%, 1.7%, 2.9%, and 21.0%, respectively. On surface Γ2,
the mean REs of S-SONAH, PS-SONAH, and C-SONAH
is 5.4%, 1.4%, and 3.9%, respectively. On surface Γ3, the
mean REs of S-SONAH, PS-SONAH, and C-SONAH is
3.4%, 0.8%, and 2.0%, respectively. It is evident that the
PS-SONAH method has the lowest mean reconstruction
errors in the whole frequency range on three re-
construction surfaces, which demonstrates the robustness
and superiority of the proposed method for line-array
monopoles.
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3.2. Validation by a Simply Supported Tin Plate. In this
section, we validate the PS-SONAH method by a simply
supported thin plate. As shown in Figure 2(b), the plate lies
in the yz plane and is centered at the origin of the coordinate
system.Te size of the plate is 1.0 × 0.2m2.Te length-width
ratio of the plate equals 5, indicating that the plate is an
elongated sound source. Te thickness of the plate is
0.0016m. Besides, the plate has Young’s modulus of
200GPa. Poisson’s ratio is set to 0.28, and the density is set to

7850 kg/m3. In the simulation, the plate is driven by a har-
monic point source of amplitude F � 1N applied at the
center, and the simulation is conducted at 1000Hz, while the
sound speed is set at 340m/s. Te measurement confgu-
rations are identical to the line-array source model. Te
amplitude of the normal velocity on the thin plate is given in
Figure 9(a). Subsequently, the radiated sound feld of the
plate is calculated by Rayleigh’s integral under free-feld
conditions [1]. After adding the Gause white noise, the
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Figure 3: (a) Sound pressures radiated by line-array monopoles on the hologram surface Γh with SNR� 30 dB at 1000Hz.Te dots represent
the sampling measurements. (b) Benchmark sound pressures on three reconstruction surfaces Γ1, Γ2, and Γ3.
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sound pressures on the hologram surface Γh are illustrated in
Figure 9(b), and the benchmarks on Γ1, Γ2, and Γ3 are
depicted in Figure 9(c).

Similar to the previous numerical experiment, we set the
origin of spherical wave functions at (− 0.5, 0, 0)m again.
And the reconstructed pressures by S-SONAH, PS-SONAH,
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Figure 7: A comparison of the reconstructed SPLs at 1000Hz by S-SONAH, PS-SONAH, C-SONAH, and P-SONAH and the benchmark
SPLs over lines 1–3 in terms of line-array monopoles.
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C-SONAH, and P-SONAH and the benchmarks on the three
reconstruction surfaces are given in Figures 10–12. It can be
seen that all the four SONAH algorithms can give visually
similar patterns to the benchmarks on surface Γ1. However,
there are some distortions in the reconstructed pressures by
C-SONAH and P-SONAH on surface Γ2. Meanwhile, the
maximum pressure on surface Γ3 is underestimated ap-
parently by P-SONAH. For a more detailed investigation,
reconstructed SPLs and the benchmarks over lines 1–3 are
provided in Figure 13. It can be found that the reconstructed
SPLs by PS-SONAH and S-SONAH agree with the
benchmarks well over lines 1–3. What is surprising is that
the spherical wave functions perform a good capability to
represent the sound feld for such a highly nonspherical
source. However, C-SONAH and P-SONAH present large
deviations over line 3 and the peak SPLs in line 1 and line 2
are underestimated by P-SONAH. Since the four SONAH
algorithms hold the same input data, regularization method,
and regularization parameter optimization method, it is
reasonable to relate the reconstruction performance to the
ability of the wave functions directly. Tus, for the elongated
thin plate, cylindrical wave functions and plane wave
functions may not perform as well as the other two wave
functions. Perhaps more measurements are needed in P-
SONAH and C-SONAH to reduce the capacity gap.

To quantitively compare the four algorithms, we can
calculate REs of the four SONAH algorithms. REs of S-
SONAH, PS-SONAH, C-SONAH, and P-SONAH on sur-
face Γ1 are 45.9%, 15.9%, 29.1%, and 46.3%, respectively. On
surface Γ2, REs of S-SONAH and PS-SONAH are 20.9% and
8.5%, respectively. On surface Γ3, REs of S-SONAH and PS-
SONAH are 10.9% and 7.3%, respectively. Evidently, PS-
SONAH has the most accurate reconstruction results for the
elongated thin plate, which demonstrates the efectiveness of
the proposed method.

Figure 14 shows the reconstruction errors of S-SONAH,
PS-SONAH, C-SONAH, and P-SONAH on three re-
construction surfaces in the frequency range of

100–1000Hz. On the three surfaces, PS-SONAH and S-
SONAH hold similar error curves. By contrast, C-SONAH
displays larger errors at 300, 400, and 1000Hz, which may be
related to the failure of the regularization procedure. In this
case, it can be inferred that C-SONAH may perform sen-
sitively at these frequencies, and it is not easy for the reg-
ularization method to suppress the ill-posedness in C-
SONAH. On surface Γ1, the mean REs of S-SONAH, PS-
SONAH, C-SONAH, and P-SONAH are 12.9%, 7.9%,
15.6%, and 34.0%, respectively. On surface Γ2, the mean REs

of S-SONAH, PS-SONAH, and C-SONAH are 8.3%, 6.8%,
and 31.1%, respectively. On the surface Γ3, the mean REs of
S-SONAH, PS-SONAH, and C-SONAH are 5.0%, 3.8%, and
20.5%, respectively. Overall, the calculated mean re-
construction errors indicate that PS-SONAH is more robust
than the other three SONAH algorithms for the elongated
thin plate.

Trough the above investigations, the reconstructed
pressures of two numerical source models on three re-
construction surfaces and three special lines are presented,
and the performances of four SONAH algorithms are
compared. It is demonstrated that PS-SONAH can efec-
tively reconstruct the sound pressure of elongated sources in
three-dimensional space and holds a more robust re-
construction result than other traditional SONAH algo-
rithms across the frequency range of 100–1000Hz. In
particular, PS-SONAH really shows better performance for
spatially separated sources (see Figure 8). As for spatially
extended sources, the lead of the proposed method over S-
SONAH seems not very prominent (see Figure 14). How-
ever, considering the bad behavior of S-SONAH for spatially
separated sources, the superiority and robustness of PS-
SONAH for diferent kinds of elongated sources can be
found easily.

3.3. Efect of the Interfocal Distance d. In the above simu-
lations of the proposed method, the interfocal distance is
directly set to d � 1.2m, which is slightly larger than the
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length of the source model L � 1m. Nevertheless, this
confguration may not be the most advantageous option and
may not yield themost favorable outcomes in terms of sound
feld reconstruction. To investigate the efect of the interfocal
distance on the proposed method’s reconstruction results,
this section explores diferent interfocal distances. As shown
in Figure 15, diferent interfocal distances are essentially
related to diferent isosurfaces of the PSWFs. In fact, the
interfocal distance controls the size of the isosurfaces and
has a signifcant infuence on the ability of the PSWFs to
model the sound feld. For a given size of sound source or
hologram surface, there may exist some guidelines for us to
select an appropriate interfocal distance.

Te line-array monopoles and simply supported thin
plate are employed again in this subsection to examine the
performance of PS-SONAH in terms of d/L � 0.8, d/L � 1.0,
and d/L � 1.2. Te reconstruction errors on surface Γ1 are
shown in Figure 16. It can be seen that REs do not exceed 3%
for d/L � 1.0 and d/L � 1.2 with respect to line-array
monopoles. However, REs for d/L � 0.8 perform a little
higher and grow larger as the frequency increases. As for the
simply supported thin plate, REs for d/L � 0.8 also present

higher values over the entire frequency range. It seems that
for elongated sources, when the interfocal distance is larger
than the length of the source, better reconstruction results
can be ensured. Tis is because the sound sources are ac-
tually singularities in the three-dimensional space and
should be incorporated into the singularities of the PSWFs
(the line between two focus points). However, the interfocal
distance cannot be set too large, as the calculation precision
of the PSWFs may decrease [25]. In conclusion, for elon-
gated sound sources, the interfocal distance confguration in
PS-SONAH should be slightly larger than the length of the
source model (1.0L∼1.2L).

4. Experiment

In order to validate the feasibility of the proposed method,
an experimental study is carried out in an anechoic chamber.
Te photograph of the experimental setup is shown in
Figure 17. In the experiment, two bluetooth loudspeakers
located at (0, 0, 0.175)m and (0, 0, − 0.175)m are used to
model an elongated sound source stretched in the z-
direction. An identical signal is delivered to both
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Figure 14: Reconstruction errors of S-SONAH, PS-SONAH, C-SONAH, and P-SONAH on three reconstruction surfaces versus frequency
in terms of a simply supported thin plate.
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loudspeakers, and they are operated in the same amplitude
and phase. Te sound pressures are measured by scanning
with a planar array of 8 × 8 microphones. Trough a fxed
reference microphone, four patch measurements are put
together and a total of 256 points are measured. Te mi-
crophones are distributed uniformly, whose spatial interval
is 0.05m in the y and z directions. Te measurements are
conducted at 0.2m (hologram surface Γh) and 0.1m (re-
construction surface Γ1) away from the loudspeakers. In our
experiment, the hologram aperture is set to be large enough
in comparison to the size of the sound source model, thereby
suppressing the fnite measurement aperture efect. Mean-
while, the microphone spacing is set at less than half of the
smallest wavelength (0.34m) across the frequency range
(100–1000Hz), in accordance with the Nyquist–Shannon

sampling theorem. In addition, the holography plane ofset
is set within the smallest wavelength to ensure that eva-
nescent waves can be recorded. However, the measuring
confgurations are sufcient for the feasibility validation of
the proposed method, and the optimization of measurement
parameters is not included at this time.

Te experiment is frst conducted at 1000Hz to observe
the detailed reconstruction results, and the measured
pressures at x � 0.2m are shown in Figure 18(a), which are
used as input data for diferent SONAH algorithms. Te
benchmark pressures at x � 0.1m are shown in
Figure 18(b). Te circles containing “∗” represent the lo-
cations of two loudspeakers. Te origin of the spherical
wave functions is set at (− 0.3, 0, 0)m. Figure 19 displays the
reconstructed pressures by S-SONAH, PS-SONAH, C-
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Figure 15: Isosurfaces (dashlines) of the PSWFs for diferent interfocal distances d.
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SONAH, and P-SONAH and the benchmark pressures on
surface Γ1. REs of S-SONAH, PS-SONAH, C-SONAH, and
P-SONAH on Γ1 are 34.5%, 32.1%, 30.1%, and 44.2%,
respectively. It can be seen that S-SONAH, PS-SONAH,
and C-SONAH have similar performances, while the re-
construction error of P-SONAH is a little larger. Figure 20
shows the reconstruction errors versus frequency ranging
from 100Hz to 1000Hz. As it can be seen, the error curves
of S-SONAH, PS-SONAH, and C-SONAH perform similar
features across the entire frequency range. Furthermore,
the mean REs across the frequency range of S-SONAH, PS-

SONAH, and C-SONAH are 25.3%, 22.6%, 27.1%, and
37.4%. Note that the diferences among S-SONAH, PS-
SONAH, and C-SONAH are not apparent. Te reason may
be that two loudspeakers are not sufcient to construct
a featured elongated sound source model, and the ad-
vantages of PS-SONAH for elongated source models
cannot be displayed dramatically. However, considering
the calculated mean REs, PS-SONAH performs slightly
better than S-SONAH and C-SONAH, which demonstrates
that PS-SONAH is feasible and efective in practical
experiments.
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Figure 17: Photograph of the experimental setup.
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5. Conclusions

Te successful implementation of NAH is highly related to
the appropriate selection or construction of the elementary
wave functions (EWFs). If the EWFs can match the char-
acteristics of the sound sources well, fewer expansion terms
are required during the sound feld projections. As a result,

the burden on regularization can be reduced, and the ac-
curacy of the reconstruction results will be improved. In this
study, the prolate spheroidal wave functions (PSWFs) are
introduced to SONAH, and a proposed method called PS-
SONAH is used to reconstruct the radiated sound feld of
elongated sources. Te method represents the sound feld as
a linear superposition of the PSWFs and establishes
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a transfer matrix between the hologram locations and the
reconstruction locations. It also combines the modifed
Tikhonov regularization (MTR) method with the general-
ized cross validation (GCV) method to stabilize the re-
construction results.

In the numerical simulations and a designed experiment,
the proposed method is compared to traditional SONAH
algorithms that use plane, cylindrical, or spherical wave
functions representing the sound feld. Te results show that
the PS-SONAH method can efectively reconstruct the ra-
diated sound feld of elongated sources and performs better
reconstruction results. Te robustness of the proposed
method is validated by the small reconstruction errors across
a broad frequency range. Meanwhile, the proposed method
is proven applicable to both spatially separated and extended
sources. Te efect of the interfocal distance on the re-
construction results is also investigated, and a guideline for
us to select an appropriate interfocal distance is presented.
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