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Te amplitude modulation method was used to generate a non-Gaussian road profle with prescribed power spectral density
(PSD) and kurtosis. Te vehicle vibration fatigue damage potential has been proven to be closely related to the amplitude
modulation signal (AMS) and kurtosis of vehicle response. In this paper, the iterative method of AMSmodelling based on absolute
standard Gaussian distribution is frst reviewed. To address the long iteration time problem, a closed-form formulation is
presented to construct the AMS directly. Furthermore, by proving that the vehicle response under a slowly varying non-Gaussian
road profle excitation can be regarded as the product of the same AMS and vehicle response under a Gaussian road profle
excitation with the same PSD, the theoretical relationship between fatigue damage spectrum (FDS) of vehicle response under non-
Gaussian and corresponding Gaussian road profles is formulated based on the AMS. A case study is used to verify the proposed
approach. Te results show that a wide range of specifed kurtosis of road profle can be achieved and the kurtosis of vehicle
response is the same as for the road profle. Given kurtosis and fatigue exponent, the extra fatigue damage caused by non-Gaussian
road profle can be derived easily from the corresponding Gaussian road profle without calculating the vehicle response, which
lays the foundation for a signifcantly simplifed and more accurate fatigue test of vehicle vibration under non-Gaussian road
profle.

1. Introduction

A vibration test is often performed on vehicles in order to
achieve comfort, durability, and safety requirements. As
a major source of vehicle vibration and fatigue damage, road
surface roughness is usually described by a Gaussian road
profle and characterized by power spectral density
(PSD) [1].

For a linear vehicle system, the vibration response under
a Gaussian road profle excitation still follows a Gaussian
distribution [2]. In practice, however, it has been found that
the probability density function (PDF) of a typical road
profle topography tends to be non-Gaussian and that the
vehicle response tends to be signifcantly nonstationary and
non-Gaussian due to the variations in road surface
roughness and vehicle speed [3–5]. To evaluate the non-
Gaussian response and fatigue damage, two types of non-

Gaussian models were proposed: stationary non-Gaussian
with peaks and nonstationary non-Gaussian with bursts. A
comprehensive review of the stationary non-Gaussianmodel
with peaks was presented in the article [6].

Te amplitude modulation method for generating
nonstationary non-Gaussian signal with bursts was frst
developed by Smallwood [7]. Te essential idea is to model
the non-Gaussian signal by multiplying a stationary
Gaussian signal with a slowly varying amplitude modulation
signal (AMS) that is independent of the Gaussian signal. Te
kurtosis of the generated non-Gaussian signal was governed
by the parameters of the AMS. Diferent methods were
proposed to construct the AMS, including beta distribution
[7], gamma distribution [8], and Weibull distribution [9].
Xu et al. [10] indicated that when modelling the AMS by the
Weibull distribution, inappropriate determination of the
number of bursts may lead to distortion of the original PSD.
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Among these methods, absolute standard Gaussian distri-
bution was used by Trapp et al. [11] to construct the AMS. A
wide range of kurtosis was achieved with good accuracy at
the cost of a long iteration time.

Using the aforementioned methods, an acceleration test
can be conducted by increasing the kurtosis while main-
taining the same PSD level. However, it has been proved that
the high kurtosis of the excitation signal does not necessarily
transfer to the system response [12]. Rizzi et al. [13] found
that a stationary non-Gaussian excitation results in
a Gaussian response in a linear dynamic system. In contrast,
it has been shown that the high kurtosis of nonstationary
non-Gaussian excitation is more easily transferred to the
system response, resulting in higher fatigue damage [14].
Kihm et al. [15] revealed the relationship between kurtosis of
system response and excitation. Using stationary and
nonstationary excitation, Braccesi et al. [16] investigated the
transfer of kurtosis to the system response. Signals with
diferent nonstationarity indices were produced by Capponi
et al. [17] to investigate their impacts on fatigue life. Lei et al.
[18] established a mathematical model for the kurtosis
transmission law after the decomposition of excitation and
response signals. Cornelis et al. [19] simulated non-Gaussian
random vibrations on a shaker and analyzed the transfer of
the non-Gaussian characteristics of the excitation signal.
Fatigue damage spectrum (FDS) was used to evaluate the
fatigue damage.

In this paper, the iterative method proposed by Trapp
et al. [11] is further developed, in which a closed-form
formulation is presented to construct the AMS. Based on
the AMS, the theoretical relationship between FDS of vehicle
response under non-Gaussian and corresponding Gaussian
road profles is formulated, which can be used to evaluate the
extra fatigue damage caused by non-Gaussian road profle
directly from corresponding Gaussian road profle without
calculating the vehicle response.

Te rest of the paper is organized as follows. In Section 2,
Gaussian and non-Gaussian road profles, the quarter car
model, and the computation of FDS are presented. In
Section 3, a closed-form formulation is presented to con-
struct the AMS. Under the non-Gaussian road profle ex-
citation, the theoretical relationship between FDS, kurtosis,
and fatigue exponent is presented. In Section 4, a case study
is used to verify the proposed approach. Finally, the con-
clusions are presented in Section 5.

2. Theoretical Background

2.1. Gaussian andNon-Gaussian Road Profle. A road profle
z(x) describes the road roughness as a function of distance.
Gaussian road profles are commonly used as models for
road roughness, which can be characterized by a PSD [1].

G(Ω) � G0 ·
Ω
Ω0

􏼠 􏼡

−w

, (1)

where Ω is the spatial angular frequency, Ω0 is the reference
spatial angular frequency and Ω0 �1 rad/m, G0 is the
roughness coefcient, G0 � 1.e−6 is a typical value, w is the
slope of PSD on a loglog scale, and a typical value is w � 2.

Typical Gaussian and non-Gaussian road profles are
shown in Figure 1.

Te PDF of a Gaussian road profle with zero mean value
is expressed as follows:

p(z) �
1

���
2π

√
σz

e
− z2/2σ2z( ), (2)

where σz is the standard deviation.
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where E[ ] stands for expectation or mean value.
Kurtosis is used to identify whether a road profle is non-

Gaussian:

K �
M4

σz
4 , (4)

where M4 is the fourth-order central moment.

M4 � E (z(x) − μ)
4

􏽨 􏽩, (5)

where μ is the mean value.
A comparison of PDF of Gaussian (with kurtosis 3) and

non-Gaussian (with kurtosis 6 and 9) road profles is shown
in Figure 2. From Figure 2, we can see that a kurtosis value
greater than 3 indicates wider tails. A wider tail indicates
a higher probability of larger peak values, which leads to
larger fatigue damage and faster failure.

2.2. Quarter Car Modelling. A golden car model [20], as
shown in Figure 3, is used to calculate the vehicle response.
All parameters are normalized to ms and shown in Table 1.

Te motion equation of the golden car model can be
written as follows:
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􏼨 􏼩 �

0

kt · z(t)
􏼨 􏼩, (6)
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where zs(t) and zu(t) are the vertical displacements of
sprung and unsprung mass, respectively, and z(t) is the road
profle in the time domain.

Te ramp-invariant digital flter method [21] is used to
calculate the vehicle response under road profle excitation.
To transform the road profle from the spatial domain to the
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Figure 1: Typical Gaussian and non-Gaussian road profles.
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time domain, a sampling frequency fs in Hz can be cal-
culated as follows:

fs �
v · 1000
3600

· fx �
v

3.6
· fx, (7)

where v is the vehicle speed in km/h and fx is the number of
data samples per meter.

2.3. Fatigue Damage Spectrum (FDS). FDS is commonly
used to evaluate the damage potential of non-Gaussian vi-
bration. As shown in Figure 4, the FDS is calculated based on
the responses of a series of single-degree-of-freedom
(SDOF) systems to the same base excitation over a cer-
tain amount of time.

Te stress is assumed to be proportional to pseudo-
velocity [22]. Te output pseudo-velocity (xpv) to an input
acceleration (xa) for an SDOF system with a natural fre-
quency (fn) and a damping ratio (ξ) can be computed as
follows:

xpv � Ffilter bn, an, xa( 􏼁, (8)

where Ffilter indicates fltering of the input signal using
a ramp-invariant digital flter. bn and an are digital flter
coefcients.

Using the output xpv, the cumulative damage can be
calculated in both time and frequency domains. In time
domain, a faster algorithm than the rain fow cycle counting
(RFCC) method [23] is used to calculate the total damage
index Dt. It starts by converting the output pseudo-velocity
into a peak-valley signal, where the data points between the
maxima and minima are deleted. Each maximum xpv,pk,i is

regarded as the peak value of a cycle with the range 2xpv,pk,i.
Te minima are counted in the same manner, and the sum is
divided by 2.
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,

� 􏽘
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k
b
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b

2c
,

(9)

where Spk,i (i� 1, 2, . . ., q) is assumed to be proportional to
the maximum and minimum values xpv,pk,i and q is the
number of maximum and minimum values considered, and
b is the fatigue exponent in the S-N curve. According to [24],
c� k� 1 is used in this study.

3. Fatigue Damage Based on a Novel AMS
Modelling Method

3.1. A Novel AMS Modelling Method Using Closed-Form
Formulation. Te amplitude modulation method is used in
this paper to model the non-Gaussian road profle:

z(x) � g(x) · u(x), (10)

where g(x) is a Gaussian road profle generated from PSD
and u(x) is an independent slowly varying AMS.

To make the PSD of the non-Gaussian road profle
approximately the same as that of the Gaussian road profle,
the mean square of the AMS is scaled to 1. With equations
(4) and (10), the kurtosis of z(x) can be expressed as follows:
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(11)

where Ku is the kurtosis of AMS u(x) with mean value.
Clearly, the kurtosis of z(x) depends on Ku. So the crux

of the method is the AMS modelling. To create the AMS,
a slowly varying standard Gaussian signal y(x) is frst created
and the absolute value is taken:

a(x) � |y(x)|. (12)

To achieve target Ku, the AMS is modeled as follows:

ms

mu

ks

kt

cs

Zs

Zu

Z (t)

Figure 3: Golden car model.

Table 1: Golden car parameters.

Parameter Unit Value
ms/ms Sprung mass (1) 1
mu/ms Unsprung mass (1) 0.15
cs/ms Suspension damping (s−1) 6
ks/ms Suspension stifness (s−2) 63.3
kt/ms Tire stifness (s−2) 653
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u(x) � |y(x)|
p
,

� (a(x))
p
.

(13)

Instead of iterating the exponent p until a desired Ku is
generated, a closed-form formulation for the direct calcu-
lation of p is proposed. Te m:th moment of u(x) can be
written as follows:

Mm[u(x)] � E u(x)
m

􏼂 􏼃,

�
E (a(x))
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Using the following equation,

􏽚
∞

0
x

p
· e

−Ax2
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Γ(q + 1/2)

2
����
A

q+1
􏽰 , (17)

where Γ is the gamma function.
Te general formula for the m:th moment of u(x) is

written as follows:

Mm(p) � π(m/4−1/2)
·
Γ(m · p/2 + 1/2)

[Γ(p + 1/2)]
m/2 . (18)

Te closed-form formulation between Ku and the p

value can be derived when m� 4:

Ku � π0.5
·
Γ(4p/2 + 1/2)

[Γ(p + 1/2)]
2 . (19)

With given kurtosis of non-Gaussian road profle, the
following equation can be solved in MATLAB to get p value:

s �
′gamma(4∗x/2 + 1/2)

(gamma(x + 1/2))∧ 2
‒ ′num2str

Ku
sqrt(pi)

􏼠 􏼡􏼢 􏼣, (20)

p � fzero(s, 1), (21)

where ∗ in MATLAB means multiplication.
Te relationship between Kz and p in equation (21) was

compared with the aforementioned iterative method as
shown in Figure 5. As can be seen in Figure 5, a wide range of
kurtosis can be generated and both methods give the same
result. However, much higher efciency can be achieved
with the proposed closed-form formulation, since the p
value can be calculated directly once the target kurtosis is
determined.

3.2. Vehicle Response under Non-Gaussian Road Profle
Excitation. Under the non-Gaussian road profle excitation,
the response of ms in Figure 3 can be calculated as follows:

r(t) � kt · z(t)􏼈 􏼉∗ h(t),

� kt · 􏽚
t

t−T
u(τ) · g(τ) · h(t − τ)dτ,

(22)

where u(t) and g(t) are u(x) and g(x) in equation (10)
converted to time domain using fs in equation (7), h(t) is the
impulse response function, T is the length of h(t), and “∗”
denotes convolution here.

When the time domain AMS u(t) is slowly varying, it can
be regarded as a constant during T. Ten, u(t) can be taken
outside the integral in equation (22), which indicates that the
response under non-Gaussian road profle is the same as the
response under Gaussian road profle, multiplied by the
same AMS u(t):

M
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n : th SDOSDOF
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Figure 4: Calculation process of the FDS.
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r(t) � kt · u(t) · 􏽚
t

t−T
g(τ) · h(t − τ)dτ,

� u(t) · kt · g(t)∗ h(t)􏼈 􏼉.

(23)

A non-Gaussian road profle with PSD of ISO-A road
surface (see Figure 6 in Chapter 3.2) and kurtosis 6 is used
here as an example. Te Gaussian road profle, AMS, and
corresponding non-Gaussian road profle (converted into
the time domain using v= 70 km/h) are shown in Figure 7. A
comparison between vehicle responses under the non-
Gaussian road profle excitation and under the Gaussian
road profle excitation multiplied by u(t) is shown in Fig-
ure 8. From Figure 8, we can see again that the vehicle
response under non-Gaussian road profle is the same as the
response under Gaussian road profle with the same PSD,
multiplied by the same AMS u(t).

3.3. Vehicle Fatigue Damage under Non-Gaussian Road
Profle Excitation. Since the vehicle response is also a slowly
varying non-Gaussian signal, the AMS u(t) can be treated as
a constant compared to the Gaussian part g(t) for each
specifc time duration ti. For each time duration, it is as-
sumed that the value of AMS u(t) is ci and the proportion of
this part in the entire time history is ri. Using the time
domain method, the damage for an SDOF system with
natural frequency fn (n� 1, 2, . . .) is as follows [23]:

Dz ti( 􏼁 � ric
b
i Dg ti( 􏼁, (24)

where Dg(ti) is the fatigue damage caused by the Gaussian
part in vehicle response.

Te damage of the entire time history can be presented as
follows:

Dz(T) � r1c
b
1Dg t1( 􏼁 + r2c

b
2Dg t2( 􏼁 + · · · + rnc

b
nDg tn( 􏼁,

� Dg(T) 􏽘
n

i�1
ric

b
i ,

� Dg(T)Ε u(t)
b

􏽨 􏽩,

(25)

where n is the number of time sections.
If the AMS follows a certain distribution f(u), then the

damage can be expressed as follows:

|Dz(T) � 􏽚
T

0
u

b
· f(u)du􏼢 􏼣 · Dg(T). (26)

Te FDS ratio of vehicle response under non-Gaussian
road profle excitation (denoted as FDSNG) to the one under
Gaussian road profle excitation (denoted as FDSG) is
E(u(t)b), which is denoted as Quot in this paper:

Quot �
FDSNG
FDSG

,

� E u(t)
b

􏽨 􏽩,

(27)

since

E u(t)
b

􏽨 􏽩 � E u(x)
b

􏽨 􏽩. (28)

Equation (18) can be used to express Quot as follows:

Quot � π(b/4−1/2)
·
Γ(b(p/2) + 1/2)

[Γ(p + 1/2)]
b/2 . (29)
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Given b and p calculated from equation (20) for a certain
non-Gaussian road profle, equation (29) can be used to
evaluate the extra fatigue damage caused by the non-
Gaussian road profle excitation directly without calculat-
ing the vehicle response.

Another non-Gaussian road profle with PSD of ISO-A
road surface and kurtosis 9 is used here as an example. Te
FDS of vehicle response under Gaussian and non-Gaussian
road profle excitation is calculated. Quot is calculated using

equation (29) with b� 4 and justifed by a good match
between FDS under non-Gaussian road profle and
Quot× FDS under Gaussian road profle as shown in
Figure 9.

4. Case Study

In the simulation process, the vehicle speed is assumed to be
70 km/h and the spatial angular frequency fz � 100× 2π.Te
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Figure 6: PSD of ISO-A road profle.
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ISO-8608 Class-A road profle is used in this case study. Te
PSD is shown in Figure 6. Te spatial angular frequency is
from 0.011× 2π to 2.83× 2π rad·m−1.

Te relative error between target and generated kurtosis
is shown in Figure 10. From Figure 10, we can see that a wide
range of target kurtosis is achieved, and the relative error is
within 1%.

Te PSD of the vehicle response at ms is calculated using
the parameters in Table 1 as shown in Figure 11.

Te kurtosis of the non-Gaussian vehicle response is
calculated and compared with the kurtosis of the Gaussian
vehicle response ×AMS. Te result is shown in Figure 12.
From Figure 12, we can see a good match between these
two kurtoses, showing that the AMS for both input road
profle and vehicle response is the same. Te kurtosis of

vehicle response is about the same as the input road
profle. Tis is predictable because, with a slowly varying
AMS, the response under a non-Gaussian road profle is
the same as the response under a Gaussian road profle,
multiplied by the same AMS, hence resulting in the same
kurtosis.

Finally, the FDS of vehicle response at ms under non-
Gaussian road profle excitation with diferent kurtosis and
b values is simulated and compared with Quot× FDS under
Gaussian road profle excitation as shown in Figure 13. Te
FDS is calculated at the maximum resonant frequency of the
vehicle. From Figure 13, we can see that FDS increases as
kurtosis and b value increase. A good match between FDS
under a non-Gaussian road profle and Quot× FDS under
a Gaussian road profle is obtained.
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5. Conclusion

In this paper, the non-Gaussian road profle is simulated
using the amplitude modulation method and used to study
the vehicle vibration fatigue damage potential. Instead of
using the iterative method, a closed-form formulation is
presented to construct the AMS, with which the AMS pa-
rameter can be calculated directly from the kurtosis of
a given non-Gaussian road profle. Te theoretical re-
lationship between the FDS of vehicle response under non-
Gaussian and corresponding Gaussian road profles is then
formulated based on the AMS. Using the proposed method,
a wide range of specifed kurtosis of road profle is achieved.
Given kurtosis and fatigue exponent b value, the extra fa-
tigue damage caused by non-Gaussian road profle can be
derived easily from the corresponding Gaussian road profle
without calculating the vehicle response, which lays the
foundation for a signifcantly simplifed and more accurate
fatigue test of vehicle vibration under non-Gaussian road
profle. Although only the ISO-A pavement is simulated, the
proposed method also applies to other types of pavement.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Acknowledgments

Tis study was partially supported by the National Natural
Science Foundation of China (Grant no. 52102443) and the
Postgraduate Research and Practice Innovation Program of
Yancheng Institute of Technology (Grant no. 1142247).

References

[1] Iso 8608, Mechanical Vibration- Road Surface Profles-
Reporting of Measured Data, International Organization for
Standardization, ISO, Geneva Switzerland, 2016.

[2] P. Wolfsteiner and W. Breuer, “Fatigue assessment of vi-
brating rail vehicle bogie components under non-Gaussian
random excitations using power spectral densities,” Journal of
Sound and Vibration, vol. 332, no. 22, pp. 5867–5882, 2013.

[3] B. Bruscella, V. Rouillard, and M. Sek, “Analysis of road
surface profles,” Journal of Transportation Engineering,
vol. 125, no. 1, pp. 55–59, 1999.

[4] V. Rouillard, M. A. Sek, and T. Perry, “Analysis and simu-
lation of road profles,” Journal of Transportation Engineering,
vol. 122, no. 3, pp. 241–245, 1996.

[5] V. Rouillard, “On the non-Gaussian nature of random vehicle
vibrations,” in Proceedings of the World Congress on Engi-
neering, pp. 1219–1224, London, UK, July 2007.

[6] R. Zheng, C. Guo∗∗, and C. Huaihai, “Stationary non-
Gaussian random vibration control: a review,” Chinese
Journal of Aeronautics, vol. 34, no. 1, pp. 350–363, 2021.

[7] D. Smallwood, “Vibration with non-Gaussian noise,” Journal
of the IEST, vol. 52, no. 2, pp. 13–30, 2009.

[8] S. Cui, R. Geng, C. Wang, and C. Cheng, “Study of the
amplitude modulation method for kurtosis control purposes,”
Mechanical Systems and Signal Processing, vol. 179, Article ID
109399, 2022.

[9] F. Xu, C. Li, T. Jiang, and K. Ahlin, “Synthesis of running
RMS-induced non-Gaussian random vibration based on
Weibull distribution,” Journal of Vibroengineering, vol. 17,
no. 7, pp. 3662–3674, 2015.

[10] F. Xu, C. Li, and T. Jiang, “On the shaker simulation of wind-
induced non-Gaussian random vibration,” Shock and Vi-
bration, vol. 2016, Article ID 5450865, 10 pages, 2016.

[11] A. Trapp, M. J. Makua, and P. Wolfsteiner, “Fatigue assess-
ment of amplitude-modulated non-stationary random vi-
bration loading,” Procedia Structural Integrity, vol. 17,
pp. 379–386, 2019.

[12] M. Troncossi and A. Rivola, “Response analysis of specimens
excited with non-Gaussian acceleration profles,” in Pro-
ceedings of ISMA2014, pp. 799–808, Belgium, Europe, Sep-
tember 2014.

[13] S. A. Rizzi, A. Przekop, and T. L. Turner, “On the response of
a nonlinear structure to high kurtosis non-Gaussian random
loadings,” in Proceedings of the EURODYN2011-8th in-
ternational conference on structural dynamics, Hampton, VI,
USA, July 2011.

[14] F. Kihm, N. S. Ferguson, and J. Antoni, “Fatigue life from
kurtosis controlled excitations,” Procedia Engineering,
vol. 133, pp. 698–713, 2015.

[15] F. Kihm, S. Rizzi, N. Ferguson, and A. Halfpenny, “Un-
derstanding how kurtosis is transferred from input acceleration
to stress response and it’s infuence on fatigue life,” 2013, https://
www.researchgate.net/publication/299447929_Understanding_
how_kurtosis_is_transferred_from_input_acceleration_to_stre
ss_response_and_it's_infuence_on_fatigue_life.

[16] C. Braccesi, F. Cianetti, M. Palmieri, and G. Zucca, “Te
importance of dynamic behaviour of vibrating systems on the
response in case of non-Gaussian random excitations,”
Procedia Structural Integrity, vol. 12, pp. 224–238, 2018.
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