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Te frequency- and temperature-dependent characteristics of viscoelastic materials signifcantly afect the vibration response of
the damped composite structures. In this paper, an efcient strategy of hybrid expansion combined with dynamic reduction is
developed to solve the steady-state response of the frequency- and temperature-dependent viscoelastic structure characterized by
nonproportional system, and the sensitivity analysis is carried out based on the adjoint variable method. Te similarity index is
defned to distinguish the correlation among diferent design layouts. Two instances demonstrated the validity of the proposed
approach. Te fndings indicated that a positive compromise between accuracy and efciency can be achieved, and the com-
putational time can be signifcantly reduced while ensuring the accuracy of the results. Furthermore, it has been discovered that
the excitation frequency and temperature signifcantly impact the optimal confguration of damping material. Te efects of layer
thicknesses and volume fractions on optimization designs are also further investigated.

1. Introduction

Tin-walled constructions are frequently utilized as load-
bearing components in autos, railways, ships, space shut-
tles, and other engineering structures. Due to the growing
desire for lightweight design, these structures are prone to
severe vibration and noise concerns when subjected to ex-
ternal dynamic excitations. Passive control treatments, such
as incorporating viscoelastic damping materials into struc-
tures, were generally regarded as a practical and efective
technique to suppress the level of vibration in structures [1–3].
Since the 1960s, constrained layer damping (CLD) structures
have been widely used in vibration control of aerospace
structures due to their substantially higher energy dissipation
on account of shear deformation than free layer damping.
Various CLD structures have emerged as hot topics and
trends, with key research focusing on dynamic modeling and
analysis [3, 4], performance identifcation [5, 6], position
optimization, and viscoelastic material parametric design.

Topology optimization technology has been widely applied
in the conceptual design of the optimal layout of damping
materials due to its efectiveness, aiming to achieve greater
performance in decreasing vibration and abating noise under
lightweight constraints. In the feld of dynamic characteristics,
fundamental or multiple modal loss factors are frequently
employed as objective functions. Zheng et al. [7] investigated the
structural design confguration using the genetic algorithm for
minimizing the overall vibration energy. Wang et al. [8] pro-
posed an artifcial density and heuristic methods for optimi-
zation design of CLD shells. Kim et al. [9] optimize the
distribution of damping materials by maximizing the structural
modal loss factor. Xu et al. [10] applied topology design
technology to estimate the material distribution in the spindle
box of machine tools to increase vibration suppression ability.
Recently, Zhang et al. [11] investigated the topology optimi-
zation of multiphase viscoelastic microstructures to enhance
macroscopic damping performance. For dynamic response
optimization, many notable works have been carried out to
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suppress the structural vibration. Fang et al. [12] adopted the
density-based method to reduce the structural dynamic re-
sponse. Zheng et al. [13] discussed the topological optimization
of CLD structures to minimize sound radiation. Takezawa [14]
took the complex dynamic compliance as a novel objective
function to lessen the resonant response by maximizing the
energy dissipation near the resonance. Delissen et al. [15]
proposed a constraint function based on enhanced modal
truncation to limit the frequency response peak at the resonance
using an efcient reduced-order model. Furthermore, Kang
et al. [16, 17] adopted the classical Rayleigh damping model to
describe the energy dissipation of viscoelastic materials and
found that the specifc design confgurations are sensitive to the
damping coefcients. Nevertheless, the frequency- and
temperature-dependent properties of viscoelastic materials are
still rarely considered in the optimization design of viscoelastic
structures, and the corresponding difculties and challenges
have not been well addressed.

It should be emphasized that the dynamic mechanical
properties of viscoelastic materials are afected by the coupling
of several factors, the most relevant of which are the tem-
perature and frequency [6, 18, 19]. Te following lists some
recent meaningful work. Li et al. [20] investigated the vibra-
tions of composite structures subjected to partial CLD treat-
ment by using the strain-dependent shear modulus. Oh [21]
investigated the damping performance of laminated shells
considering the frequency and temperature dependence. Shu
et al. [22] established an accurate dynamic equation of CLD
structure and analyzed its vibration characteristics using the
coupling efect of temperature and frequency. Mokhtari et al.
[23] quantitatively analyzed the dynamic response and be-
havior of viscoelastic layers in CLD cylindrical shells. Sun et al.
[24] conducted a thorough examination and discussion of the
efect of frequency on the vibration behavior of composite
structures. Dai et al. [25] then investigated the damping per-
formance of laminated shells with frequency-dependent
properties and derived the analytical expression of dynamic
response.Tese publishedworks all concur with the conclusion
that the viscoelastic materials’ frequency and temperature
dependence are essential when evaluating the dynamic re-
sponse and damping behavior of CLD structures.

As far as the authors know, despite the fact that dynamic
topology optimization of CLD structures has been exten-
sively and thoroughly researched, few research reports ad-
dress the difculties of optimizing the design of viscoelastic
structures. Recently, Zhang et al. [26] performed the to-
pology optimization study for maximizing the modal loss
factor of the CLD structure considering temperature and
frequency dependence by means of a parametric level set
method based on the generalized Maxwell model. However,
their work did not involve attenuating the structural re-
sponse. As a result, the originality of this study is primarily
refected in the efcient optimization design approach which
aims to reduce the dynamic response of viscoelastic struc-
tural materials comprising the frequency- and temperature-
dependent damping materials. Terefore, the application
scope of Golla–Hughes–McTavish (GHM) model [27, 28] is
extended to solve the optimal layout problem of the CLD
plate. However, this composite structure is characterized by

nonproportional damping system owing to the nonuniform
distribution of viscoelastic materials. Recently, Li et al. [29]
proposed an N-space approach to correct the higher-order
responses using the established relationship between the
eigensolutions and the system matrix. Tese fndings pro-
vide the potential to be a driving factor in the application and
popularization of the nonproportional damped systems in
the feld of topology optimization.

Te aim of this paper is to study the topology optimi-
zation design of viscoelastic composite structures at diferent
temperatures and frequencies to minimize the steady-state
response. For this purpose, the GHM model was in-
corporated into the fnite element method to describe the
energy dissipation of materials. To handle the topology
optimization difculties characterized by nonproportional
damping of the CLD plate resulting from this, an improved
approach integrating hybrid expansion and dynamic re-
duction methods is proposed and developed, and the sen-
sitivity analysis of adjoint schemes is performed. Specifc
attention focuses on the infuence of the fuctuation of
viscoelastic material properties with the change of tem-
perature and frequency on the vibration response and op-
timal confguration of composite structures.

Te remainder of the paper was structured as follows.
Section 2 established the augmented vibration equations
incorporating the GHM model, taking into account the
frequency- and temperature-dependent properties of vis-
coelastic materials. Section 3 described the specifc pro-
cedure for calculating the displacement response of CLD
plates under harmonic excitations by combining hybrid
expansion and dynamic reduction methods. Te formula-
tions of topology optimization of CLD plate and sensitivity
analysis based on the adjoint variable method (AVM) are
reviewed in Section 4. In section 5, several numerical ex-
amples are implemented to validate the proposed optimi-
zation method and evaluated the efects of frequency and
temperature on the optimal layouts. Besides, the infuence of
the layer thicknesses and volume fractions is also further
discussed. Conclusions are drawn in section 6.

2. Numerical Modeling Procedure

Te CLD plates, as a king of common multilayer structures,
are extensively applied in many engineering felds. Tis
section presents the related theories for the numerical
modeling procedure of CLD plates incorporating the
GHM model.

2.1.BasicKineticsRelationships. Figure 1 depicts a schematic
illustration of the CLD plate. Te symbol h represents the
thickness, while the subscripts p, c, and v, respectively,
denote the base plate, constrained layer, and damping layer.
Te coordinate system is set on the neutral plane of the CLD
plates, and the position of the neutral axis can be obtained by
balancing the forces in the out-of-plane direction.

Considering the dynamic deformations, as shown in
Figure 1, the midplane displacements uv and vv and the shear
strains βx and βy are given as
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uv �
1
2

uc + up􏼐 􏼑 +
hc − hp

2
θx􏼢 􏼣,

vv �
1
2

vc + vp􏼐 􏼑 +
hc − hp

2
θy􏼢 􏼣,

(1)

βx �
uc − up

hv

+
d

hv

θx,

βy �
vc − vp

hv

+
d

hv

θy,

(2)

where uc and vc and up and vp denote midplane dis-
placements of constrained layer and base plate, re-
spectively. w is the out-of-plane displacement, θx � zw/zx

and θy � zw/zy denote the partial derivatives of w in x and
y directions, and d � hv + (hc + hp)/2 is the midplanes
distance.

2.2. Finite Element Models. Te fnite element model is
discreted into four-node planar plate element, and the nodal
displacement vector is determined by

qe
� qe

1 qe
2 qe

3 qe
4􏼈 􏼉

T
, (3)

in which

qe
i � uci vci upi vpi wi θxi θyi􏽮 􏽯, for i � 1, 2, 3, 4.

(4)

Terefore, the displacement at any position within the
element can be represented by the node displacement as
follows:

uc vc up vp w θx θy􏽮 􏽯
T

� Nuc Nvc Nup Nvp Nw Nθx Nθy􏽮 􏽯qe
,

(5)

where Nuc, Nvc, Nup, Nvp, Nw, Nθx, and Nθy are the spatial
interpolating vectors corresponding to uc, vc, up, vp, w, θx,
and θy, respectively.

In addition, the spatial interpolating vectors corre-
sponding to uv, vv, βx, and βy can be derived from (1) and
(2), given as

Nuv �
1
2

Nuc + Nup􏼐 􏼑 +
hc − hp

2
Nθx􏼢 􏼣,

Nvv �
1
2

Nvc + Nvp􏼐 􏼑 +
hc − hp

2
Nθy􏼢 􏼣,

Nβx �
1
hv

Nuc − Nup􏼐 􏼑 + dNθx􏽨 􏽩,

Nβx �
1
hv

Nvc − Nvp􏼐 􏼑 + dNθy􏽨 􏽩.

(6)

Ten, the elemental mass and stifness matrices can be
obtained according to the energy approach and variational
Hamilton principle as follows:

me
i � ρihi 􏽚

a

− a
􏽚

b

− b
Nui( 􏼁

TNui + Nvi( 􏼁
TNvi + Nw( 􏼁

TNw􏽨 􏽩dx dy,

ke
i � hi 􏽚

a

− a
􏽚

b

− b
BT
1iDiB1idx dy +

h
3
i

12
􏽚

a

− a
􏽚

b

− b
BT
2DiB2dx dy,

ke
sv � Gvhv 􏽚

a

− a
􏽚

b

− b
Nβx􏼐 􏼑

T
Nβx + Nβy􏼐 􏼑

T
Nβy􏼔 􏼕dx dy,

(7)

where ke
sv denotes the shear stifness, Di identifes the elastic

matrix, and strain matrices are presented as

B1i �
zNui

zx

zNvi

zy

zNui

zy
+

zNvi

zx
􏼢 􏼣

T

,

B2 �
z2Nw

zx2
z2Nw

zy2
z2Nw

zxzy
􏼢 􏼣

T

.

(8)

Te elemental dynamic equation of composite structures
is given as

meq
.. e

+ keqe
+ ke

svq
e

� f , (9)

whereme � me
p + me

c + me
v and ke � ke

p + ke
c + ke

v.me and ke

represent the composite elemental mass and stifness ma-
trixes, respectively.

2.3. Incorporation of Viscoelastic Materials. For the CLD
structures comprising viscoelastic material, equation (9) cannot
capture their frequency-dependence. Hence, Golla–Hughes and
McTavish [27, 28] introduced the GHM model to describe the
energy dissipation of viscoelastic structures and expressed it in
the following form:

s􏽥G(s) � G
∞ 1 + 􏽘

r

k�1
αk

s
2

+ 2􏽢ζk 􏽢ωks

s
2

+ 2􏽢ζk 􏽢ωk + 􏽢ω2
k

⎡⎣ ⎤⎦, (10)

where G∞ is the equilibrium value of modulus. Each term
includes αk, 􏽢ζk, and 􏽢ωk, which are determined via G∗v (ω) at
temperature T(°C). Te number of mini-oscillator terms r

could be adjusted to refect the corresponding damping
performance of diferent viscoelastic materials.

Te Laplace’s transform of (9) is

z y

w

v c
v v

v p
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up

2a
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Figure 1: Schematic diagram of the CLD plate.
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s
2me

+ ke
+ s􏽥G(s)ke

sv􏼐 􏼑qe
(s) � f(s). (11)

Substituting (10) into (11) and introducing auxiliary co-
ordinates called dissipation coordinates are defned as follows:

z(s) �
􏽢ω2

s
2

+ 2􏽢ζωs + 􏽢ω2q
e
(s). (12)

Equation (9) is converted into the time domain and
rewritten as follows:

􏽢m 􏽢mz􏼂 􏼃
q
.. e

€z
⎡⎣ ⎤⎦ + 􏽢c 􏽢cz􏼂 􏼃

q
. e

_z
⎡⎣ ⎤⎦ + 􏽢k 􏽢kz

􏽨 􏽩
qe

z
􏼢 􏼣 �

f

0
􏼢 􏼣,

(13)

where

􏽢m �

me

0

⋮
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

􏽢mz �

0 · · · 0

α1
1
􏽢ω2
1
Λ ⋱ ⋮

0 ⋱ 0

0 · · · αr

1
􏽢ω2

r

Λ
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,

􏽢c �

ce

0

⋮
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

􏽢cz �

0 · · · 0

α1
2􏽢ζ1
􏽢ω1
Λ ⋱ ⋮

0 ⋱ 0

0 · · · αr

2􏽢ζr

􏽢ωr

Λ
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,

􏽢k �

ke
+ 􏽥k 1 + 􏽘

r

k�1
αk

⎛⎝ ⎞⎠

− α1R
T

⋮

− αrR
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽢kz �

− α1R · · · − αrR

α1Λ 0 0

0 ⋱ 0

0 0 αrΛ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽥k � G
∞ke

sv,

ke
sv � RvΛvR

T
v ,

Λ � G
∞Λv,

R � RvΛ,

z � RT
v 􏽢z, k � 1, 2, 3, . . . , r,

(14)

where Λv is a diagonal matrix composed of the positive
eigenvalues of the shear stifness matrix of viscoelastic
materials and RT

v is the matrix composed of the corre-
sponding eigenvectors.

Each element can be considered to be composed of fve
nodes, four of which are physical and the other one is virtual.
Each physical node has seven DOFs, and the introduced
auxiliary coordinates are regarded as the DOFs of the
corresponding virtual nodes, which are jointly determined
by the number of positive eigenvalues and the orders of the
mini-oscillators terms. Figure 2 presents the schematic di-
agram of the element nodes and assembly process of the
global matrices.

Te global matrices are assembled based on the physical
coordinates while reserving auxiliary coordinates. Te
equation of motion is shown as follows:

Mx.. + Cx
.

+ Kx � F, (15)

where M ∈ RNG×NG , K ∈ RNG×NG , and C ∈ RNG×NG , re-
spectively, denote the global mass, stifness, and damping
matrices. x and F ∈ RNG×1 represent the displacement vector
and external load vector. Here, NG indicates the full DOFs
consisting of physical and dissipative coordinates.

Te fnite element method (FEM) provides a carrier for
the fusion of the GHM model, so that the properties of
viscoelastic materials can be introduced into the equation of
motion of the structure in the form of the element mass,
stifness, and damping matrix. Te dynamic equation ob-
tained by this modeling method is a standard second-order
linear system model, which performs well in response and
sensitivity analysis.

3. Solutions of the Governing Equation

As previously stated, dissipative coordinates appear as the
augmented state variables, signifcantly increasing the di-
mension of the governing equation. As a result of this, such
a method sufers from the fnite element dimension system
being extended twice or more, necessitating expensive
computing costs. Meanwhile, owing to the nonuniform
design layouts of damping material, the composite structure
represents the nonproportional damping behavior. Solving
the governing equation directly is a computationally ex-
pensive task. Terefore, model reduction is necessary to
reduce the high-order fnite element models to a smaller size
for undertaking more efcient dynamic analysis and opti-
mization procedures.

3.1. Dynamic Reduction Method. Te dynamic reduction
method pioneered by Leung [30] and afterward Petersmann
[31] as a type of hybrid coordinates reduction method is
frequently and widely employed. Tis method employs the
modal synthesis in conjunction with the dynamic reduction,
which is analogous to the substructuring technique.
According to the master and slave DOFs, the structural
displacement vector can be separated into two subvectors.
Te displacement subvector of slave DOFs can be obtained
as follows:
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qs
� − Kss

q􏼐 􏼑
− 1
Ksm

q qm
− Kss

q􏼐 􏼑
− 1

Ksm
qz K

ss
qz􏽨 􏽩z + Φc. (16)

Rewrite (16) into matrix form as follows:

qm

qs

z

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

I1 0 0

t1 t2 Φ

0 I2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽼√√√√􏽻􏽺√√√√􏽽
T

qm

z

c

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(17)

where T ∈ RNG×NR is the transformation matrix, NR≪NG;
I1 and I2 are the unit matrix; t1 � − (Kss

q )− 1Ksm
q ; and t2 �

− (Kss
q )− 1[Ksm

qz K
ss
qz] denote the static contribution, and Φ

represents the corresponding dynamic contribution.
Terefore, the reduced-space governing equation is

showed as follows:

TTMT􏼐 􏼑y
..

+ TTCT􏼐 􏼑y
.

+ TTKT􏼐 􏼑y � TTF, (18)

where MNR
� TTMT, KNR

� TTKT, CNR
� TTCT, and

FNR
� TTF, respectively, denote the reduced mass, stifness,

damping matrices, and load vector. Furthermore, please see
[32] for the specifc theories and the derivation of corre-
sponding reduction space.

3.2. Complex Mode Superposition Method for Higher-Order
Modes Correction. Te dynamic equation in the frequency
domain of reduced order for the CLD structure with nR

DOFs can be expressed as follows:

− ω2MNR
+ jωCNR

+ KNR
􏼐 􏼑Y(ω) � Kd(ω)Y(ω) � FNR

(ω),

(19)

where the matrix Kd(ω) � − ω2MNR
+ jωCNR

+ KNR
is the

dynamic stifness matrix and ω refers to the exciting
frequency.

Te complex frequency response function (FRF) matrix
can be expressed using complex mode superposition theory,
as shown as follows:

H(ω) � 􏽘

2NR

i�1

ϕiϕi
T

ai jω − λi( 􏼁
, (20)

where

ai � ϕi
T 2λiMNR

+ CNR
􏼐 􏼑ϕi, (21)

where ϕr is the complex eigenvector that corresponds to the
complex eigenvalue λr. We suppose that the complex ei-
genvalues are distinct and the number is 2 NR. In practice,
only limited low-order modes can be involved.

H(ω) ≈ 􏽘
L

i�1

ϕTϕi

i

jω − λi( 􏼁ai
,

X(ω) ≈ 􏽘
L

i�1

ϕTi FNR
(ω)ϕi

jω − λi( 􏼁ai

.

(22)

Equation (22) is the modal displacement method
(MDM). Te modal truncation error may be generated
because some higher-order modes are disregarded. When
L≪ 2NR, the calculation results are hardly credible.

According to the method proposed by Li et al. [29], (20)
is rewritten as the matrix form, and expanded the inverse
term using the Neumann series as follows:

H(ω) � − 􏽘

∞

r�1
(jω)

r− 1ΦΘ− 1Λ− 1ΦT
, (23)

where Λ � diag λ1, λ2, · · · , λ2NR
􏽨 􏽩,Φ � φ1,􏼂 φ2, · · · ,φ2NR

],

Θ � diag a1, a2, · · · , a2NR
􏽨 􏽩.

It should be noted that (23) can achieve the expected
accuracy as long as all corresponding modes whose reso-
nance frequency is within the concerned frequency interval
are retained. It can be further proved that the series ex-
pansion in (23) is convergent.

Te Kd(ω) can be reformed and the inverse calculated as
follows:
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Figure 2: Schematic diagram of element nodes and assembly process.
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Kd
− 1

(ω) � INR
+ jωK− 1

NR
CNR

+ jωMNR
􏼐 􏼑􏽨 􏽩

− 1
K− 1

NR
, (24)

where [IN + jωK− 1(C + jωM)]− 1 can be expanded as
follows:

IN + jωK− 1
(C + jωM)􏽨 􏽩

− 1
� 􏽘
∞

k�0
(− jω)

kΓk. (25)

Combining (24) and (25), we get

H(ω) � 􏽘
∞

k�0
(jω)

kΓk. (26)

It should be highlighted that Γk may be obtained spe-
cifcally by the iterative approach, and only needs to be
calculated once at diferent frequencies due to the frequency
independence.

Combining (23) and (26), we provide the more broader
connections between the eigensolutions and systemmatrices
for k � 1, 2, . . . ,∞, as follows:

− ΦΘ− 1Λ− k− 1ΦT
� Γk. (27)

Hence, a novel mode superposition method called the
hybrid expansion method (HEM) for calculating the dis-
placement response can be derived. Assuming that the h

term in power-series is retained for meeting appropriate
precision criteria, the estimated displacement vector is
shown as follows:

X(ω) � 􏽘
L

i�1

ϕiF(ω)ϕTi
ai jω − λi( 􏼁

+ 􏽘
h

r�1
(jω)

r− 1 Γr− 1F(ω) + 􏽘
L

i�1

ϕiF(ω)ϕTi
aiλ

T
i

⎡⎣ ⎤⎦.

(28)

4. Topology Optimization Model

4.1. Problem Statement. Te motive of the research is to
seek for the design layouts of a given amount of damping
material to minimize the vibration amplitude at the
specifed locations. Te steady displacement response is
obtained by

Aj �

�����������

Y
R
j􏼐 􏼑

2
+ Y

I
j􏼐 􏼑

2
􏽲

, (j � 1, 2, . . . , N), (29)

where YR
j and YI

j (j � 1, 2, . . . , N) are the real and imaginary
parts of the complex amplitude Yj, respectively.

Te mathematical model is established as follows:

min
ρ

f � 􏽘
m

j�1
A
2
j ,

s.t. − ω2MNG
+ iωCNG

+ KNG
􏼐 􏼑Y � FNG

,

􏽘

Ne

e�1
ρeVe − fv 􏽘

Ne

e�1
V

0
e ≤ 0,

0< ρmin ≤ ρe ≤ 1, e � 1, 2, . . . , Ne( 􏼁,

(30)

where ρe are the pseudodensity variables, Ne denotes the
total number of desirable elements, and m is the number of
specifed DOFs. Te volume fraction is represented by the
symbol fv. ρmin is the lower bound of the design variables to
prevent the system matrices from becoming singular, in this
case ρmin � 0.001.

In the framework of the polynomial interpolation
scheme (PIS), the elemental mass matrices me

v and me
c and

stifness matrices ke
v, k

e
c, and ke

sv are expressed by

me
v � ρem

e0
v ,

ke
v �

15ρ5e + ρe

16
ke0

v ,

ke
sv �

15ρ5e + ρe

16
ke0

sv ,

me
c � ρem

e0
c ,

ke
c �

15ρ5e + ρe

16
ke0

c ,

(31)

where me0
v and me0

c and ke0
v , ke0

c , and ke0
sv are the mass

matrices and stifness matrices when mass density is equal
to 1.

4.2. Sensitivity Analysis. To perform optimization, the
globally convergent method of moving asymptotes
(GCMMA) is adopted to obtain the optimized solution. Te
AVM is preferred compared to the direct method for to-
pology optimization problems involved in this study

Te sensitivity of objective function in (30) is given by

􏽘
m

j�1

zA
2
j

zρe

� 􏽘
m

j�1
2 Re Yj􏼐 􏼑

zRe Yj􏼐 􏼑

zρe

+ Im Yj􏼐 􏼑
zIm Yj􏼐 􏼑

zρe

⎛⎝ ⎞⎠,

(32)

where zYj/zρe can be derived as follows:

zYj

zρe

�
z LTY􏼐 􏼑

zρe

� LT
zY
zρe

, (33)

where L is so-called the column vector with concerned DOF
j being 1.

Take the derivative of both sides of (30) with respect to
the design variables as

zKd

zρe

Y + Kd

zY
zρe

� 0. (34)

Substituting (34) into (33) and taking into account the
symmetry of Kd, one obtains

zYj

zρe

� LT
zY
zρe

� − LTK− 1
d

zKd

zρe

Y � − λT
zKd

zρe

Y, (35)

where λ can be calculated by following equation:

Kdλ � L. (36)
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Almost no additional computation is required because of
the same FRF whether the excitation load is F or L.

Once the λ is obtained, then the frst-order sensitivity of
the displacement response can be calculated as follows:

zYj

zρe

� − λT − ω2zMNG

zρe

+ jω
zCNG

zρe

+
zKNG

zρe

􏼠 􏼡Y. (37)

Te frst-order sensitivity of the augmented global
matrix, namely, the mass, stifness and damping matrices in
(37), can be obtained by the chain rule through interpolation
relations in (31) at the element level. Ten, remaining de-
rivatives of the corresponding sensitivity are removed.

4.3. Topology Optimization Process. Te sensitivity fltering
scheme based on the image [33] is applied to avoid
checkerboard and mesh dependence. Te flter modifes
the design sensitivity of a specifc element based on
a weighted average of the element sensitivities in a fxed
neighborhood, which is purely heuristic but produces
results very similar to local gradient-constrained results,
requiring little extra CPU time. Te GCMMA algorithm
[34] is used to fnd the optimal solution. All cases are
performed in the commercial software MATLAB R2018a.
Te optimization process will stop until the absolute error
of the design objectives satisfes ‖(fnew − fold)/fold‖

< 0.0005. Figure 3 presents the fow diagram of the op-
timization process.

5. Numerical Examples

Tis section presents two typical numerical examples with
diferent boundary conditions. One is a cantilever plate
clamped at the left side, as shown in Figure 4(a). An external
force f(t) � Feiωt is applied at the midpoint of the right side,
with F � 105N and ω � 2πfp. Te other is the structure
clamped by four sides shown in Figure 4(b), and the same
external force is applied at the center of the plate. For
viscoelastic composite structures, the material 1 called
242F01, manufactured by 3M, is employed as the damping
layer, which exhibits frequency and temperature de-
pendence. Table 1 presents the material properties for the
viscoelastic plate. Te modulus of 242F01 is characterized by
the GHM model. Te parameters at 10°C and 25°C are
obtained through the dynamic mechanical analysis (DMA)
and least square method and are given in Table 2. For
comparison, material 2 is an artifcial material, characterized
by the complex constant model, whose properties are ob-
tained by averaging the modulus of 242F01 in the frequency
domain. Tis section frst investigates the validity of re-
sponse and sensitivity analysis, then verifes the validity of
introducing the dynamic reduction method into topology
optimization. Next, the performance of the proposed op-
timization methods are compared in detail. Finally, the
impact of the viscoelastic material’s frequency- and
temperature-dependent properties on optimal layouts is
emphatically analyzed. Furthermore, the infuence of layer
thicknesses and volume fractions on optimal layouts of
damping material is further discussed. In order to

quantitatively characterize the correlation between diferent
optimal layouts, the similarity index is defned as follows:

SI �
Ssame

Stotal
, (38)

where Ssame is the overlapped area of damping layer between
the diferent optimal layouts and Stotal is the total area of
damping layer. However, since the relative density is not the
absolute 0-1 distribution, the calculation accuracy of the
overlap area between diferent optimized confgurations is
the possible potential limitation.

Although some researchers have shown that solid ele-
ments have higher computational accuracy, they then have
much lower computational efciency. Terefore, compari-
sons in the accuracy and efciency of the calculated results
between the proposed model and common commercial
software ANSYS are conducted. For the numerical model in
ANSYS, the structure is discrete into 40 × 40 three-
dimensional continuous solid elements. Te results are in
line with expectations. Under the premise of less than 3.42%
error of calculation accuracy, the CPU time of the proposed
model is signifcantly reduced by 74.8% compared with
common commercial software, ANSYS. Te excellent per-
formance of the proposed model in terms of precision and
efciency is fully demonstrated.

In order to verify the efectiveness of the proposed strategy
combining modal polycondensation and hybrid expansion for
solving frequency- and temperature-dependent optimization
design problems, the comparison of optimal design, as shown
in Figure 4(a) between full-order and reduced-order models is
carried out in this section.Te volume fraction of the damping
material is set at 50%, and the initial layout is uniform dis-
tribution with a mass density of 0.5. An excitation frequency of
fp � 100Hz is considered. Figure 5 presents the iterative
process of the optimal layouts and objective functions for the
full-order and reduced-order models in the topology optimi-
zation. Te performance comparison details during the opti-
mization process are listed in Table 3.

Obviously, it can be observed from the iteration histories
shown in Figure 5 that all design objectives decrease from
0.073m2 to 0.011m2 and converge to the optimal value. Te
reduced-order and full-order models are highly consistent in
the initial and converged objective values, especially the
similarity index of the two, which is as high as 99%, and
nearly identical optimal confgurations are obtained. Fur-
thermore, in terms of computing time, the full-order model
takes 976.9 s, while the reduced-order model only requires
213.3 s, and the acceleration ratio reaches 78.17%. It proved
that the proposed strategy is feasible, which signifcantly
improves optimization efciency and also provides potential
and possibility for topology optimization of large-scale
nonproportional damping structures.

5.1. A Cantilever Plate. Tis section focuses on the structure
shown in Figure 4(a) to investigate the infuence of the
response-solving methods and frequency- and temperature-
dependent viscoelastic materials on the optimal confgura-
tion and vibration suppression of the CLD plate.
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5.1.1. Response-Solving Methods. Here, the design domain is
discretized into a total of 400 elements as shown in Figure 6.
Figures 7(a) and 7(b) present the comparisons of the dis-
placement amplitudes (points I and II) and the sensitivities
(elements numbered 30, 210, and 370, denoted by blue

elements in Figure 6) obtained with diferent methods. Te
results calculated by the direct frequency response method
(DRFM) and fnite diferencemethod (FDM) are regarded as
the exact results of the displacement response and sensi-
tivity, respectively. Te detailed error comparisons are

Start

Establish dynamic equation
incorporating the GHM model

Initialize boundary conditions, material
properties, and apply excitation loads

Finite element simulation of the system
1. Kinetic polycondensation
2. Compute the displacement responses
3. Computer objective value

Update the design variable using GCMMA

Converge?
No

Yes

End

Compute sensitivities of objective value
using CMDM or CHEM and filter them

Figure 3: Te fowchart of the optimization process.

Feiωt

(a)

Feiωt

(b)

Figure 4: Te viscoelastic plate with diferent boundary conditions. (a) A cantilever plate. (b) A plate clamped by sides.

Table 1: Materials and geometric parameters of the CLD plate.

CLD structure Tickness (mm) Density (kg/m3) Young’s modulus (GPa) Poisson ratio
Base layer 1.2 7900 211 0.3
Damping layer 0.6 1140 G(ω) 0.4
Constrained layer 0.6 2780 71 0.3
Dimensions 0.4× 0.4 (m2)
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depicted in the form of the line chart, as shown in
Figure 7(c). For the sake of the narrative, the combination of
MDM and HEM with the dynamic reduction method is,
respectively, abbreviated CMDM (q � 30, 50, namely, i, ii)
and CHEM (h � 2, 3, namely, iii, iv). As expected, the CHEM
results agree well with the exact results, especially when h is
equal to 3. Te errors of the vibration amplitudes AI and AII
are only 1.01% and 0.78%, respectively, and the sensitivity
diferences of the three specifed elements are less than 2%,
about 0.92%, 1.02%, and 1.33%, respectively.

However, there is a signifcant gap in the performance of
calculation accuracy for the traditional method (i.e.,
CMDM). Although the vibration amplitudes retain a rea-
sonable accuracy of around 20% when the limited low-order
modes are involved (e.g., q � 30), the sensitivity analysis
error has increased dramatically to over 30%. A negative
phenomenon worthy of attention is that when the number of
low-order modes involved reaches 50, however the accuracy

of sensitivity analysis cannot be guaranteed, indicating that
excessive increase in the number of low-order modes is not
a cost-efective measure worth popularizing.

Table 4 lists the computing times of the diferent
methods for responses and sensitivities analysis. It can be
observed that CHEM, both for response and sensitivity
analysis, shows remarkable advantages in computational
efciency. As previously stated, this is because of the fact that
the proposed method can achieve expected accuracy as long
as it contains all modes with eigenfrequencies within the
excitation frequency range, without worrying about the
trade-of between computational accuracy and efciency.

For the cantilever plate structure shown in Figure 4(a),
through modal analysis, Figure 8 presents the mode shapes,
and the frst 6 natural frequencies are obtained as 58Hz,
97Hz, 142Hz, 195Hz, 242Hz, and 304Hz, respectively. As
well known, damping efects are mostly observed around
each natural frequency. Terefore, the excitation frequency

Table 2: GHM parameters at diferent temperatures of the 242F01.

Temperature Parameters
Mini-oscillator terms

First order Second order Tird order

T � 10°C

G∞ 0.0091276
􏽢αk 573.76 47889 1609.7
􏽢ζk 7893.7 197.56 2304.1
􏽢ωk 1035800 1725500 3114500

T � 25°C

G∞ 0.0047868
􏽢αk 991.58 74588 1209.9
􏽢ζk 33329 62.683 5572.8
􏽢ωk 2107100 2534800 2544100
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Figure 5: Iterative process of full-order and reduced-order models.

Table 3: Performance comparison of topology optimization.

Optimization model Initial value Converged value CPU time (s) SI
Full-order 0.073 0.011 976.9 0.99Reduce-order 0.073 0.011 213.3
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points are selected around the natural frequency, whose
values are 100Hz, 200Hz, and 300Hz, respectively. Table 5
depicts the optimal layouts and iteration curves of topology
optimization at three diferent frequencies (i.e., fp � 100Hz,
200Hz, and 300Hz) and also lists the optimization details.
Te blue and green color in optimal material confgurations
represent the area covered by the damping layer and without
the damping layer, respectively. On the one hand, the
damping materials obtained by topological optimization are
mainly distributed in the region with larger modal strain
energy determined by adjacent mode shapes. On the other
hand, the distribution of damping materials tends to be
complicated and decentralized with the increase of the ex-
citation frequency. Te reason is that higher excitation
frequencies are prone to excite higher-order modes with
more localized characteristics. Tis can also be confrmed by
the obtained vibration shape from the lower-order to the
higher-order modes, showing a consistent variation trend. It
can be seen that the optimal confgurations based on the two
methods have a high degree of similarity, with the values of
0.79, 0.89, and 0.84, indicating that both methods can obtain
reasonable confgurations despite the diference in calcu-
lation accuracy.

However, there are also signifcant diferences in con-
vergence and clarity. Tis simulation results show that
CHEM works well while CMDM converges poorly when

large-scale problems are considered, as evidenced by the
fuctuation of the initial stage and the oscillation of the later
stage in the iterative curves. It can be concluded that high-
precision response and sensitivity analysis methods are more
conducive to improving the convergence of topology op-
timization and obtaining the expected results. Te reasons
come from the two aspects. On the one hand, CMDM, as an
approximate method, inevitably introduces truncation er-
rors especially for sensitivity analysis, which may cause
deviations or even errors in the optimization direction. On
the other hand, large errors will be generated away from the
resonant frequency, and the essence of dynamic response
optimization is to drive the resonant frequency away from
the excitation frequency to reduce the vibration level, which
further reduces the accuracy of response and sensitivity
analysis. Tis may explain why low-precision analysis
methods are by far not entirely satisfactory for large-scale
optimization design problems.

According to the details in Table 5, CHEM can reduce
70.53%, 65.63%, and 65.69% CPU time for cases of diferent
frequencies, respectively. Te performance on computa-
tional efciency is due to the fact that the CHEM-based
method only needs to consider the low-order modes within
the excitation frequency rather than enough low-order
modes, the order of which can be adaptively determined
according to the varied structural eigenfrequencies in each

response_point I
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Figure 7: Comparison of response and sensitivity analysis for diferent methods. (a) Displacement amplitudes. (b) Displacement sen-
sitivities. (c) Analysis errors.

Table 4: Comparison of computing time for responses and sensitivities.

Comparison DFRM FDM
CMDM CHEM

q � 30 q � 50 h � 2 h � 3

Time (s) Responses 6.791 3.121 4.966 1.795 1.874
Sensitivities 256.751 1.852 2.721 0.811 0.833
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iteration, which greatly reduces the surge of computational
time caused by complex modal analysis and multiple
iterations.

5.1.2. Frequency- and Temperature-Dependent Properties.
Te frequency-dependent properties of viscoelastic material
at 10°C and 25°C are considered. To design an artifcial
modulus at room temperature as the comparison group, the
averaged real and imaginary part of modulus at 25°C are
obtained, given by Gv � 8.4(1 + 1.72j)MPa. Figure 9 pres-
ents the frequency-dependent and averaged shear moduli of
242F01 for 10°C and 25°C. Obviously, the stifness and
damping performance of 242F01 exhibit signifcant changes
with frequencies and temperatures varying.

Te optimal layouts and iteration curves induced by the
complex constant model and GHM model are presented in
Table 6. Te quantitative details are also listed. Since the
cantilever plate structure has not changed, the excitation
frequencies are still selected as 100Hz, 200Hz, and 300Hz.
In general, the optimal layouts obtained all exhibit re-
markable convergence. However, there are signifcant dif-
ferences among the design layouts of dampingmaterials.Te
reason comes from the fact that the frequency and tem-
perature dependence of viscoelastic materials can infuence
the stifness distribution and damping behavior of CLD
structures. Generally speaking, the similarity index of SI-II
in the corresponding group is the highest, which is because
the complex constant model adopts the average value of the
complex modulus of the GHMmodel at T� 25°C. However,

(a) (b) (c)

(d) (e) (f)

Figure 8: Te mode shapes of the cantilever plate. (a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode. (e) 5th mode. (f ) 6th mode.

Table 5: Te topology optimization results of the cantilever plate based on diferent solution methods.

Frequency CMDM CHEM Iterative curve

100Hz

CPU time 723.7 s 213.3 s SI: 0.79
Objective value 0.065⟶ 0.014m2 0.073⟶ 0.011m2

200Hz

CPU time 1113.9 s 382.8 s SI: 0.89
Objective value 0.133⟶ 0.024m2 0.149⟶ 0.019m2

300Hz

CPU time 1662.9 s 570.4 s SI: 0.84
Objective value 0.182⟶ 0.026m2 0.214⟶ 0.021m2
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due to the discrepancy between the averaged and actual
moduli at diferent frequencies, the similarity of the SI-II
group at fp � 300Hz was 0.702, which was signifcantly
lower than that of 0.862 at fp � 200Hz. Furthermore, most
of the similarities in the SI-I and SI–III groups were at a low
level, with two being lower than 0.5 (0.429, 0.441) and two
being in the range of 0.5–0.7 (0.579, 0.591, 0.687). Tis
phenomenon is clearly caused by changes in temperature
and frequency caused by the viscoelastic material properties
of the great change. In addition, it can be observed that the
similarity indices corresponding to fp � 300Hz are signif-
icantly lower than that of fp � 200Hz. Tis attributes to
signifcant changes in the optimized confguration at higher
frequencies due to the involvement of more local modes,
even if temperature makes a limited diference.

5.2. A Plate Clamped by Four Sides. To further validate the
accuracy and efciency of the proposed CHEM-based ap-
proach and to compare the efect of frequency- and
temperature-dependent properties of damping material on
optimal layouts and vibration suppression, the CLD struc-
ture is considered under another boundary condition, as
shown in Figure 4(b), which is clamped by four sides,
representing more “rigid” boundary conditions. Te opti-
mization objectives are to minimize the sum of squares of
vibration amplitudes at specifc points of concern as in-
dicated by the red dots in Figure 5.

5.2.1. Response-Solving Methods. For the plate structure
clamped by four sides shown in Figure 4(b), through modal
analysis, Figure 10 gives the mode shapes, and the frst 6
natural frequencies are obtained as 128Hz, 197Hz, 289Hz,
392Hz, 428Hz, and 511Hz, respectively. Terefore, the

selection strategy of frequency points is based on the natural
frequencies, where the values are 200Hz, 400Hz, and
500Hz, respectively.

Table 7 depicts the optimal layouts and iteration curves
and also presents the performance results of topology op-
timization. A similar phenomenon can be observed that the
optimization results obtained by the two methods present
obvious diferences while maintaining similarities. In gen-
eral, the damping materials are concentrated in the region of
the larger modal strain energy in the corresponding modes,
and the distribution tends to be local and dispersed with the
increase in excitation frequency. Te similarity indices be-
tween the optimal layouts obtained are relatively high, with
values of 0.92, 0.83, and 0.81, respectively. Te CHEM-based
optimization method can obtain clear optimal layouts due to
its high accuracy, and the strong convergence is also
demonstrated by iterative curves. However, the detailed
characteristics of optimization confguration based on
CMDM, with obvious oscillation and fuctuations existing in
curves, presented unclear and ambiguous results, and
a complete 0-1 distribution cannot be formed, especially the
optimal layout corresponding to fp � 400Hz. Te reason is
also the cumulative error in response and sensitivity analysis
due to modal truncation, particularly for large-scale struc-
tures. Equally important, topology optimization based on
CHEM also has clear advantages in computing efciency,
which can be reduced by 66.65%, 70.49%, and 69.73% CPU
time when compared with CMDM.

5.2.2. Frequency- and Temperature-Dependent Properties.
Te optimal layouts and quantitative similarity indices in-
duced by complex constant modulus and frequency-
dependent modulus are presented in Table 8. Te specifc
temperature points are chosen as 10°C and 25°C, and the
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Figure 9: Frequency-dependent and averaged shear moduli for 242F01. (a) Real part. (b) Imaginary part.
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Table 6: Te topology optimization results of the cantilever plate based on diferent damping models.

Frequency (i) 10°C (ii) 25°C (iii) Complex constant

100Hz

SI-I(i, iii): 0.429 SI-II(ii, iii): 0.899 SI–III(i, ii): 0.441

200Hz

SI-I(i, iii): 0.687 SI-II(ii, iii): 0.862 SI–III(i, ii): 0.717

300Hz

SI-I(i, iii): 0.579 SI-II(ii, iii): 0.702 SI–III(i, ii): 0.591

(a) (b) (c)

(d) (e) (f )

Figure 10: Te mode shapes of the plate clamped by four sides. (a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode. (e) 5th mode. (f )
6th mode.

Table 7: Te topology optimization results of the plate clamped by four sides based on diferent solution methods.

Frequency CMDM CHEM Iterative curve

200Hz

CPU time 1225.8 s 408.8 s SI: 0.89
Objective value 0.036⟶ 0.005m2 0.041⟶ 0.004m2

400Hz

CPU time 2244.3 s 662.2 s SI: 0.81
Objective value 0.048⟶ 0.009m2 0.052⟶ 0.007m2
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excitation frequency remain the same as in the previous
section, i.e., 200Hz, 400Hz, and 500Hz.

Te optimal layouts of CLD structures difer signif-
cantly, which can be attributed to the great changes in
mechanical properties of viscoelastic materials at diferent
temperatures. Although taking the average value to ap-
proximate the frequency-dependent properties of damping
material at room temperature obtains a relatively properly
optimized confguration, diferences that cannot be ignored
still exist objectively. For complex structures and conditions,
the discrepancies in the optimized confguration may be
magnifed and result in unexpected infuences. One also
notes that at higher frequencies, such as 500Hz, the simi-
larity indices for diferent optimized confgurations are
signifcantly lower than those at lower frequencies. Tis is
because higher frequency excites higher-order eigenmodes
with more local characteristics, which are more sensitive to
the stifness and damping performance of viscoelastic ma-
terials, leading to a more diferentiated optimal confgura-
tion. It is reasonable to infer that the similarity of the

optimized confguration will further decrease with in-
creasing temperature diferences, even obtaining un-
controllable erroneous results.

5.2.3. Excitation of the Frequency Bands. Tis section further
discusses the optimal confguration of damping materials
under frequency-band excitation. Te temperature is 10°C
and 25°C, respectively, and the scheme of the excitation
frequency band corresponds to the natural frequency of the
structure, which is set to [0 − 200]Hz, [0 − 400]Hz, and
[0 − 500]Hz, respectively. Table 9 shows the optimal con-
fguration of the damping material excited by the frequency
band at diferent temperatures. Firstly, the distribution of
damping materials at diferent temperatures is quite dif-
ferent, and the similarity indices are only 0.79, 0.74, and 0.66,
respectively. Secondly, the confguration of damping ma-
terials obtained by frequency band and discrete excitation is
inconsistent at specifc temperature points, which is also the
result of the synergy of discrete frequency points in the
frequency band.

Table 7: Continued.

Frequency CMDM CHEM Iterative curve

500Hz

CPU time 2783.0 s 842.4 s SI: 0.86
Objective value 0.059⟶ 0.013m2 0.065⟶ 0.011m2

Table 8: Te topology optimization results of the plate clamped by four sides based on diferent damping models.

Frequency (i) 10°C (ii) 25°C (iii) Complex constant

200Hz

SI-I(i, iii): 0.617 SI-II(ii, iii): 0.831 SI–III(i, ii): 0.539

400Hz

SI-I(i, iii): 0.642 SI-II(ii, iii): 0.901 SI–III(i, ii): 0.601

500Hz

SI-I(i, iii): 0.437 SI-II(ii, iii): 0.611 SI–III(i, ii): 0.411
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5.2.4. Discussion of Layer Ticknesses and Volume Fractions.
Layer thickness and volume fraction have been given a lot of
attention as two main parameters afecting the confguration
of damping materials. At diferent temperatures, without
changing the mass of the CLDmaterial, i.e., the total mass of
the damping layer and the constrained layer is constant, the
similarity indices between the optimal layout induced by
averaged and frequency-dependent shear moduli for dif-
ferent thicknesses of the layer are discussed in detail.

Table 10 lists the six groups with diferent thicknesses of
damping and constrained layers. Figure 11 presents the
similarity variation trend of optimal confgurations of av-
eraged modulus as well as frequency- and temperature-
dependent moduli obtained by changing the thickness of
the constrained layer and damping layer. It can be observed
that the optimal layouts obtained by the GHM model and
averaged complex modulus at 25°C has a high similarity,

while the similarities of other cases are at a low level, and the
similarity gradually decreases with the increase in excitation
frequency. In addition, it is concluded that the similarity of
the optimal confguration at diferent temperatures is neg-
atively correlated with the thickness of the damping layer at
all three excitation frequencies. However, the above studies
are qualitative analyses rather than quantitative description.
Moreover, the conclusions taken from the results are re-
stricted to the small set of thickness pairs herein considered.
In fact, as Sher and Moreira [35] point out, the efect of the
thickness of both layers, constraining and damping layers, is
quite more complex and does not follow a monotonic be-
havior. Terefore, future work will be devoted to further
exploring the efects of the thickness of each layer.

Fixing the thickness of damping and constrained layers,
we consider the infuence of the diferent volume fractions,
with fv � 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, respectively. Figure 12

Table 9: Te topology optimization results under the frequency band at diferent temperatures.

Frequency (i) [0 − 200]Hz (ii) [0 − 400]Hz (iii) [0 − 500]Hz

10°C

25°C

Table 10: Diferent thicknesses of damping and constrained layers.

Group number 1 2 3 4 5 6
Constrained layer (mm) 0.78 0.72 0.66 0.6 0.54 0.48
Damping layer (mm) 0.15 0.3 0.45 0.6 0.75 0.9

constant modulus and GHM at 10°C
constant modulus and GHM at 25°C
GHM at 10°C and 25°C
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Figure 11: Variation of similarity indices for optimal confguration with layer thicknesses. (a) fp � 100Hz. (b) fp � 200Hz. (c) fp � 300Hz.
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illustrates the comparison results. Obviously, higher exci-
tation frequency corresponds to lower similarities. Fur-
thermore, the similarity indices at diferent frequencies show
a roughly close increasing trend with the increase in volume
fraction of the dampingmaterial. As a result, it is particularly
necessary to consider the frequency and temperature de-
pendence of damping materials for topology optimization of
viscoelastic structures under the requirement of lower
volume fractions.

6. Conclusions

Tis paper investigates topology optimization of CLD
structures comprising frequency- and temperature-
dependent viscoelastic material under harmonic excita-
tions. Te structure is characterized by a nonproportional
damping model. A novel approach combining hybrid ex-
pansion and dynamic reduction methods, which can deal
with nonproportional damping, is proposed and developed
to solve the topology optimization problem. Te objective
functions are chosen as the sum of the squared vibration
amplitudes of the concerned points. Te sensitivity analysis
is implemented by using the adjoint variable method. Te
similarity index is suggested to quantitatively distinguish the
diferent optimal layouts of damping materials. Te con-
clusions can be drawn as follows:

(1) Te involved optimization design problem is es-
sentially a highly nonconvex issue with multiple local
optima. Two typical examples demonstrate that the
proposed approach not only obtains clear and
convergent optimal layouts of damping material but
also signifcantly reduces computational time. Te
massive improvement in efciency becomes more
meaningful for composite structures with
larger DOFs.

(2) Te frequency and temperature dependence of vis-
coelastic materials remarkably afect the optimized
confguration of CLD structures. Te reason is that
the change in temperature and frequency will cause

great fuctuations in the mechanical properties and
energy dissipation of the viscoelastic material, which
mainly decides the dynamic optimization results.

(3) In the future research, taking into account the
fuctuation of material properties caused by the
frequency and temperature, it is quite promising to
extend the proposed approach to other types of
viscoelastic structures rather than just CLD struc-
tures and to carry out more refned topology opti-
mization design when subjected to broadband
random excitations or even wide-range
temperatures.
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