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Using the monitoring temperature feld data from the fat steel box girder, the time histories of temperature data and temperature
diference data are investigated using the extreme value analysis method. Because the calculation of standard values of temperature
action needs massive temperature feld data, the simulation of daily extreme values of temperature data and temperature
diference data is carried out by virtual of Probability Statistical Method.Te seasonal and nonstationary trend terms are described
using the weighted sum of a series of basic elementary functions. Te random fuctuation term is represented by a joint model of
ARMAmean and GARCH variance. Moreover, the yearly extreme values of temperature data and temperature diference data are
considered as statistical variables, and their standard values of temperature action with 50-year return period are calculated by
means of the general extreme value (GEV) distributive function.Te research results can supply references for temperature action
of fat steel box girder.

1. Introduction

Because fat steel box girders are becoming more and more
common in large-span bridge structures, it is important to
study the standard values of temperature action for fat steel
box girders [1–5]. However, current bridge researchers still
have insufcient understanding of the standard values of
temperature action in fat steel box girders [6–12].Te China
bridge design codes also do not specify the calculation
method of standard values of temperature action in fat steel
box girders. To determine the standard value of temperature
action, the bridge engineers often take the annual extreme
values of measured temperature or temperature diference
data as statistical variables, but the number of measured
temperature data is usually not enough for statistical analysis
[13–15]. How to use the measured temperature data to
calculate the standard values of temperature action becomes
one urgent problem. In addition, some latest monitoring
results indicate that there is a nonnegligible transverse

temperature diference in the top plate of fat steel box
girder, but the China bridge specifcation code does not
provide the standard value for this type of temperature
diference [16–19]. Terefore, a clear understanding of
standard values of temperature action for fat steel box girder
of long-span bridges can provide an important reference for
thermal design of fat steel box girders of long-span bridge
structures.

In view of this, one suspension bridge is taken as research
object. Based on the monitoring data from the fat steel box
girder, the extreme value analysis is employed to investigate
the time-varying characteristics of daily extreme values of
temperatures and temperature diferences. Ten, the
mathematical modeling method is used to simulate the daily
extreme values of temperatures and temperature diferences
for 50 years, with description of seasonal trend term and
nonstationary trend term in the daily extreme values as the
ARMA and GARCH combined model. Furthermore, the
annual extreme values of temperatures and temperature
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diferences are taken as statistical variables, and one dis-
tribution function called generalized extreme value is used to
calculate the standard values of temperature action within
50-year return period.

2. Monitoring Results of Temperature Field in
Steel Box Girder

2.1. Monitoring Section and Sensor Deployment. Te bridge
is a suspension bridge, and the main girder is a fat steel
box girder, as shown in Figure 1. Tis bridge is located at
Zhenjiang City, Jiangsu Province, crossing the Yangtze
River, and this region belongs to a subtropical monsoon
climate with distinct four seasons, abundant heat, and
abundant rainfall. Te design dimensions of girder
section are 37.4 m in width, 3.0 m in height, 14 mm in
thickness of top plate, and 12 mm in thickness of bottom
plate. Using the health monitoring system installed on
the bridge, the temperature data from fat steel box girder
are measured. To be specifc, eight measurement loca-
tions are shown in Figure 1, which are denoted by
C1∼C8, respectively. Te sampling frequency of the
temperature sensor is 1 Hz.

2.2. Monitoring Results. Taking the measuring point C1 as
an example, its time history in the whole year 2022 is shown
in Figure 2(a). It can be seen that it shows signifcant sea-
sonal variation characteristics, and the highest temperature
value can reach 48.0°C. Figure 2(b) further gives a period of
time history of C1 on January 28, 2022, which presents
signifcant daily variation characteristics similar to the shape
of a single-period sine curve. Considering that the standard
value of temperature action belongs to the category of ex-
treme value analysis, the one-year variation of daily maxi-
mum and minimum values of C1 is further shown in
Figures 3(a) and 3(b), respectively. It can be seen that the
maximum and minimum values fuctuate randomly around
the seasonal variation characteristics.

Taking C1 and C3 as an example, the temperature dif-
ference can be obtained after two temperature values of C1
and C3 at the same time are subtracted, as shown in
Figure 4(a). It can be seen that the negative temperature
diference reaches − 10.4°C. Figure 4(b) further gives a period
of temperature diference on April 6, 2022, which presents
a daily variation characteristic similar to the shape of
a single-period cosine curve. Furthermore, the one-year time
histories of daily maximum and minimum temperature
diferences are shown in Figures 5(a) and 5(b), respectively.
It can be seen that they present random variation charac-
teristics, not like the changing trends of temperatures as
shown in Figures 3(a) and 3(b).

3. Probability Statistical Properties of
Temperature Differences

3.1. Probability Statistical Method. Based on the monitoring
temperature data, the mathematical statistics method is used
to analyze the cumulative probability of vertical and

horizontal positive and negative temperature diferences.
Te best cumulative distribution function is selected to ft
the cumulative probability of temperature diferences.

Te change of temperature diferences with time is
regarded as a stationary stochastic process with the same
distribution. Te daily positive and negative extreme values
of temperature diferences are selected as random variables.
Te normal distribution (normal distribution), EV distri-
bution (extreme value distribution), and GEV distribution
(generalized extreme value distribution) are selected to ft
the daily positive and negative extreme values of tempera-
ture diferences.

In detail, the cumulative distribution function of normal
distribution is calculated as follows:

f(x) �
1
���
2π

√
σ


x

− ∞
e

− (x− μ)2/2σ2( )dx
. (1)

Te cumulative distribution function of extreme value
distribution is calculated as follows:

f(x) �
1
λ
e

− (x− k/λ)− e(− x− k/λ)[ ]. (2)

Te cumulative distribution function of the generalized
extreme value distribution is calculated as follows:
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In the formula, λ is the proportion coefcient, k is the
shape parameter, σ is the scale parameter, μ is the position
parameter, and λ, k, σ, and μ can be estimated using the least
square method.

In order to compare the ftting efects of three distri-
bution functions, the ftting errors Emax and Emin of three
functions are calculated as follows:

Emax �

��������������������������������


n
j�1 Pmax Tmax(j)(  − Pmax Tmax(j)(  

2


n
, (5)

Emin �

���������������������������������


n
j�1 Pm,r Tdmin(j)(  − Pm,s Tdmin(j)(  

2


n
. (6)

In the formula, Pm,r(Tdmax(j)) and Pm,s(Tdmax(j)) are
the measured and simulated cumulative probabilities of the
positive temperature diferences on the jth day, respectively;
Pm,r(Tdmin(j)) and Pm,s(Tdmin(j)) are the measured and
simulated cumulative probabilities of negative temperature
diferences on the jth day, respectively; and n represents the
total number of temperature extreme value samples.
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3.2. Probability Statistical Results. First, the cumulative
probabilities of daily extreme values of temperature difer-
ences are ftted using normal, EV, and GEV distribution
functions, respectively. Te ftting results are shown in
Figure 6. Tij,p denotes the daily positive extreme values of

temperature diferences between Ci andCj, and Tij,n denotes
the daily negative extreme values of temperature diferences
between Ci and Cj. Ten, the ftting errors of the three
distribution functions are calculated according to equations
(5) and (6), and the calculation results are shown in Table 1.

C1 C2

C8

C3 C4

C5 C6 C7

Figure 1: Deployment of temperature sensors in the fat steel box girder.
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Figure 2: Time history of C1. (a) Te time history in the whole year 2022. (b) Te time history on January 28, 2022.
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Figure 3: Time histories of daily maximum and minimum temperatures. (a) Te one-year variation of daily maximum values. (b) Te
one-year variation of daily minimum values.
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By comparing the ftting error values of three cumulative
distribution functions on temperature samples, it can be
found that the ftting error of the GEV distribution function
is smaller than the other ftting errors. Terefore, the GEV
distribution is selected as the cumulative distribution
function of the statistical variable.

4. Modeling Method for Time Series of
Temperature Field

4.1. Modeling Teory. When calculating the standard
values of temperature action, the annual extreme values of
temperatures and temperature diferences are commonly
used as statistical variables. However, the measured data
can only provide the annual extreme values of tempera-
tures and temperature diferences in the year 2022, so the
annual extreme values for many years should be simulated
to guarantee enough number of annual extreme values for
probabilistic statistical analysis. Te annual extreme
values are taken from the time histories of daily extreme
values, which contain seasonal and random variation

characteristics. Tese variation characteristics can be
simulated using a mathematical model regarding time
series analysis.

Te seasonal variation characteristics can be mathe-
matically described by a weighted sum of a series of ele-
mentary functions (such as sine function, cosine function,
exponent function, and power function) as follows:

A(t) � 
n

N�0
MiH(t, N). (7)

In this formula, A(t) denotes the daily extreme values in
the tth day regarding seasonal variation characteristics;
H(t, N) denotes an elementary function; Mi denotes
a weighting coefcient; and n denotes the order.

Te random variation characteristics contain autoregressive
characteristics, moving average characteristics, and hetero-
scedasticity characteristics. Tese three characteristics can be
described by amean-variancemodel, where themean portion of
model can refect the autoregressive characteristics and moving
average characteristics, which is expressed as follows [20]:
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Figure 4: Time histories of temperature diferences between point C1 and point C3. (a)Te time history in the whole year 2022. (b)Te time
history on January 28, 2022.
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Figure 5: Time histories of daily maximum and minimum temperature diferences. (a) Te one-year variation of daily maximum values.
(b) Te one-year variation of daily minimum values.
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Figure 6: Continued.
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Figure 6: Te cumulative probabilities of daily extreme values. (a) T12,p, (b) T12,n, (c) T13,p, (d) T13,n, (e) T23,p, (f ) T23,n, (g) T34,p, (h) T34,n,
(i) T35,p, (j) T35,n, (k) T37,n, (l) T37,p.
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At � c + 

p

j�1
bjHt − j + 

q

j�0
cjεt− j. (8)

In the formula, At denotes the daily extreme values in the
tth day regarding random variation characteristics; c denotes
the constant term; p and q denote the autoregressive order
and the moving average order, respectively; bj and cj denote
the autoregressive coefcient and moving average co-
efcient, and the value of c0 is 1; and εt− j denotes the white
noise with a time delay of j. Equation (8) is simply referred to
as ARMA (p, q) model [20].

Te variance portion of model can refect the hetero-
scedasticity characteristics, which is expressed as follows:

σ2t � κ + 
m

k�1
gkσ

2
t− k + 

n

k�1
vkε

2
t− k, (9)

with the restrictions: 
p

k�1gk + 
n
k�1vk < 1; κ> 0; gk > 0;

vk > 0.
In the formula, σt denotes the variance values in the tth

day regarding random variation characteristics; k denotes
the constant term; m and n denote the autoregressive order
and the moving average order of the variance model, re-
spectively; and gk and vk denote the autoregressive and
moving average coefcients, respectively. Equation (9) is
simply referred to as the GRACH (m, n) model [20]. ARMA
(p, q) model combined with GRACH (m, n) is called the
mean-variance model.

4.2. Modeling Steps. Because the daily extreme values of
temperatures and temperature diferences have the same
modeling steps, the temperature data from C6 are selected
for illustration of modeling steps.

4.2.1. Modeling of Seasonal Variation Characteristics. Te
one-year time history of the daily minimum values from C6
is shown in Figure 7. Te least square ftting is utilized to ft
the seasonal variation characteristics based on equation (7),
and some elementary functions, i.e., the frst-order Fourier
series, the frst-order Gauss series, and the second-order
power exponential polynomial, are used for curve ftting as
shown in Figure 7. It can be seen that the Fourier series ft the

best, which can be used to describe the seasonal variation
characteristics, and the estimated parameter values of
Fourier series are shown in Table 2.

4.2.2. Modeling of Random Variation Characteristics.
Time series of the random variation characteristics is ob-
tained by measured temperatures minus ftted temperatures
using equation (7), as shown in Figure 8. Te method of
establishing the mean-variance model for random variation
characteristics is illustrated in the following steps:

Step 1: Stationary Characteristic Test. A good stationary
characteristic is the precondition for establishing the
mean-variance model. For this reason, the autocor-
relation function ρ and the partial correlation func-
tion β within 30-step time lag are calculated as shown
in Figures 9(a) and 9(b), respectively. It can be seen
that both of them decay rapidly to 95% confdence
interval, which shows that the random variation
characteristics have good stationary characteristics. In
addition, the unit root of time history data is calcu-
lated using the augmented Dickey–Fuller test, and the
results reject the null hypothesis of a unit root against
the autoregressive alternative, which indicates that the
random variation characteristics have good stationary
characteristics.
Step 2: Order Determination of Mean-Variance Model.
Te orders p and q of the mean model in equation (8)
are related to the decay form of autocorrelation
function ρ and partial correlation function β. It can be
seen from Figure 8 that the autocorrelation function ρ
shows obvious trailing property, while the partial
correlation function β shows obvious two-step trun-
cation property, so the mean model shown in equation
(8) follows ARMA (2, 0) model [20]. Furthermore, the
Engle test is carried out for the heteroscedasticity of the
random variation characteristics, and the results
rejected null hypothesis of no conditional hetero-
scedasticity, which concluded that there are signifcant
heteroscedasticity efects in the random variation
characteristics. Ten, the order of variance model
shown in equation (9) is further determined using AIC
and BIC criteria. To be specifc, the statistical values of

Table 1: Fitted errors of three cumulative distribution functions.

Fitted errors Temperature diferences Normal EV GEV

Emax

T12,p 0.0023 0.0040 0.0011
T13,p 0.0019 0.0023 0.0019
T23,p 0.0097 0.0013 0.0012
T34,p 0.0013 0.0019 0.0012
T35,p 0.0023 0.0052 0.0019
T37,p 0.0021 0.0033 0.0015

Emin

T12,n 0.0010 0.0019 0.0008
T13,n 0.010 0.0041 0.0032
T23,n 0.0022 0.0058 0.0011
T34,n 0.0016 0.0064 0.0014
T35,n 0.0228 0.0033 0.0013
T37,n 0.0070 0.0023 0.0013
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AIC and BIC within the frst fve order values ofm and
n are calculated as shown in Figure 10. Te orders ofm
and n corresponding to the minimum statistics values
of AIC are selected from Figure 10(a): m= 2, n= 1, and
the orders of m and n corresponding to the minimum
statistics values of BIC are selected from Figure 10(b):
m= 1, n= 1. Terefore, there are two combinations for
the mean-variance model: (1) the combination of
ARMA (2, 0) model and GARCH (2, 1) model; (2) the
combination of ARMA (2, 0) model and GARCH (1,
1) model.
Step 3: Parameter Estimation forMean-VarianceModel.
Te estimated parameters are the autoregressive co-
efcient, the moving average coefcient, and the

constant term in equations (8) and (9), which can be
calculated using the maximum likelihood estimation
method. Finally, the mean-variance model for de-
scription of random variation characteristics is de-
termined using the estimated parameter values.

4.2.3. Model Verifcation. Based on the modeling analysis
above, the one-year time history of daily minimum tem-
perature values from C6 is mathematically simulated by two
types of combinations. Te frst type of combination is the
frst-order Fourier series, ARMA (2, 0) and GARCH (2, 1);
the second type of combination is the frst-order Fourier
series, ARMA (2, 0) and GARCH (1, 1). In order to verify the
simulation efect, the residuals between simulated and
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Figure 7: Seasonal variation trend and its ftting curve.

Table 2: Values of estimated parameters in Fourier series.

Fourier series A(t)� a0 + a1cos (wt) + a2sin (wt) (0≤ t≤ 365)

Parameters a0 a1 a2 w

Values 14.610 − 12.35 − 3.258 0.016
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Figure 8: Time series of the random variation characteristics.
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measured values are tested using autocorrelation function
and partial correlation function, with the results shown in
Figures 11 and 12, respectively. It can be seen that all the
values of autocorrelation function and partial correlation
function fall within the 95% confdence interval, indicating
good simulation efect.

Furthermore, the 50-year time history of daily minimum
temperature values is simulated using the mathematical
model, and then the annual minimum temperature values in
50 years are selected, as shown in Figure 13, which can
provide enough data for calculation of standard values of
temperature action. What should be mentioned is that the
time histories of temperature diferences have stationary

random characteristics, which are not afected by years, so
one year of data is feasible to simulate annual extreme values
if their stationary random characteristics are accurately
grasped.

5. The Calculation Method of Temperature
Standard Value

By referring to the European bridge design code, the
standard value of temperature action refers to the charac-
teristic value within a return period of 50 years. What should
be mentioned is that “50 years” means the return period of
temperature standard values not the design service life of
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Figure 9: Autocorrelation function and partial correlation function within 30-step time lag. (a) Te autocorrelation function ρ. (b) Te
partial correlation function β.
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long-span bridges. In addition, the standard value of the
temperature action is commonly calculated using the sta-
tistical variable of yearly extreme values of temperatures or

temperature diferences, so the proceeding probability in the
50-year return period is 2%. Te calculation formula for the
standard value A0 is shown as follows [21]:
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Figure 12: Autocorrelation function and partial correlation function for the second type of combination. (a) Autocorrelation function.
(b) Partial correlation function.
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Figure 13: Time history of the annual minimum temperature values in 50 years.

Pr
ob

ab
ili

ty
 d

en
sit

y

Probability density 
Te ftted curve

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-9 -6 -3 0 3-12
Yearly minimum temperatures (°C)

Figure 14: Te probability density histogram and its ftted curve.

Table 3: Te standard values of temperature diferences.

Variables
Transverse temperature diference Vertical temperature

diference
T12 T13 T23 T34 T35 T37

Maximum values (°C) 13.2 10.5 7.5 15.1 14.3 21.1
Minimum values (°C) − 9.9 − 13.9 − 15.5 − 7.4 − 4.2 − 9.0

Table 4: Te standard values of temperatures.

Variables
Temperatures in the bottom plates

T6 T7 T8

Maximum values (°C) 53.7 54.1 53.4
Minimum values (°C) − 7.7 − 7.5 − 8.3
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W � 
+∞

A0

F(A)dA formaximum standard values, (10a)

W � 
A

− ∞
F(A)dA formaximum standard values, (10b)

where W denotes the proceeding probability of 2%; T de-
notes the statistical variable of yearly extreme values of
temperatures or temperature diferences; and F(A) denotes
the probability density function of generalized extreme value
distribution [22], with its expression as follows:

F(A) �
1
a

1 + r
A − b

a
  

− (1/r)− 1

exp − 1 + r
A − b

a
  

− (1/r)

⎡⎣ ⎤⎦,

(11)

where r, b, and a denote shape parameters, position pa-
rameters, and scale parameters, respectively. Te parameter
value can be determined using least square ftting. Te
standard value A0 is calculated using the Newton iteration
method, or a more convenient solution method is feasible to
calculate A0 by directly using MATLAB probability and
statistics toolbox.What should be mentioned is that, because
standard values are the most unfavorable values which are
used for bridge safety evaluation and the maximum or
minimum temperature values are more unfavorable than
mean temperature values, the maximum temperature values
or minimum temperature values are used for calculation of
standard values.

Taking C6 as an example, the probability density of
annual minimum temperature values in 50 years is shown
in Figure 14, and then it is ftted by probability density
function through least square ftting. Te ftted probability
density curve is shown in Figure 14, and it can be seen that
the ftted curve is in good agreement with the probability
density histogram. Te estimated parameters are
r � − 0.3534, b � − 3.4630, and a � 1.6101. Furthermore, the
standard value of annual minimum temperature values is
− 6.3°C after calculation using the probability density
function.

Te standard values of the vertical temperature difer-
ences between top and bottom plates as well as the transverse
temperature diferences in the top plate are shown Table 3.
Because signifcant temperature diferences exist in the top
steel plate as well as between top and bottom plates, Table 3
only shows the standard values of temperature diferences. It
can be seen that the transverse temperature diferences
contain obvious maximum and minimum standard values,
which should be considered in the thermal action design. In
addition, the maximum vertical standard values are sig-
nifcantly bigger than the maximum transverse standard
values.

Te standard values of temperatures in the bottom plate are
shown in Table 4. Because signifcant uniform temperatures
exist in the bottom plate, Table 4 only shows the standard
values of temperatures. In the tables, Aij denotes the standard
value of temperature diference between two measuring points

Ci and Cj, and Ak denotes the standard value of temperature
from the measuring point Ck, i, j� 1, 2, ..., 5, k� 6, 7, 8.

According to the “Eurocode 1: Actions on structures”
[23], it only specifes the maximum and minimum standard
values of vertical temperature diferences, which are 24°C
and − 6°C, respectively. Tis design code does not specify the
transverse temperature diferences. Terefore, the research
results can help provide reference for thermal action design
of fat steel box girder, especially the transverse temperature
diferences in the top plate.

6. Conclusion

Using the monitoring temperature data from the fat steel
box girder of a suspension bridge, this research proposed
one calculation method of standard values of temperature
action for fat steel box girder of long-span bridges based on
simulation of monitoring data. Te main conclusions are as
follows:

(1) Te time history of temperature data presents sig-
nifcant seasonal variation characteristics, and the
time history of temperature diference data presents
signifcant random variation characteristics.

(2) Te seasonal variation characteristics can be de-
scribed by a weighted sum of a series of basic ele-
mentary functions, and the random variation
characteristics can be described by combination of
ARMA and GARCH models.

(3) Te generalized extreme value distribution function
can well ft the probability density histogram. Te
proposed modeling method can generate enough
data for calculation of standard values of tempera-
ture action.

(4) Tis research provides the standard values of the
vertical temperature diferences between top and
bottom plates, the transverse temperature diferences
in the top plate, and the standard values of temper-
atures in the bottom plate, which provide reference
for thermal action design of fat steel box girder.

What should be mentioned is that the standard values
calculated in this research are a case study from a steel box
girder in the specifc bridge site environment, and the
standard values of steel box girders in diferent bridge site
environment may be diferent, but the calculation method
can still provide important reference for steel box girders in
other bridge site environments.
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