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Because of the uncertainty of the structure and environment of the electric driving system (EDS), the fault signature of the rotating
mechanism is complicated. A novel method based on Hilbert transform with modifed fast kurtogram (HTMFK), which is used
for identifying the bearing faults in the EDS, is proposed. Te modifed principle and algorithm fow of the proposed method are
derived. A high pass flter based on the frequency band identifed by HTMFK is constructed and applied to fault diagnosis.
Simulation signals demonstrate the ability of demodulating signals and identifying the fault resonance band. Te bearing fault
bench experiment of EDS is carried out in a semianechoic chamber. Te corresponding fault tests are conducted according to
diferent operating conditions. Te applicability of HTMFK is verifed by comparing the square envelope spectrums. Compared
with other methods, the proposed method identifes the fault resonance frequency band more efectively and expands the
application range of bearing fault diagnosis in EDS.

1. Introduction

In recent years, electric vehicles have developed rapidly and
gradually become one of the important directions for the
development of automobiles. As a result, people are in-
creasingly concerned about the quality and lifespan of
electric vehicles. Te electric driving system (EDS), as the
power source of electric vehicles, has a signifcant impact on
the reliability of vehicles quality. Te rolling bearing is an
important component of EDS, which usually operates in
high-speed and high-pressure environments [1–3]. If there is
a defect in a certain part of the rolling bearing during the
operation process, the periodic impact caused by the defect
will generate structural resonance of EDS. Terefore,
monitoring the vibration information and extracting the
impact in the signal can efectively diagnose whether there is
a fault in the rolling bearing [4–6]. Furthermore, abnormal
operating condition of EDS cannot be detected in time
during the operation of an electric vehicle may cause in-
calculable structural damage, more serious even lead to
safety accidents. As a result, efcient and accurate diagnosis

of bearing fault in EDS has a high engineering
application value.

Due to the interference from other rotating components
in EDS and energy attenuation caused by transmission
paths, the vibration response of rolling bearings often ex-
hibits multicomponent and nonlinear characteristics, which
results in weak fault characteristics in the signal [7]. In
addition, fuctuations of rotational speed also lead to the
phenomenon of nonstationary characteristics. In general,
the vibration signal of fault rolling bearings has three main
characteristics: interference of strong noise, nonlinearity,
and nonstationarity [8]. Terefore, extracting the charac-
teristics of bearing faults from signals accurately plays an
important role in diagnosis analysis [9]. To address this
issue, domestic and foreign scholars have proposed many
efective methods.

Signal decomposition is one of the mainstream research
directions. Fault features can be extracted from the signal
components which contain fault information. Empirical
mode decomposition (EMD) decomposes the signal adap-
tively and extracts diferent components from the signal
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processing [10]. Combining with Hilbert transform, EMD is
widely used in bearing fault analysis [11, 12]. Jia et al. [13]
proposed a new method that combines the improved EMD
with adaptive maximum second-order cyclostationarity
blind deconvolution, which extracts the weak fault com-
ponents of roller bearings efectively. Due to the defciency
of modal aliasing and endpoint efects in EMD, Wu and
Huang [14] incorporated Gaussian white noise before using
EMD and proposed ensemble empirical mode de-
composition (EEMD). Nevertheless, illusive components of
IMF may appear and the computational efciency of EEMD
is relatively low during the process of adding white noise by
EEMD. To address this issue, scholars have proposed many
improved algorithms, such as CEEMD [15] and MEEMD
[16]. On the other hand, variable mode decomposition
(VMD) can achieve efective separation of signal frequency
domain adaptively, which can avoid the problem of modal
aliasing [17, 18]. Gu et al. [19] proposed a method based on
VMD and permutation entropy. Meanwhile, the efective-
ness of features extracted by EMD, EEMD, and the proposed
method was compared through support vector machine.
However, the parameter settings of VMD can have a sig-
nifcant impact on the accuracy of its decomposition results.
Regarding this issue, Jin et al. [20] optimized the grey wolf
optimization algorithm (GWO) and applied it to the pa-
rameter optimization of VMD and deep belief networks
(DBN). Besides, singular value decomposition (SVD) is
a matrix factorization method which decomposes matrices
into singular value matrices and unitary matrices. Te
product of diferent singular values and unitary matrices
represents diferent components in the signal [21]. When
dealing with certain weak faults, SVD may have difculty to
extract weak components from the signal. Terefore, Zhu
et al. [22] proposed an improved SVD for extracting weak
fault components and demonstrated the decomposition
ability of SVD through Hankel matrix. EWT is also a method
for signal decomposition, which decomposes a signal into
components of diferent frequency bands by setting multiple
flters [23]. Te shortcoming of initial EWT is that un-
reasonable frequency band division occurs when deals with
certain weak faults signals. Terefore, many scholars have
made improvements to avoid this problem [24, 25]. However,
one shortage of EWT is the lack of an indicator to determine
the frequency band of fault components adaptively.

Determining the resonance frequency band of the fault
impulse component can also assist the extracting fault
components and features. Te kurtosis value of a time-
domain signal is a commonly indicator which refects the
magnitude of the fault impact [26]. Dwyer [27] proposed the
concept of spectral kurtosis (SK), which extends time-
domain kurtosis to the frequency function. However, be-
cause of the lack of a formal defnition and computational
complexity of SK, it has not been fully applied in the feld of
engineering application. Antoni and Randall [28–30] pro-
vided a detailed defnition and theoretical basis for SK, and
proposed a fast calculation method called Fast Kurtogram
(FK) by binary trees. Although FK can adaptively select the
resonance frequency band of the fault component, the
problem of frequency band division being fxed and kurtosis

indicator being inefective for certain weak faults still exists.
Terefore, many researchers have made improvements and
evolve many variants of FK to address this issue [31–34].
Song et al. [35] used balanced envelope and Protrugram,
which is a variant of kurtogram, to achieve automatic fault
diagnosis with solving the problem of information loss
caused by variable speed. Chen et al. [36] proposed the
concept of envelope spectrum family for optimizing enve-
lope spectrum and combined the optimal envelope spectrum
with the proposed new indicator to propose the product
envelope spectrum optimization graph (PESOgram). In
addition, the robustness of this method was verifed by
comparing diferent methods. Meng et al. [37] utilized
weighted empirical mode decomposition and Infogram for
envelope analysis, which was verifed by experiments and
comparisons to detect more accurate initial fault times. Li
et al. [38] proposed Cyclogram based on cyclostationarity
and kurtosis. Te efectiveness of Cyclogram was verifed
through simulation and real signals.

However, the improved FK methods may also fail in
some cases of weak faults, because of the inaccuracy iden-
tifcation of resonance frequency band of the faulty com-
ponent. In this paper, a fault diagnosis method of Hilbert
transform with modifed fast kurtogram (HTMFK) for
bearing weak fault feature identifcation is proposed while
consider the rotating machinery operation characteristics of
EDS. Te feasibility is verifed through simulation experi-
ments. To verify the practicality of proposed method, the
rolling bearing fault bench tests of EDS is designed and
implemented. Te resonance frequency of the outer ring
fault of rolling bearing is detected by HTMFK.Te precision
of the resonance frequency band discriminated is verifed
through variable speed experimental data. A high pass flter
(HPF) is designed based on the determined resonance
frequency band under diferent steady operating modes for
identifying the fault. Te results indicate that the proposed
method can be used for fault diagnosis of bearing fault in
EDS with higher accuracy and scope of application than FK
and the other compared method.

2. Theory and Derivation

Due to the complex of the vibration transmission path, the
fault signal in EDS becomes weak and difcult to extract.
Tis section introduces the basic theory of HTMFK. Te
improved processing is put forward to obtain a new signal
with amplifed fault information. Finally, the resonance
frequency band is obtained by FK on the processed signal.

2.1. Hilbert Transform Teory. Te Hilbert transform cal-
culates the imaginary part of signal a(t) by convolving a(t)

and 1/πt. Tis method converts the signal from the plane to
the Hilbert space, obtaining a complete analytical signal.

H[a(t)] �
1
π


+∞

−∞

a(t)

t − τ
dτ, (1)

where H[a(t)] represents signal a(t) to perform Hilbert
transform. From this, the analytical signal h(t) can be ob-
tained as follows:
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h(t) � a(t) + j · H[a(t)]. (2)

After obtaining the analytical signal h(t), the in-
stantaneous amplitude and phase of a(t) can be calculated to
prepare for subsequent signal processing. Te calculation
formula for instantaneous amplitude is as follows:

A[a(t)] �

����������������

[a(t)]
2

+ H[a(t)]{ }
22



, (3)

where A[a(t)] represents the calculation of instantaneous
amplitude of a(t).

Te instantaneous phase a(t) can be calculated as the
following formula:

φ(t) � arctan
H[a(t)]

a(t)
, (4)

where φ(t) represents the instantaneous phase of a(t).
Trough the Hilbert transform, the Hilbert envelope is

calculated and provides theoretical support for subsequent
signal improvement processing.

2.2. Spectral Kurtosis Teory. Kurtosis is a fourth order
statistic and is suitable for detecting shocks in a signal. Te
basic calculation formula for discrete signal is as follows:

K �
1
N



N

i�1

xi − x

σt

 

4

, (5)

where σt is the standard deviation of discrete signal xn.
Spectral kurtosis refers to the kurtosis value of the

components of a signal at diferent frequencies. By per-
forming Wold–Cramér decomposition on a nonstationary
random signal x(t) with zero mean, it can be expressed as
follows:

x(t) � 
+1/2

−1/2
H(t, f)e

j2πftdZx(f), (6)

where Zx(f) is the spectral process of white noise and
H(t, f) is the complex envelope of x(t) at frequency f.
H(t, f) can be represented by the following formula:

H(t, f) � 
+∞

−∞
[x(τ)ω(τ − t)]e

− j2πftdτ. (7)

Signal x(t) by spectral kurtosis can defne as a fourth
order normalized cumulant as follows:

Kx(f) �
S4x(f) − 2S

2
2x(f)

S
2
2x(f)

�
S4x(f)

S
2
2x(f)

− 2,

(8)

where S4x(f) and 2S22x(f) are the fourth and second mo-
ments of complex envelope H(t, f), respectively. In addi-
tion, the rotating machinery always contains a stationary

random noise c(t), so that the spectral kurtosis Kx+c(f) of
nonstationary random signal x(t) containing noise can also
be expressed as follows:

Kx+c(f) �
Kx(f)

[1 + ρ(f)]
2, (9)

where ρ(f) indicates signal-to-noise ratio.
Te spectral kurtosis theory provides theoretical support

for FK. Based on the above theory and signal process
processing, the HTMFK can be derived.

2.3. Principal Derivation of HTMFK. Te fault signal y(t) is
composed of fault information x(t) and noise c(t)

superimposed together, which is shown in the following
form:

y(t) � x(t) + c(t), (10)

where y(t), x(t), c(t) are time-domain signals. For weak
faults impact, the energy of fault signature is usually smaller
than that of noise information.Te amplitude of the signal is
demodulated by Hilbert envelope to reduce noise and in-
crease fault information. Te expression of processed signal
g(t) is as follows.

g(t) �
y(t)

A[y(t)]

�
x(t) + c(t)

A[y(t)]

�
x(t) + c(t)

������������������

[y(t)]
2

+ H[y(t)] 
22

 .

(11)

During the sampling and calculation process, the signals
y(t), x(t), c(t), g(t) are discretized and a matrix composed
of column vectors can be obtained.

yn

xn

cn

gn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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T
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T

. (12)

Te discrete form of equation (10) is as follows:

y1

y2

⋮
yn
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+
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⋮
cn
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. (13)

Te discrete form of signal g(t) with improved pro-
cessing is as follows:
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g1 g2 . . . gn 
T

�
x1 + c1

A y1 

x2 + c2

A y2 
. . .

xn + cn

A yn 
 

T

i � 1, 2, 3 . . . . . . n, (14)

where A[yi] is the instantaneous amplitude of the discrete
signal at point i.

Te impact signal in the resonance frequency range will
be amplifed by the demodulated signal. Te resonance
frequency band of the demodulated signal is identifed by
FK, which improves the accuracy in identifying the reso-
nance frequency band of the original signal. Finally, the
square envelope spectrum (SES) of the fltered signal is
calculated to achieve the diagnosis of weak faults in rolling
bearings. Te procedure of HTMFK algorithm is shown in
Figure 1.

3. Simulation Experiment

In this section, three simulation experiments of sweep fre-
quency signal, bearing fault signal without noise, and
bearing fault signal with noise are put forward to verify the
fault feature identifcation of HTMFK.

3.1. Te Infuence of Improved Processing Method on AM
SweepSignal. To explain the efect of the processingmethod,
a simulated sweep signal with linear sweep signal and
amplitude modulated (AM) signal is constructed. Te linear
sweep signal f(t) is as follows:

f(t) � e
j2π f0t+1/2kt2( ), (15)

where f0 is the initial frequency and k is the frequency
modulation. Te expression of k is shown as follows:

k �
f − f0

T
, (16)

where f is the cutof sweep frequency and T is the total
sweep duration of t. According to equation (16), the ex-
pression for the amplitude modulation signal is as follows:

fh(t) �
t

T
· e

j2π f0t+1/2kt2( ). (17)

Te sweep duration is set to 3 s, with a sweep cutof
frequency of 25Hz. Te temporal waveform and frequency
spectrum of the sweep signal are shown in Figures 2(a)
and 2(b).

As shown in Figures 2(c) and 2(d), AM frequency signal
is a linear modulation, and the energy distribution of the
spectrum changes. HTMFK restores the AM sweep signal,
and transforms the original signal. Te time-domain dia-
gram of the demodulated signal is shown in Figure 3, in
which the HTMFK method can basically eliminate the in-
fuence of amplitude modulation from endpoint efects.

3.2. Te Outer Ring Fault Simulation of Rolling Bearing.
As the simulation results in Section 3.1, the HTMFKmethod
can demodulate and normalize the AM signal. Te reso-
nance excited by rolling bearing faults rapidly decay because

of the damping of the structural system. Te bearing in-
formation is also afected by noise, which leads to difculty
in obtaining fault features. Te next simulation signal u(t)

for the outer ring fault of a single impact rolling bearing is as
follows:

u(t) � Ae
− 2πfntξ sin 2πfn

�����

1 − ξ2


t , (18)

where A stands the amplitude, fn is the resonance frequency
caused by the fault impact, fs is sampling frequency, fo is
outer ring fault frequency, and ξ is the damping coefcient.
Te parameters set for this simulation are shown in Table 1.

Te simulation process and the results are shown in
Figure 4. In Figure 4(d), the demodulated signal spectrum
has more concentrated energy. Te results indicate that the
proposed method improve the accuracy and precision of FK
in identifying resonance frequency bands efcaciously.

As equation (10), the signal contains noise components.
Terefore, noise should be added to the simulation signal in
Figure 4(a) and the signal in the frst 1 second is extracted.
Te time-domain and spectrum diagrams of the simulation
signal with noise are shown in Figure 5. From Figure 5(a),
the impact in the simulation signal is drowned out by added
noise and the kurtosis value of the time-domain signal is
small. In Figure 5(b), the resonance frequency peak of the
original signal is covered by the noise energy, and only the
resonance peak around 3000Hz is obvious. From
Figure 5(c), the amplitude of the characteristic frequency of
the outer ring fault (BPFO) is obscured by noise, which
makes it difcult to determine the fault from the envelope
spectrum. FK, HTMFK, Protrugram, and SVD are used for
this simulation signal respectively, and the results are shown
in Figure 6.

From Figures 6(a) and 6(b), HTMFK is more accurate to
locate the resonance frequency band rather than FK. Te
center frequency (fc) of the resonance frequency band
located by HTMFK is around 3000Hz, which has a smaller
bandwidth (Bw). Te phenomenon of concentrated spectral
energy is similar with the demodulated signal in Figure 4(d).
As shown in the Figures 6(c) and 6(d), Protrugram identifes
fc at 3100Hz and SVD extracted the resonance region near
3000Hz.

From Figure 7, bandpass fltering of resonance fre-
quency band is performed for Figures 6(a)–6(c).Te square
envelope spectrum (SES) of the fltered signal is calculated.
From the results of SES, the amplitude of HTMFK is more
prominent at 100Hz than FK, which is consistent with the
theoretical fault characteristic frequency. Due to the larger
Bw, the SES of Protrugram has more harmonic components
at 100Hz and the diagnostic results are relatively accurate.
SVD has the best noise reduction efect while extracting the
fault resonance region of SVD in correct. From Figure 8,
the SES of IMF3 obtained by EEMD shows obvious fault
characteristics, which has signifcant amplitudes at 100Hz
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and its harmonics. By comparing the results of 5 methods,
all other methods except FK have good diagnostic
performance.

4. Bench Test System of EDS

To verify the efectiveness of the proposed method for weak
fault feature identifcation, a bench experiment of bearing
fault in EDS is carried out. Tis section introduces the test
system composition and operation conditions.

Faulty rolling bearing is conducted on a certain type of
electric drive assembly under laboratory bench conditions.
Te position of the rolling bearing is at the output end of the
motor shaft. Te outer ring damage is caused by manual
injury with a width of 0.6mm and a depth of 0.03mm, which
is shown in Figure 9.Te rolling bearing type is 6307 and the
bearing parameters are shown in Table 2.

Te operating conditions of the speed and motor torque
for bench experiment are shown in Table 3. Te experiment
data are obtained by a high-precision data acquisition
system. Te signal sampling rate is set to 20 kHz. Te sensor
type is an IEPE acceleration sensor with a range of ±50 g.Te
sensor layout and experimental diagram are shown in
Figure 10.

5. Fault Diagnosis and Validation

In this section, the applicability of the proposed method for
fault identifcation is verifed by several steady-state con-
ditions. In addition, the efect of resonant fault band
identifcation under variable speed condition is also used to
verify the antidisturbance capability of the HTMFK.

5.1. Applicability Verifcation of HTMFK. Te time domain
and spectrum diagrams under the operating condition of
2000 rpm & 50N·m are shown in Figure 11.Te fault impact
is obscured by noise and the kurtosis value is small. Te
spectrum in Figure 11(b) shows signifcant amplitudes
around 3000Hz and 6000Hz. From Figure 11(c), the fault
characteristics are completely obscured by noise and require
further processing to extract fault features.

Diferent methods are used to process the experimental
signals and the processing results are shown in Figure 12.
From Figures 12(a) and 12(b), FK locates the resonance
frequency range at a low frequency range below 1000Hz
while HTMFK locates at a high frequency range above
7000Hz. From Figure 12(c), Protrugram determined fc at
1150Hz, which is similar to the FK result. Meanwhile,

Te vibration 
signal of rolling 

bearing

Hilbert envelope 
of original signal

Hilbert transform

Demodulated signal Fast kurtogram
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settings

Obtain 
frequency and 
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Band pass

Filtered signal

Square envelope 
spectrum

Hilbert 
transform and 

FFT

Fault diagnosis 
of rolling 
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Figure 1: Flowchart of HTMFK algorithm.
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Table 1: Parameters of simulation signals for outer ring faults.

A fs(Hz) fn(Hz) ξ fo(Hz)

5 20000 3000 0.1 100
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Figure 7: Te SES among FK, HTMFK, Protrugram, and SVD with simulation. (a) FK. (b) HTMFK. (c) Protrugram. (d) SVD.
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Figure 8: EEMD with simulation. (a) Temporal waveform. (b) SES.
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Outer ring fault

(a)

0.03 mm
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Outer ring fault
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Figure 9: Te rolling bearing with specifc fault information. (a) Actual photo of the bearing fault. (b) Te artifcial fault size.

Table 2: Parameters of rolling bearing.

Inner diameter
(mm)

Outer diameter
(mm) Tickness (mm) Rolling element

diameter (mm)
Contact angle

(°)
Number of

rolling elements
35 80 21 13.494 0 8

Table 3: Operating conditions and states.

Serial number High
shaft speed (rpm) Duration (s) Motor torque (N·m) Fault frequency

1 2000 10 50 102.04Hz
2 3000 10 50 153.06Hz
3 2000 10 20 102.04Hz
4 3000 10 20 153.06Hz
5 0⟶ 5000⟶ 0 60 50 None

Sensor2

Sensor1

Sensor3 Sensor4

(a)

Dynamometer EDS

Sensors

Rack

(b)

Figure 10: Bench test system of EDS. (a) Sensor layout diagram. (b) EDS bench test system.
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Protrugram also identifed an extreme value at 7350Hz,
which similar to the HTMFK result. From Figure 12(d), SVD
still exhibits strong noise reduction ability, and the recon-
structed signal spectrum mainly extracts the components of
the original signal at 3201Hz and 5814Hz.

Figure 13 shows the SES of the fltered signal and
reconstructed signal separately. Comparing the characteristic
frequency of outer ring faults (BPFO), FK has completely failed
which is shown in Figure 13(a). From Figure 13(b), HTMFK
has obvious fault characteristics in SES, and the fault frequency

kurtosis = 3.0013
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Figure 11: Experimental signal of EDS under 2000 rpm and 50N·m. (a) Temporal waveform. (b) Spectrum. (c) Envelope spectrum.
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Figure 12: Te comparison among FK, HTMFK, Protrugram, and SVD under 2000 rpm and 50N·m. (a) FK, fc � 520.83Hz,
Bw � 208.33Hz. (b) HTMFK, fc � 8333.33Hz, Bw � 3333.33Hz. (c) Protrugram, fc � 1150Hz, Bw � 800Hz. (d) Spectrum of reconstructed
signal by SVD.
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is similar to the theoretical value of 102Hz. Te main com-
ponent extracted by the SES of Protrugram is the second-order
rotational frequency (fr) from Figure 13(c). However, SVD
extract fault components incorrect which is shown in
Figure 13(d). As mentioned in the simulation experiment,
although SVD has strong noise reduction ability, the pre-
requisite is to fnd an efective resonance region. From Fig-
ure 14, EEMD inefectual realize efectivemode separation, and
only second-order harmonic of rotational frequency can be
observed in the SES of IMF4 and IMF5. By comparison, it can
be seen that only HTMFK locates the resonance frequency
band of bearing faults accurately and diagnoses the faults
successfully.

Te diagnosis results from the steady-state condition of
3000 rpm & 50N·m are shown in Figures 15–18, which are
similar to the condition of 2000 rpm & 50N·m. From
Figure 15, the fault impact is also obscured by noise. As
shown in Figure 16, HTMFK still locates the resonance
frequency band at a high frequency range above 7000Hz,
which similar to the extreme value at 7350Hz of Protru-
gram. From Figure 17, HTMFK has more obvious fault
characteristics which are similar to the theoretical

calculation of 153Hz. From Figure 18, SES of IMF5
extracted by EEMD has signifcant amplitude at 150.1Hz.
However, the amplitude of the second-order harmonic is
too weak to determine the fault.

5.2. Accuracy Identifcation of HTMFK. According to the
fault identifcation results of the above two operating con-
ditions, the bearing fault has well diagnosed when the fault
resonance frequency band is above 7000Hz. Fault band
identifcation under variable speed conditions is used to
further verify the accuracy of the proposed method. Te
time-frequency domain under the operating condition of
0–5000 rpm & 50N·m is shown in Figure 19. Tere are three
obvious resonance regions, and HTMFK locates at the
resonance region near 8000Hz.

In order to verifying the accuracy of the identifed
resonance frequency band for fault diagnosis, a high pass
flter (HPF) of 7000Hz is constructed. Tis step can replace
the determination of bandpass flter parameters in the
previous process. Te diagnostic results are shown in
Figures 20–23, respectively.
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Figure 13: SES of FK, HTMFK, Protrugram, and SVD under 2000 rpm and 50N·m. (a) FK. (b) HTMFK. (c) Protrugram. (d) SVD.
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For the working torque of 20N·m, the SES of HPF has
more obvious fault characteristics and provides efective di-
agnostic results. However, the SES of FK and Protrugram
indicate that the resonance frequency bands located by these
two methods are not accurate enough to diagnose bearing

faults. SVD still extract bearing fault information inefectively.
Te fault features extracted by EEMD are mainly second-order
rotation frequency and has a certain efect under the working
condition of 3000 rpm and 20N·m. Te above results indicate
that the HPF based on HTMFK is efective and reliable.
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Figure 14: EEMD under 2000 rpm & 50N·m.
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Figure 15: Experimental signal of EDS under 3000 rpm and 50N·m. (a) Temporal waveform. (b) Spectrum. (c) Envelope spectrum.
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Figure 16: Te comparison among FK, HTMFK, Protrugram, and SVD under 3000 rpm & 50N·m. (a) FK, fc � 520.83Hz, Bw � 208.33Hz.
(b) HTMFK, fc � 8750Hz, Bw � 2500Hz. (c) Protrugram, fc � 1590Hz, Bw � 800Hz. (d) Spectrum of reconstructed signal by SVD.
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Figure 17: Continued.
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Figure 17: SES of FK, HTMFK, Protrugram, and SVD under 3000 rpm and 50N·m. (a) FK. (b) HTMFK. (c) Protrugram. (d) SVD.
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Figure 18: EEMD under 3000 rpm and 50N·m.
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Figure 19: Time-frequency domain under 0–5000 rpm and 50N·m.
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Figure 20: SES of FK, HTMFK, Protrugram and SVD under 2000 rpm and 20N·m. (a) FK, fc � 2968.75Hz, Bw � 312.5Hz. (b) HPF of
7000Hz. (c) Protrugram, fc � 1300Hz, Bw � 800Hz. (d) SVD.
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Figure 21: EEMD under 2000 rpm and 20N·m.

1×BPFO

200 300 400 500 600 700 800100
frequency [Hz]

0.0000

0.0005

0.0010

0.0015

0.0020

am
pl

itu
de

(a)

1×BPFO

2×BPFO

3×BPFO

100 200 300 400 500 600 700 8000
frequency [Hz]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

am
pl

itu
de

(b)
Figure 22: Continued.
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Figure 22: SES of FK, HTMFK, Protrugram, and SVD under 3000 rpm & 20N·m. (a) FK, fc � 520.83Hz, Bw � 208.33Hz. (b) HPF of
7000Hz. (c) Protrugram, fc � 1000Hz, Bw � 800Hz. (d) SVD.
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Figure 23: EEMD under 3000 rpm and 20N·m.
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6. Conclusion

A novel method is established as HTMFK for detecting the
resonance frequency band of weak bearing faults of EDS.Te
efectiveness of proposed method has been verifed through
simulation signals and bench fault test data of EDS.
Meanwhile, by comparing the results of HTMFK with other
methods, the superiority of HTMFK is demonstrated. Te
following conclusions are drawn in this article:

(1) Demodulation of fault signals based on Hilbert
envelope can efectively amplify the weak fault in-
formation of bearing outer ring.

(2) From the simulation results, the center frequency
obtained by HTMFK is closer to the theoretical value
than FK. Te resonance frequency band located is
more reliable.

(3) Bench test of rolling bearing fault in EDS is con-
ducted. Compared with SES of FK and other
methods, the accuracy and efectiveness of detected
resonance frequency bands from weak outer ring
fault of EDS are verifed.

(4) Te results of variable speed operating conditions
and the diagnostic results of HPF for 20N·m op-
erating conditions indicate that the resonance fre-
quency band located by HTMFK is efective and
accurate. HTMFK is efective for fault diagnosis of
weak bearing faults in EDS.
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